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Revisiting of some outstanding metric fixed
point theorems via E-contraction

Andreea Fulga and Erdal Karapınar

Abstract

In this paper, we introduce the notion of α-ψ-contractive mapping of
type E, to remedy of the weakness of the existing contraction mappings.
We investigate the existence and uniqueness of a fixed point of such
mappings. We also list some examples to illustrate our results that
unify and generalize the several well-known results including the famous
Banach contraction mapping principle.

1 Introduction and Preliminaries

Throughout the manuscript, we denote N0 := N∪ {0} where N is the positive
integers. Further, R represent the real numbers and R+

0 := [0,∞).
Let Ψ be the family of nondecreasing functions ψ : [0,∞) → [0,∞) satis-

fying the following conditions:

(Ψ1) ψ(t) < t, for any t > 0.

(Ψ2) ϕ is continuous at 0;

In the literatures, there are well-known examples for such functions, such as,
comparison functions [3, 25] and (c)-comparison functions [3, 25].

Popescu [22] suggested the concept of α-orbital admissible as a refinement
of the alpha-admissible notion, defined in [29, 11].
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Definition 1.1. [22] Let T : X → X be a mapping and α : X ×X → [0,∞)
be a function. We say that T is an α-orbital admissible if

α(x, Tx) ≥ 1⇒ α(Tx, T 2x) ≥ 1.

If the additional condition,

α(x, y) ≥ 1 and α(y, Ty) ≥ 1⇒ α(x, Ty) ≥ 1,

is fulfilled, then the α-admissible mapping T is called triangular α-orbital ad-
missible.

Notice that each α-admissible mapping is an α-orbital admissible. For
more details and counter examples, see e.g. [1, 4, 5, 11, 12, 16, 22].

In this manuscript, we define a new notion, α-ψ-contractive mapping of
type E, and derive some existence and uniqueness fixed point theorems for
such mappings. Our results remove some weakness of the existing fixed point
theorems including the initial metric fixed point theorem, Banach contraction
mapping principle. We list some immediate consequence and examples that
illustrates our results.

2 Main results

Definition 2.1 (cf. [8]). Let (X, d) be a metric space and T : X → X be
given mapping. We say that T is an α-ψ-contractive mapping of type E if
there exist two functions α : X ×X → [0,∞) and ψ ∈ Ψ such that

α(x, y)d(Tx, Ty) ≤ ψ(E(x, y)), for all x, y ∈ X, (1)

where
E(x, y) = d(x, y) + |d(x, Tx)− d(y, Ty)| (2)

The following lemma is a standard argument to prove that the given se-
quence is Cauchy

Lemma 2.1. (See e.g. [23]) Let (X, d) be a metric space and let {xn} be a se-
quence in X such that d(xn+1, xn) is nonincreasing and limn→∞ d(xn+1, xn) =
0. If {xn} is not a Cauchy sequence, then there exist an ε > 0 and two
sequences {mk} and {nk} of positive integers such that the following four se-
quences tend to ε when k →∞:

d(xmk
, xnk

), d(xmk+1, xnk+1), d(xmk−1, xnk
), d(xmk

, xnk−1), d(xmk−1, xnk−1)

Theorem 2.1. Let (X, d) be a complete metric space. Let T : X → X be
α-ψ-contractive mapping of type E satisfying the following conditions:
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(i) T is triangular α-orbital admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 ;

(iii) T is continuous.

Then, there exists a fixed point x∗ such that Tx∗ = x∗.

Proof. By assumption (ii), there exists a point x0 ∈ X such that α(x0, Tx0) ≥
1. We construct an iterative sequence {xn} such that xn = Txn−1 for all
n ∈ N. Owing to the fact that T is α−orbital admissible, we derive

α(x0, x1) = α(x0, Tx0) ≥ 1⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1.

Recursively, we have

α(xn, xn+1) ≥ 1, for all n ∈ N0. (3)

Since T is triangular α−orbital admissible, we find from (3) that

α(xn, xn+1) ≥ 1 and α(xn+1, xn+2) ≥ 1⇒ α(xn, xn+2),

for any n ∈ N. Inductively, we conclude that

α(xn, xn+j) ≥ 1, for all n, j ∈ N. (4)

If xn0
= xn0+1 = Txn0

for some n0 ∈ N0, then x∗ = xn0
forms a fixed

point for T that the proof finishes. Hence, from now on, we assume that

xn 6= xn+1 for all n ∈ N0. (5)

We shall prove that the sequence {d(xn, xn+1)} is monotone. By taking
x = xn and y = xn+1 in the inequality (1) and by regarding (3) and (5), we
obtain

d(xn, xn+1) = d(Txn−1, Txn) ≤ α(xn−1, xn)d(Txn−1, Txn)

≤ ψ(E(xn−1, xn))

= ψ(d(xn−1, xn) + |d(xn−1, Txn−1)− d(xn, Sxn)|)

≤ ψ(d(xn−1, xn) + |d(xn−1, xn)− d(xn, xn+1)|)

(6)

Suppose that d(xn, xn+1) ≥ d(xn−1, xn). In this case, the inequality (6),
becomes
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d(xn, xn+1) ≤ ψ(d(xn−1, xn)− d(xn−1, xn) + d(xn, xn+1))

= ψ(d(xn, xn+1)) < d(xn, xn+1),

a contradiction. Hence, we deduce that d(xn, xn+1) < d(xn−1, xn) for each n.
Moreover, we can derive an estimation from (6) that

d(xn, xn+1) ≤ ψ(E(xn−1, xn)) = ψ(2d(xn−1, xn)− d(xn, xn+1))

≤ ψ(2d(xn−1, xn)) < 2d(xn−1, xn),
(7)

for each n.
Since the sequence {d(xn, xn+1)} decreasing and bounded from below, we

conclude that it converges to some nonnegative number d ≥ 0, that is,

lim
n→∞

d(xn, xn+1) = d.

Notice also that
lim
n→∞

E(xn, xn+1) = d.

We claim that d = 0. Suppose, on the contrary, that d > 0. Taking lim sup
of the inequality (7), and taking the basic condition (Ψ1) into account, we get
that

d ≤ ψ(d) < d,

a contradiction. Hence, we conclude that

lim
n→∞

d(xn, xn+1) = 0. (8)

We shall proved that the sequence {xn} is Cauchy. Suppose, on the con-
trary, that there exist ε > 0 and sequences {xn(k)},{xm(k)} of positive integers
such that n(k) > m(k) > k and

{d(xn(k), xm(k)) ≥ ε, d(xn(k)−1, xm(k)) < ε, for all k ∈ N.
Due to Lemma 2.1, we have

lim
k→∞

d(xn(k), xm(k)) = lim
k→∞

d(xn(k)−1, xm(k)−1) = ε (9)

On the other hand, from (4), we have α(xn(k)−1, xm(k)−1) ≥ 1. Thus, from
(1) and the assumption (ii), we deduce that

ε ≤ d(xn(k), xm(k)) = d(Txn(k)−1, Txm(k)−1)

≤ αd(xn(k)−1, xm(k)−1)d(Txn(k)−1, Txm(k)−1)

≤ ψ(E(xn(k)−1, xm(k)−1))

(10)
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Since

E(xn(k)−1, xm(k)−1) = d(xn(k)−1, xm(k)−1)+∣∣d(xn(k)−1, xTn(k)−1)− d(xm(k)−1, xTm(k)−1)
∣∣

= d(xn(k)−1, xm(k)−1)+∣∣d(xn(k)−1, xn(k))− d(xm(k)−1, xm(k))
∣∣

using (9) and (8) we obtain that

lim
k→∞

E(xn(k)−1, xm(k)−1) = ε. (11)

Finally, letting k →∞ in (10) and using (9) and (11), we get

ε ≤ ψ(ε). (12)

On account of (Ψ1), the inequality (12) turns into

ε ≤ ψ(ε) < ε,

which is a contradiction. Hence, we find that ε = 0. Therefore, xn is a
Cauchy sequences. By completeness of (X, d), the sequence xn converges to
some point x∗ ∈ X as n → ∞. From the continuity of T , it follows that
xn+1 = Txn → Tx∗) as n → ∞. By the uniqueness of the limit, we get
x∗ = Tx∗, that is, x∗ is a fixed point of T .

We say that a complete metric space (X, d) is regular if {xn} is a sequence
in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n → ∞, then
there exists a subsequence xn(k) of xn such that α(xn(k), x) ≥ 1 for all k.

As it is known well, the continuity condition is a very heavy condition.
Like in [29], we realize that we can replace the continuity of the operator T
by a regularity condition on a complete metric space (X, d).

Theorem 2.2. Let (X, d) be a complete metric space. Let T : X → X be
α-ψ-contractive mapping of type E satisfying the following conditions:

(i) T is triangular α-orbital admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 ;

(iii) (X, d) is regular.

Then, there exists a fixed point x∗ such that Tx∗ = x∗.
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Proof. Following the proof of Theorem 2.1, we know that {xn} is a Cauchy
sequence in the complete metric space (X, d). Then, there exists x∗ ∈ X such
that xn → x∗ as n→∞. By the hypothesis (iii) we deduce that there exists
a subsequence xn(k) of xn such that α(xn(k), x

∗) ≥ 1 for all k. Therefore, we
have

d(xn(k), Tx
∗) = d(Txn(k)−1, Tx

∗) ≤ α(xn(k)−1, x
∗)d(Txn(k)−1, Tx

∗)

≤ ψ(E(xn(k)−1, x
∗))

(13)
where

E(xn(k)−1, x
∗) = d(xn(k)−1, x

∗) +
∣∣d(xn(k)−1, Txn(k)−1)− d(x∗, Tx∗)

∣∣
Now, we shall show that Tx∗ = x∗. Suppose, on the contrary, that Tx∗ 6= x∗

that is, d(x∗, Tx∗) > 0. Letting k →∞ in the above inequality, and taking
(Ψ1) into account, we find that

0 < d(x∗, Tx∗) ≤ ψ(d(x∗, x∗)) < d(x∗, x∗),

which yields d(x∗, Tx∗) = 0, a contradiction. Therefore Tx∗ = x∗.

The assure the uniqueness of the fixed point, we will consider the following
hypothesis

(U) for all x 6= y ∈ X, there exists z ∈ X such that α(x, z) ≥ 1, α(y, z) ≥ 1
and α(z, Tz) ≥ 1

Theorem 2.3. The fixed point x∗ of T , in Theorem 2.1 (resp. Theorem 2.2),
is unique, if assume an additional condition (U).

Proof. If we consider that z = x0 we obtain that α(x0, Tx0) ≥ 1, so even
hypotheses (ii), from Theorem 2.1 (resp. Theorem 2.2) so we obtain that
x∗ is a point fixed of T , where x∗ = limn→∞xn = limn→∞T

nx. Suppose
that x∗ and y∗ are two fixed points of T such that x∗ = y∗. Then, from (U)
there exists z ∈ X such that α(x∗, z) ≥ 1, α(y∗, z) ≥ 1 and α(z, Tz) ≥ 1.
Since T is a triangular α-orbital admissible, we get that α(x∗, Tnz) ≥ 1 and
α(y∗, Tnz) ≥ 1. Thus, from (1) we have

d(x∗, Tn+1z) = d(Tx∗, T (Tnz)) ≤ α(x∗, Tnz)d(Tx∗, T (Tnz))

≤ ψ(E(x∗, Tnz)) < E(x∗, Tnz)
(14)
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This imply that

d(x∗, Tn+1z) < d(x∗, Tnz) +
∣∣d(x∗, Tx∗)− d(Tnx, Tn+1x)

∣∣
By Theorem 2.2 we deduce that the sequence Tnz converges to a fixed point

z∗ of T . Letting n→∞ in the above inequality, we get d(x∗, z
∗) < d(x∗, z

∗).
This implies that d(x∗, z∗) = 0 so x∗ = z∗. Similarly, we get y∗ = z∗. Hence,
x∗ = y∗, which is a contradiction.

2.1 Examples

Now, we shall consider some examples that illustrate and support our main
results.

Example 2.1. Let X = R. Consider the self mapping T : X → X such that

Tx =


3x
8 if x ∈ [0, 1] ,

x2+13
16 otherwise

Define a metric d : X ×X → R+
0 as d(x, y) = |x−y|

2

Define α : X ×X → R+
0 such that

α(x, y) =

{
4 if (x, y) ∈ [0, 1]
0 otherwise.

Notice that the self-mapping T is continuous.
Further, several well-known contraction types does not hold for (x, y) ∈

[0, 1], that is,

d(Tx, Ty) =
3 |x− y|

16
and hence α(x, y)d(Tx, Ty) =

3 |x− y|
4

,

but d(x, y) = |x−y|
2 . Hence, there is no k ∈ [0, 1) or ψ ∈ Ψ such that the con-

ditions of α-ψ-contractive mapping or Banach contraction mapping principle
are fulfilled.

On the other hand, for all x, y ∈ [0, 1], one can easily derive that

E(x, y) =
|x− y|

2
+

1

2

∣∣∣∣|x− 3x

8
| − |y − 3y

8
|
∣∣∣∣ =

13 |x− y|
16

, for all x, y ∈ [0, 1],

which yields that T : X → X is an α-ψ-contractive mapping of type E with
ψ(t) = at with a ≥ 12

13 , for example a = 25
26 . Indeed, we have for x, y ∈ [0, 1]

α(x, y)d(Tx, Ty) =
3 |x− y|

4
≤ 25 |x− y|

32
=

25E(x, y)

26
= ψ(E(x, y)).
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Note that if x, y ∈ R\ [0, 1], then the result is provided easily from the fact that
α(x, y) = 0.

Let us check that T is α-orbital admissible:

α(x, Tx) = α(x, x4 ) ≥ 1 ⇒ α(Tx, T 2x) = α(x4 ,
x
16 ) ≥ 1.

As a second step, let us prove that T is triangular α-orbital admissible:

α(x, y) ≥ 1 and α(y, Ty) = α(y, y4 ) ≥ 1 ⇒ α(x, Ty) = α(x, y4 ) ≥ 1,

Thus, the first condition (i) of Theorem 2.1 is satisfied. The second condition
(ii) of Theorem 2.1 is also fulfilled. Indeed, for x0 = 0, we have α(0, T0) =
α(0, 0) = 5 ≥ 1.

Thus, all conditions of Theorem 2.1 are satisfied. Here, T0 = 0 is the fixed
point of T .

Example 2.2. Let X = A∪R+
0 where A = {a, b, c}. Consider the self mapping

T : X → X such that

Tx =

 x+ 1 if x ∈ R+
0 ,

c if x = a,
b if x ∈ {b, c}.

Define a metric d : X ×X → R+
0 as

d(x, y) =



|x− y| if x, y ∈ R+
0 ,

1 if (x, y) ∈ {(a, b), (b, a)}
3 if (x, y) ∈ {(a, c), (c, a)},
2 if (x, y) ∈ {(b, c), (c, b)},
0 if (x, y) ∈ {(a, a), (b, b), (c, c)},
0 if (x, y) ∈ A× R+

0 ∪ R+
0 ×A.

Define α : X ×X → R+
0 such that

α(x, y) =

{
1 if (x, y) ∈ {(a, c), (a, b), (b, b), (c, b)}
0 otherwise.

It is easy to get that

E(a, b) = 1 + |3− 0| = 4, E(a, c) = 3 + |3− 2| = 4, E(b, c) = 2 + |0− 2| = 4.

From the above calculations, we can easily conclude that T : X → X is an α-
ψ-contractive mapping of type E, for ψ(t) = t

2 . Indeed, we have the following
possibilities:

α(a, b)d(Ta, Tb) = 2 ≤ E(a,b)
2 = 2,

α(a, c)d(Ta, Tc) = 2 ≤ E(a,c)
2 = 4

2 = 2,

α(b, c)d(Tb, T c) = 0 ≤ E(b,c)
2 = 4

2 = 2.
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Thus, the condition (1) is satisfied for all x, y ∈ A. Notice that the condition
(1) is fulfilled trivially for x, y ∈ R+

0 , since α(x, y) = 0 for x, y ∈ R+
0 .

Let us check that T is α-orbital admissible:

α(a, Ta) = α(a, c) ≥ 1 ⇒ α(Ta, T 2a) = α(c, b) ≥ 1
α(b, T b) = α(b, b) ≥ 1 ⇒ α(Tb, T 2b) = α(b, b) ≥ 1
α(c, T c) = α(c, b) ≥ 1 ⇒ α(Tc, T 2c) = α(b, b) ≥ 1

As a second step, let us prove that T is triangular α-orbital admissible:

α(a, b) ≥ 1 and α(b, T b) = α(b, b) ≥ 1 ⇒ α(a, T b) = α(a, b) ≥ 1,
α(a, c) ≥ 1 and α(c, T c) = α(c, b) ≥ 1 ⇒ α(a, T c) = α(a, b) ≥ 1,
α(b, b) ≥ 1 and α(b, T b) = α(b, b) ≥ 1 ⇒ α(b, T b) = α(b, b) ≥ 1,
α(c, b) ≥ 1 and α(b, T b) = α(b, b) ≥ 1 ⇒ α(c, T b) = α(b, b) ≥ 1.

Thus, the first condition (i) of Theorem 2.2 is satisfied. The second condi-
tion (ii) of Theorem 2.2 is also fulfilled. Indeed, for any x0 ∈ A, we have
α(x0, Tx0) ≥ 1.

It is also easy to see that (X, d) is regular. Indeed, whatever the initial
point x0 ∈ A is chosen, the sequence {xn} tends to b. By definition of the
auxiliary function α, we have

α(a, b) ≥ 1, α(b, b) ≥ 1 and α(c, b) ≥ 1.

Thus, all conditions of Theorem 2.2 are provided. Notice that Tb = b is
the fixed point of T .

Example 2.3. Let X =
[
0, 23
]
∪ [1, 4] equipped with a metric d : X×X → R+

0

such that d(x, y) = |x−y|
2 . Consider the self mapping T : X → X such that

Tx =


x
3 if x ∈

[
0, 23
]
,

5
2 −

x
4 if x ∈ [1, 4] .

We define α : X ×X → R+
0 such that

α(x, y) =


4 if x, y ∈

[
0, 23
]

1 if x, y ∈ [1, 3]
2 if (x, y) ∈ {(0, 4), (1, 4)},
0 otherwise.

First of all, we remark that, for x, y ∈
[
0, 23
]
,

d(x, y) =
|x− y|

2
=

3|x− y|
6

, and d(Tx, Ty) =
1

2

∣∣∣x
3
− y

3

∣∣∣ =
|x− y|

6
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Thus, we have

α(x, y)d(Tx, Ty) =
4|x− y|

6

Hence, there is no ψ ∈ Ψ to provide that T is α− ψ contraction.
We have consider the following two cases:
(i) for all x, y ∈

[
0, 23
]

E(x, y) =
|x− y|

2
+

1

2

∣∣∣|x− x

3
| − |y − y

3
|
∣∣∣ =

5 |x− y|
6

.

Consequently, we conclude that T is α−ψ contraction type of E, with ψ(t) =
at, where a > 4

5 . In particular, for the choice of ψ(t) = 9
10 t, we have

α(x, y)d(Tx, Ty) =
4 |x− y|

6
≤ ψ(

9

12
|x− y|) =

9

10
E(x, y) = ψ(E(x, y)).

which yields that T : X → X is an α-ψ-contractive mapping of type E with
ψ(t) = 9

10 t.
(ii) for x, y ∈ [1, 3], we have

d(Tx, Ty) =
1

2

∣∣∣x
4
− y

4

∣∣∣ =
|x− y|

8
and d(x, y) =

|x− y|
2

and α(x, y)d(Tx, Ty) = |x−y|
8 Moreover, we find that

E(x, y) =
|x− y|

2
+

1

2

∣∣∣|x− x

4
| − |y − y

4
|
∣∣∣ =

7 |x− y|
8

.

Hence, we conclude that

α(x, y)d(Tx, Ty) =
|x− y|

8
≤ 9

10

(
7 |x− y|

8

)
=

9

10
E(x, y) = ψ(E(x, y)).

(iii) for x = 0 and y = 4, we have

d(T0, T4) =
1

2

∣∣∣∣0− 3

2

∣∣∣∣ =
3

4
and d(0, 4) =

|0− 4|
2

= 2 and α(0, 4)d(T0, T4) =
6

4
.

Moreover, we find that

E(0, 4) =
|0− 4|

2
+

1

2

∣∣∣∣|0− 0| − |4− 3

2
|
∣∣∣∣ = 2 +

5

4
=

13

4
.
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Hence, we deduce that

α(0, 4)d(T0, T4) =
6

4
≤ 117

40
=

9

10
E(0, 4) = ψ(E(0, 4)).

(iv) for x = 1 and y = 4, we have

d(T1, T4) =
1

2

∣∣∣∣94 − 3

2

∣∣∣∣ =
3

8
and d(1, 4) =

|1− 4|
2

=
3

4

and α(1, 4)d(T1, T4) = 6
8 . Moreover, we find that

E(1, 4) =
|1− 4|

2
+

1

2

∣∣∣∣|1− 9

4
| − |4− 3

2
|
∣∣∣∣ =

3

2
+

5

8
=

17

8
.

Hence, we deduce that

α(1, 4)d(T1, T4) =
6

8
≤ 153

80
=

9

10
E(1, 4) = ψ(E(1, 4)).

Notice that for any other possibilities, the result is provided easily from the
fact that α(x, y) = 0.

Let us check that T is α-orbital admissible:
(i) if x ∈

[
0, 23
]

α(x, Tx) = α(x, x3 ) ≥ 1 ⇒ α(Tx, T 2x) = α(x3 ,
x
9 ) ≥ 1.

(ii) if x ∈ [1, 3] then Tx ∈ [1, 3] and

α(x, Tx) =≥ 1 ⇒ α(Tx, T 2x) ≥ 1.

As a second step, let us prove that T is triangular α-orbital admissible:
(i) if x ∈

[
0, 23
]

α(x, y) ≥ 1 and α(y, Ty) = α(y, y3 ) ≥ 1 ⇒ α(x, Ty) = α(x, y3 ) ≥ 1,

(ii) if x, y ∈ [1, 3] then Ty ∈ [1, 3] and

α(x, y) ≥ 1 and α(y, Ty) = α(y, 52 −
y
4 ) ≥ 1 ⇒ α(x, Ty) = α(x, 52 −

y
4 ) ≥ 1,

Thus, the first condition (i) of Theorem 2.2 is satisfied. The second con-
dition (ii) of Theorem 2.2 is also fulfilled. Indeed, for x0 = 0, we have
α(0, T0) = α(0, 0) = 1 ≥ 1.

It is also easy to see that (X, d) is regular. Indeed let xn be a sequence in
X such that for all n and xn → x as n → ∞. Since α(xn, xn+1) ≥ 1 for all
n, by the definition of α, we have xn ∈ [0, 1] for all n and x ∈ [0, 1]. Then,

α(xn, x) = 1.
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Thus, all conditions of Theorem 2.2 are provided and so we derive that T
has a fixed point.

We shall show that the condition (U) are not satisfied. Thus, we could not
guarantee the uniqueness of a fixed point.

α(0, 4) ≥ 1, α(1, 4) ≥ 1 and α(4, T4)α(4, 32 ) = 0,

Notice that T0 = 0 and T2 = 2 are the fixed points of T .

Example 2.4. Let X = R equipped with a metric d : X ×X → R+
0 such that

d(x, y) = |x−y|
2 . Consider the self mapping T : X → X such that

Tx =

{
x
4 if x ∈ [0, 1] ,
0 otherwise

We define α : X ×X → R+
0 such that

α(x, y) =

{
5 if (x, y) ∈ [0, 1]
0 otherwise.

Notice that the self-mapping T is not continuous at x = 1.
Further, several well-known contraction types does not hold for (x, y) ∈

[0, 1], that is,

d(Tx, Ty) =
|x− y|

8
and hence α(x, y)d(Tx, Ty) =

5 |x− y|
8

but d(x, y) = |x−y|
2 . Hence, there is no ψ ∈ Ψ such that the conditions of

α-ψ-contractive mapping is fulfilled.
On the other hand, for all x, y ∈ [0, 1], one can easily derive that

E(x, y) =
|x− y|

2
+

1

2

∣∣∣|x− x

4
| − |y − y

4
|
∣∣∣ =

7 |x− y|
8

, for all x, y ∈ [0, 1],

which yields that T : X → X is an α-ψ-contractive mapping of type E with
ψ(t) = at with a ≥ 5

7 , for example a = 13
14 . Indeed, we have for x, y ∈ [0, 1]

α(x, y)d(Tx, Ty) =
5 |x− y|

8
≤ 13 |x− y|

16
=

13E(x, y)

14
= ψ(E(x, y)).

Note that if x, y ∈ R\ [0, 1], then the result is provided easily from the fact that
α(x, y) = 0.

Let us check that T is α-orbital admissible:

α(x, Tx) = α(x, x4 ) ≥ 1 ⇒ α(Tx, T 2x) = α(x4 ,
x
16 ) ≥ 1.
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As a second step, let us prove that T is triangular α-orbital admissible:

α(a, y) ≥ 1 and α(y, Ty) = α(y, y4 ) ≥ 1 ⇒ α(x, Ty) = α(x, y4 ) ≥ 1,

Thus, the first condition (i) of Theorem 2.2 is satisfied. The second condition
(ii) of Theorem 2.2 is also fulfilled. Indeed, for x0 = 0, we have α(0, T0) =
α(0, 0) = 5 ≥ 1.

Finally, it is also easy to see that (X, d) is regular. Indeed let xn be a
sequence in X such that for all n and xn → x as n→∞. Since α(xn, xn+1) ≥
1 for all n, by the definition of α, we have xn ∈ [0, 1] for all n and x ∈ [0, 1].
Then,

α(xn, x) = 5 ≥ 1.

Thus, all conditions of Theorem 2.2 are provided. Notice that T0 = 0 is
the fixed point of T .

Moreover, because for any z ∈ [0, 1], Tz = z
4 ∈ [0, 1] we deduce that for all

x, y ∈ [0, 1], x 6= y there exist z ∈ [0, 1] such that α(x, z) ≥ 1, α(y, z) ≥ 1 and
α(z, Tz) ≥ 1, so condition (U) is satisfied. Thus, Theorem 2.3 guarantee the
uniqueness of the fixed point.

3 Outcomes of the main results

In this section, we shall list some basic consequences of the main results.

3.1 Outcomes of the main results in the setting of standard metric
structure.

Theorem 3.1. Let (X, d) be a complete metric space and ψ ∈ Ψ. Suppose
that a continuous self-mapping T : X → X satisfies

d(Tx, Ty) ≤ ψ(E(x, y)), for all x, y ∈ X, (15)

where
E(x, y) = d(x, y) + |d(x, Tx)− d(y, Ty)| .

Then, there exists a fixed point x∗ such that Tx∗ = x∗.

Proof. It is sufficient to take α(x, y) = 1 for all x, y ∈ X in Theorem 2.3.

Theorem 3.2. Let (X, d) be a complete metric space and k ∈ [0, 1). Suppose
that a continuous self-mapping T : X → X satisfies

d(Tx, Ty) ≤ kE(x, y), for all x, y ∈ X, (16)



REVISITING OF SOME OUTSTANDING METRIC FIXED POINT VIA
E-CONTRACTION 86

where
E(x, y) = d(x, y) + |d(x, Tx)− d(y, Ty)| .

Then, there exists a fixed point x∗ such that Tx∗ = x∗.

Proof. It is sufficient to take ψ(t) = kt in Theorem 3.1.

In the following theorems, the continuity condition of the self-mapping is
not necessary, since the contraction condition (17) and (18) imply the conti-
nuity of the mentioned self-mapping.

Theorem 3.3. Let (X, d) be a complete metric space and ψ ∈ Ψ. Suppose
that a self-mapping T : X → X satisfies

d(Tx, Ty) ≤ ψ(d(x, y)), for all x, y ∈ X. (17)

Then, there exists a fixed point x∗ such that Tx∗ = x∗.

Proof. It follows from Theorem 3.1, by regarding the monotonicity of the
function ψ, that is,

d(Tx, Ty) ≤ ψ(d(x, y)) ≤ ψ(E(x, y)), for all x, y ∈ X.

Theorem 3.4. Let (X, d) be a complete metric space and k ∈ [0, 1). Suppose
that a self-mapping T : X → X satisfies

d(Tx, Ty) ≤ kd(x, y), for all x, y ∈ X. (18)

Then, there exists a fixed point x∗ such that Tx∗ = x∗.

Proof. It follows from Theorem 3.3, by letting ψ(t) = kt.

3.2 Outcomes of the main results in the setting of metric spaces
endowed with a partial order

In the last decades, one of exciting research topics for the metric fixed point
theory researchers is to investigate the existence and uniqueness of a fixed
point of certain mapping in context of metric spaces endowed with partial
orders, see e.g.[24, 18] We shall show that Theorem 2.3 infer various existing
fixed point results on a metric space endowed with a partial order. For this
purpose, we, first, recollect some basic concepts.

Definition 3.1. For a partially ordered non-empty set (X,�), the self-mapping
T : X → X T is called nondecreasing with respect to � if

x, y ∈ X, x � y =⇒ Tx � Ty.
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Definition 3.2. A sequence {xn} in a partially ordered set (X,�) is called
nondecreasing with respect to �, if xn � xn+1 for all n.

Definition 3.3. Let (X,�) be a partially ordered set and d be a metric on X.
We say that (X,�, d) is regular if for every nondecreasing sequence {xn} ⊂ X
such that xn → x ∈ X as n→∞, there exists a subsequence {xn(k)} of {xn}
such that xn(k) � x for all k.

Suppose that (X,�) is a partially ordered set and d be a metric on X. We
say that (X,�) have a property of (S) if it fulfills the following condition

(S) for all x, y ∈ X there exists z ∈ X such that x � z and y � z,

For the simplicity, we shall use the notation (X, d,�) to represent the
partially ordered set (X,�) equipped with a metric d. The triple (X, d,�) is
called metric spaces endowed with a partial order.

Theorem 3.5. Let (X, d,�) be a metric spaces endowed with a partial order,
where (X, d) is complete. Let T : X → X be a nondecreasing mapping with
respect to �. Suppose that there exists a function ψ ∈ Ψ such that

d(Tx, Ty) ≤ ψ(E(x, y), (19)

for all x, y ∈ X with x � y, where

E(x, y) = d(x, y) + |d(x, Tx)− d(y, Ty)| .

Suppose also that the following conditions hold:

(i) there exists x0 ∈ X such that x0 � Tx0;

(ii) T is continuous or (X,�, d) is regular.

Then, T has a fixed point. Moreover, if (X,�) have a property of (S), the
observed fixed point is unique.

Proof. Consider the mapping α : X ×X → [0,∞) as

α(x, y) =

{
1 if x � y or x � y,
0 otherwise.

It is obvious that T T : X → X is an α-ψ-contractive mapping of type E, that
is,

α(x, y)d(Tx, Ty) ≤ ψ(ET (x, y)),

for all x, y ∈ X. From condition (i), the definition of α yields that α(x0, Tx0) ≥
1.
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Moreover, for all x, y ∈ X, from the monotone property of T , we have

α(x, y) ≥ 1 =⇒ x � y or x � y =⇒ Tx � Ty or Tx � Ty =⇒ α(Tx, Ty) ≥ 1.

Consequently, T is α−orbital admissible.
For a last step, we examine the following cases: If T is continuous, the

existence of a fixed point follows from Theorem 2.1. Suppose now that (X,�
, d) is regular. Let {xn} be a sequence in X such that α(xn, xn+1) ≥ 1 for
all n and xn → x ∈ X as n → ∞. Due to regularity, there is a subsequence
{xn(k)} of {xn} such that xn(k) � x for all k. Hence, we have α(xn(k), x) ≥ 1
for all k. So, the existence of a fixed point follows from Theorem 2.2.

For the uniqueness, let x, y ∈ X. By assumption of the theorem, there
exists z ∈ X such that x � z and y � z, which yields that α(x, z) ≥ 1 and
α(y, z) ≥ 1. Consequently, we conclude the uniqueness of the fixed point by
Theorem 2.3.

Theorem 3.6. Let (X, d,�) be a metric spaces endowed with a partial order,
where (X, d) is complete. Let T : X → X be a nondecreasing mapping with
respect to �. Suppose that there exists a k ∈ [0, 1) such that

d(Tx, Ty) ≤ kE(x, y),

for all x, y ∈ X with x � y, where

E(x, y) = d(x, y) + |d(x, Tx)− d(y, Ty)| .

Suppose also that the following conditions hold:

(i) there exists x0 ∈ X such that x0 � Tx0;

(ii) T is continuous or (X,�, d) is regular.

Then, T has a fixed point. Moreover, if (X,�) have a property of (S), the
observed fixed point is unique.

Theorem 3.7. Let (X, d,�) be a metric spaces endowed with a partial order,
where (X, d) is complete. Let T : X → X be a nondecreasing mapping with
respect to �. Suppose that there exists a function ψ ∈ Ψ such that

d(Tx, Ty) ≤ ψ(d(x, y),

for all x, y ∈ X with x � y. Suppose also that the following conditions hold:

(i) there exists x0 ∈ X such that x0 � Tx0;
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(ii) T is continuous or (X,�, d) is regular.

Then, T has a fixed point. Moreover, if (X,�) have a property of (S), the
observed fixed point is unique.

Theorem 3.8. Let (X, d,�) be a metric spaces endowed with a partial order,
where (X, d) is complete. Let T : X → X be a nondecreasing mapping with
respect to �. Suppose that there exists a k ∈ [0, 1) such that

d(Tx, Ty) ≤ kd(x, y),

for all x, y ∈ X with x � y. Suppose also that the following conditions hold:

(i) there exists x0 ∈ X such that x0 � Tx0;

(ii) T is continuous or (X,�, d) is regular.

Then, T has a fixed point. Moreover, if (X,�) have a property of (S), the
observed fixed point is unique.

3.3 Outcomes of the main results in the setting of the cyclic con-
tractive mappings

Investigation of the existence and uniqueness of a fixed point of certain cyclic
contractive mappings was initiated by Kirk, Srinivasan and Veeramani [17].
Following this pioneer paper [17], this trend has been appreciated by a number
of authors (see e.g. [26, 13, 14] and the related references therein).

Here, we shall indicate that our main result, Theorem 2.3, infer a fixed
point theorems for cyclic contractive mappings.

Theorem 3.9. Suppose that {Ai}2i=1 are nonempty closed subsets of a com-
plete metric space (X, d) and T : Y → Y is a given mapping with Y = A1∪A2.
If the the following conditions are fulfilled

(I) T (A1) ⊆ A2 and T (A2) ⊆ A1;

(II) there exists a function ψ ∈ Ψ such that

d(Tx, Ty) ≤ ψ(E(x, y)), for all (x, y) ∈ A1 ×A2,

where E(x, y) is defined as in (2),

then, T has a unique fixed point that belongs to A1 ∩A2.
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Proof. The proof consists of several steps. Step 1. the pair (Y, d) forms a
complete metric space since A1 and A2 are closed subsets of (X, d).

Step 2. We shall indicate that T is an α− ψ contractive mapping type of
E. For this purpose, we specify the mapping α : Y × Y → [0,∞) as

α(x, y) =

{
1 if (x, y) ∈ (A1 ×A2) ∪ (A2 ×A1),
0 otherwise.

Regarding (II) and α, we are able to write

α(x, y)d(Tx, Ty) ≤ ψ(M(x, y)),

for all x, y ∈ Y . In other words, T is an α−ψ contractive mapping type of E.
Step 3. We shall show that T is α−admissible. Suppose that (x, y) ∈ Y ×Y

with α(x, y) ≥ 1. For the case (x, y) ∈ A1×A2, from (I), (Tx, Ty) ∈ A2×A1,
which yields that α(Tx, Ty) ≥ 1. For the other case, (x, y) ∈ A2 × A1, again
from (I), (Tx, Ty) ∈ A1 × A2, which implies that α(Tx, Ty) ≥ 1. So, we find
that α(Tx, Ty) ≥ 1 whenever α(x, y) ≥ 1.

Step 4. We notice that for any a ∈ A1, from (I), we get (a, Ta) ∈ A1×A2,
and hence α(a, Ta) ≥ 1.

Step 5. We shall show that (X, d) is regular. Suppose that {xn} is a
sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n→∞.
On account of the definition of the α mapping, we find

(xn, xn+1) ∈ (A1 ×A2) ∪ (A2 ×A1), for all n.

Since (A1×A2)∪(A2×A1) is a closed set with respect to the Euclidean metric,
we derive that

(x, x) ∈ (A1 ×A2) ∪ (A2 ×A1),

which yields that x ∈ A1 ∩A2. Consequently, we have α(xn, x) ≥ 1 for all n.
Finally, assume that x, y ∈ Fix(T ). From (I), we find that x, y ∈ A1 ∩A2.

As a result, we conclude that α(x, z) ≥ 1 and α(y, z) ≥ 1, for any z ∈ Y .
Thus, condition (U) is satisfied.

Thus, all the hypotheses of Theorem 2.3 are fulfilled that guarantees the
existence and uniqueness of a fixed point of T in A1 ∩A2 (from (I)).

As an immediate outcome of Theorem 3.9 is the following:

Theorem 3.10. Suppose that {Ai}2i=1 are nonempty closed subsets of a com-
plete metric space (X, d) and T : Y → Y is a given mapping with Y = A1∪A2.
If the the following conditions are fulfilled

(I) T (A1) ⊆ A2 and T (A2) ⊆ A1;
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(II) there exists a function ψ ∈ Ψ such that

d(Tx, Ty) ≤ ψ(d(x, y)), for all (x, y) ∈ A1 ×A2,

where d(x, y) is defined as in (2),

then, T has a unique fixed point that belongs to A1 ∩A2.

Theorem 3.11. Suppose that {Ai}2i=1 are nonempty closed subsets of a com-
plete metric space (X, d) and T : Y → Y is a given mapping with Y = A1∪A2.
If the the following conditions are fulfilled

(I) T (A1) ⊆ A2 and T (A2) ⊆ A1;

(II) there exists a k ∈ [0, 1) such that

d(Tx, Ty) ≤ kE(x, y), for all (x, y) ∈ A1 ×A2,

where E(x, y) is defined as in (2),

then, T has a unique fixed point that belongs to A1 ∩A2.

The following is the main result of [17].

Theorem 3.12. Suppose that {Ai}2i=1 are nonempty closed subsets of a com-
plete metric space (X, d) and T : Y → Y is a given mapping with Y = A1∪A2.
If the the following conditions are fulfilled

(I) T (A1) ⊆ A2 and T (A2) ⊆ A1;

(II) there exists a k ∈ [0, 1) such that

d(Tx, Ty) ≤ kd(x, y), for all (x, y) ∈ A1 ×A2,

then, T has a unique fixed point that belongs to A1 ∩A2.

4 An Applications to the solutions of periodic boundary
value problems of first order

In this section we examine the existence and uniqueness of solutions of peri-
odic boundary value problems of first order. Although these problems have
been investigated under different conditions in [19], [20]-[2], we suggest weaker
condition for the existence and uniqueness conditions.
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We consider X = C[0, T ] with the partial ordering

x � y ⇒ x(t) ≤ y(t) for all t ∈ [0, T ]

d(x, y) = sup{|x(t)− y(t)|, t ∈ [0, T ]}.
(20)

equipped with the metric

d(x, y) = sup{|x(t)− y(t)|, t ∈ [0, T ]}. (21)

The space (X, d,�) satisfies the condition (S). Indeed, it is obvious that
for every pair x(t), y(t) in X, we have x(t) � max{x(t), y(t)} and y(t) �
max{x(t), y(t)}.

We shall discuss the following first order periodic boundary value problem{
x′(t) = f(t, x(t)), t ∈ [0, T ]
x(0) = x(T ).

(22)

Definition 4.1. A lower solution of the problem (22) is a function x(t) ∈
C[0, T ] fulfilling {

x′(t) ≤ f(t, x(t)), t ∈ [0, T ]
x(0) ≤ x(T ).

(23)

An upper solution the problem (22) is a function x(t) ∈ C[0, T ]×R satisfying{
x′(t) ≥ f(t, x(t)), t ∈ [0, T ]
x(0) ≥ x(T ).

(24)

Note that the problem (22) can be written as{
x′(t) + λx(t) = f(t, x(t)) + λx(t), t ∈ [0, T ]

x(0) = x(T ).
(25)

This problem is equivalent to the integral equation

x(t) =

∫ T

0

G(t, s)[f(s, x(s) + λx(s)]ds, (26)

where G(t, s) is the Green function defined by

G(t, s) =


eλ(T+s−t)

eλT − 1
, 0 ≤ s < t ≤ T

eλ(s−t)

eλT − 1
, 0 ≤ t < s ≤ T.

(27)

Now, we state a theorem for the existence and uniqueness of a solution of the
problem (23).
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Theorem 4.1. We take the periodic boundary value problem (22) into ac-
count. Suppose that f is continuous and that there exists λ > 0 such that for
all x, y ∈ C[0, T ] satisfying x ≤ y, the following condition holds:

0 ≤ f(t, y(t)) + λy(t)− f(t, x(t))− λx(t) ≤ ψ((y − x)), (28)

for some ψ ∈ Ψ, λ ∈ [0,∞), such that 0 < ψ(u) < u < λ, for all u ∈ R+. If
the problem (22) has a lower solution, then it has a unique solution.

Proof. We set the map F : C[0, T ]→ R as follows

Fx(t) =

∫ T

0

G(t, s)[f(s, x(s) + λx(s)]ds, (29)

where G(t, s) is the Green function given in (27). Then the solution of the
problem (22) is the fixed point of F . Suppose that x ≤ y are functions in
C[0, T ]× R satisfying (28). Furthermore, since f fulfills (28), we get

Fx(t) =

∫ T

0

G(t, s)[f(s, x(s)) + λx(s)]ds

≤
∫ T

0

G(t, s)[f(s, y(s)) + λy(s)]ds = Fy(t),

(30)

that is, F is nondecreasing. Let us examine

d(Fy, Fx) = sup

∣∣∣∣∣
∫ T

0

G(t, s)[f(s, y(s)) + λy(s)− f(s, x(s))− λx(s)]ds

∣∣∣∣∣
≤ sup

∫ T
0
G(t, s)ψ(|y(s)− x(s)|)ds

≤ ψ(d(x, y))
∫ T
0
G(t, s)ds =

ψ(d(x, y))

λ
≤ ψ(E(x, y))

λ

where E(x, y) = d(x, y) + |d(x, Tx) − d(y, Ty)|. By selecting λ in a way that
0 < ψ(E(x, y)) < λ we conclude that the nondecreasing map F fulfills the
condition (19) of Corollary 3.5. As a next step, we shall indicate that x0 ≤ Fx0
for some x0 ∈ X. Since the problem (22) has a lower solution, then, there
exists x0 ∈ X provides (23). Hence, we get that

x′0(t) + λx0(t) ≤ f(t, x0(t)) + λx0(t), t ∈ [0, T ]
x(0) ≤ x0(T ).

(31)

Multiplying both sides by eλt and then integrating from 0 to t we derive

x0(t)eλt ≤ x0(0) +

∫ t

0

eλs[x0(s) + f(s, x0(s))]ds. (32)
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By using the inequality x0(0) ≤ x0(T ) we get

x0(0)eλT ≤ x0(T )eλT ≤ x0(0) +

∫ T

0

eλs[x0(s) + f(s, x0(s))]ds,

or equivalently,

x0(0) ≤
∫ T

0

eλs

eλT − 1
[x0(s) + f(s, x0(s))]ds. (33)

Combining (32) and (33) we get

x0(t) ≤
∫ T

0

eλ(s−t)

eλT − 1
[x0(s) + f(s, x0(s))]ds

+

∫ t

0

eλ(s−t)[x0(s) + f(s, x0(s))]ds

=

∫ T

0

G(t, s)[x0(s) + f(s, x0(s))]ds

(34)

where G(s, t) is the Green’s function given in (28). So, we have

x0(t) ≤ Fx0(t)

for the lower solution x0(t) of (22). Then, by the Corollary 3.5 the map F
has a unique fixed point. Accordingly, the boundary value problem (22) has
a unique solution.

Example 4.1. Let X = C[0, 1] with a partial order x � y and a metric

d(x, y) = sup{|x(t)− y(t)|, t ∈ [0, 1]}.

Consider the BVP {
x′(t) = −x2et + 1, t ∈ [0, 1]
x(0) = x(1).

For this specific example the function

f(t, x) = −x2et + x+ 1

fulfils the condition

0 ≤ f(t, y(t)) + λy(t)− f(t, x(t))− λx(t) ≤ k(y(t)− x(t))
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for all 0 < x ≤ y. Indeed,

f(t, y(t)) + λy(t)− f(t, x(t))− λx(t) = −y2et + 1 + λy − (−x2et + 1)− λx
= [λ− (y + x)](y − x)
≤ [λ−M ](y − x)
≤ ψ(y − x)

for ψ(t) = (λ−M)t, where M = min
t∈[0,1]

{(x+ y)et}. Observe that x0(t) = 0 is

a lower solution of the BVP. Clearly,

x′0(t) = 0 ≤ −x2et + 1, t ∈ [0, 1],

and
x0(0) = 0 = x0(1).

By the Theorem 4.1, the BVP has a unique solution.
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Baia Mare, 1997.

[4] N. Bilgili, E. Karapınar, A note on “common fixed points for (ψ, α, β)-
weakly contractive mappings in generalized metric spaces”, Fixed Point
Theory Appl., 2013 (2013), Article ID 287.

[5] SH. Cho, JS. Bae, E. Karapinar, Fixed point theorems for α-Geraghty
contraction type maps in metric spaces, Fixed Point Theory Appl. 2013,
Article ID 329 (2013).

[6] B.S. Choudhury, N. Metiya, Fixed point and common fixed point results
in ordered cone metric spaces, Analele Universitatii ”Ovidius” Constanta-
Seria Matematica, Volume 20, Issue 1, Pages 5572, ISSN (Online) 1844-
0835, DOI: https://doi.org/10.2478/v10309-012-0005-8, 2012.



REVISITING OF SOME OUTSTANDING METRIC FIXED POINT VIA
E-CONTRACTION 96
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