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A Spectral Approach to Peak Velocity Estimation of
Pipe Flows from Noisy Image Sequences

Ecaterina Bodnariuc

Abstract
Motivated by plane wave ultrasound image velocimetry (a.k.a. Echo PIV),

we introduce a novel method to globally estimate the velocity field of a laminar
and steady flow from the motion of tracer particles. Our approach exploits the
fact that the equation of motion for pipe flows of constant circular cross-section
is governed by a single global but unknown parameter. We connect this parame-
ter to the Fourier spectrum of the input image sequence of the tracer particles and
formulate our motion estimation problem as a spectral support estimation prob-
lem. The approach is validated on both simulated and experimental real data.
It returns accurate velocity estimates after few seconds runtime and effectively
copes with speckle patterns and noise.

1 Introduction

Our work is motivated by the task of estimating the instantaneous velocity of ves-
sel blood flow using plane wave ultrasound image velocimetry (a.k.a. Echo PIV)
[LBE+15, VKV+16, CPTP16]. Ultrasound techniques are widely used to measure
blood flow in clinical applications. They enable noninvasive measurements that can
be applied to opaque flows. Additionally, the use of plane wave ultrasound imaging
enables attainment of very fast frame rates (larger than 1000 frames per second) over
a large field of view and improves the temporal resolution of the signal [TF14].

Echo PIV is a velocimetry technique that applies optical PIV analysis algorithms
to sequential ultrasound images and has been developed to improve blood flow anal-
ysis using clinical ultrasound machines [KHS04, Poe17]. Schematic representation
of Echo PIV is shown in Fig. 1.1. The presented work is motivated by the application
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Figure 1.1: A schematic representation of the plane wave ultrasound Echo PIV setup
(left). In a rigid cylindrical tube of inner radiusR = L2/2 a liquid flows that is seeded
with bubbles, typically microbubbles. A linear transducer array is placed along the
tube axis and transmits a plane wave acoustic pulse into inhomogeneous field. Then
the same transducer records the backscattered acoustic wave that is reflected and
scattered by static tube walls and dynamic bubbles. The transmission and recording
step is repeated very fast (faster than 1000 Hz). This produces an image sequence of
high temporal resolution (right) that displays speckle patterns driven by the flow.

of Echo PIV to blood flow estimation. Here, we restrict our attention to estimating
the peak velocity of pipe flows. The velocity field in a laminar and steady flow (a.k.a.
Poiseuille flow) is given by

u = u(x) =
(
u1(x2), 0

)>
, u1(x2) = vm

(
1−

(x2

R

)2)
, vm ≥ 0, (1.1)

where vm denotes the peak velocity in a pipe of size R assumed to be centered at
x2 = 0. Thus, the flow has a parabolic profile, does not depend on x1, and hence has
a single degree of freedom vm. See Figure 1.2, left panel, for an illustration. The flow
cannot be directly measured but must be estimated. We achieve this by estimating the
parameter vm directly using the data of a given image sequence, as shown in the right
panel of Figure 1.1.

A common assumption of experimental fluid dynamics [RWWK07] is that the
flow has been seeded with a set of randomly located particles (Figure 1.2, right
panel), also called tracer particles, that follow the flow dynamics. Motion is esti-
mated via the displacement of these tracer particles. Yet, the individual particles
cannot be directly tracked in the flow. Rather, what can be directly observed is a
moving ‘texture’ of speckle patterns driven by the flow. In this work, we propose
an approach for estimating the flow directly from image sequence data, based on a
model of the image sequence f in terms of tracer particles with unknown locations
{x(i)}i∈Np , x(i) = (x

(i)
1 , x

(i)
2 )> and corresponding time independent unknown ve-

locities u(i) = (u
(i)
1 , 0)>, where u(i) = u(x(i)) are given by (1.1). By utilizing the

model of f and its Fourier transform, we obtain a simple global approach for robustly
estimating the peak velocity vm directly from given noisy image sequence data.
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Figure 1.2: LEFT: A Poiseuille flow governed by (1.1). The background illustrates
the parabolic velocity profile parametrized by the pipe size R and the peak velocity
vm. RIGHT: An unknown set of randomly located particles that are moving with
the flow is the starting point of our model of the imaging process that generates an
image sequence of a moving texture (cf. Section 1). The task is to robustly estimate
the unknown peak velocity vm under adverse imaging conditions from noisy image
sequence data.

1.1 Related Work and Contribution

Research on plane wave Echo PIV is concerned with image reconstruction and mo-
tion estimation. In this work, we only focus on the motion estimation and point
out that image reconstruction is based on the inverse scattering model presented
in [BSPS16]. We propose a novel global approach to estimate the maximum flow
velocity vm by exploiting geometry of the spectrum of the image sequence signal
in the spatio-temporal Fourier domain. Compared to dictionary-based velocimetry
[BPPS16, BGPS15], the proposed method handles the noise better and reduces the
computational cost.

Our model exploits the basic fact that any motion can be locally approximated by
a translation, together with the representation of translated functions by the Fourier
transform. This viewpoint has a long tradition in image processing and computer
vision [Hee88, FJ90]. Our approach to image sequence data recorded by Echo PIV
is novel.

1.2 Organization

Our approach is described in Section 2 and Section 3. The spectrum of the input im-
age sequence in characterized in Section 2, while Section 3 details the peak velocity
estimation approach based on the support of this spectrum. In Section 4 we validate
our approach experimentally.
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2 Poiseuille Image Sequence Spectra

We adopt the particle scenario of Figure 1.2, right panel, and a spectral representation
of the motion of all particles driven by an unknown Poiseuille flow. This provides a
basis for global motion estimation in order to better cope with the fact that no particle
locations are known nor can individual particles be directly observed.

The d-dimensional Fourier transform and its inverse are given by

f̂(ω) = F(f)(ω) =

∫
Rd

f(x)e−i〈ω,x〉 dx ,

f(x) = F−1(f̂)(x) =
1

(2π)d

∫
Rd

f̂(w)e+i〈ω,x〉 dω , (2.1)

where 〈ω, x〉 =
∑
i∈[d] ωixi denotes the Euclidean inner product and

[d] := {1, 2, . . . , d}, d ∈ N.
The Fourier transform is a one-to-one mapping on the Schwartz space S(Rd) of

functions with rapidly decreasing derivatives of any order. It can be extended by
duality to the space S′(Rd) of tempered distributions, i.e. the space of linear and
continuous functionals acting on S(Rd). We refer to e.g. [Geo15, Ch. 8.1-3] for
details.

Remark 2.1. It will be convenient and more informative for readers from various
fields to simply speak of ‘functions’ in this paper even if a distribution actually is
meant. For example, the image sequence function f(x, t) given by (2.4) actually is
an element of S′(R3).

The Delta function (Dirac distribution) supported at x0 ∈ Rd is denoted by δ(x−
x0). The Fourier transform of the Delta function (in the sense of distributions) is
given by

δ̂(ω) = e−〈ω,0〉 ≡ 1. (2.2)

The Fourier transform of a function Tx0f(x) := f(x− x0) translated by x0 ∈ Rd is

F(Tx0f)(ω) =

∫
Rd

f(x−x0)e−i〈ω,x〉 dx =

∫
Rd

f(z)e−i〈ω,z+x0〉 dz = f̂(ω)e−i〈ω,x0〉.

(2.3)
We describe a set of Np non-interacting particles that move with the flow by the

function∗

f(x, t) =
∑
i∈[Np]

δ(x− x(i) − u(i)t), u(i) = u(x(i)), (2.4)

∗Recall the convention due to Remark 2.1.
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where u(i) = (u
(i)
1 , 0)> and x(i) = (x

(i)
1 , x

(i)
2 )> are the time independent velocity

and initial position of particle i, respectively, and u(i) is given by (1.1). Both the
filter design and the approach for estimating the flow will be based on the Fourier
transform of the abstract model (2.4) of the image sequence f .

Proposition 2.1. Let ω = (ω>x , ω3)> = (ω1, ω2, w3)> denote the angular frequency
vector. Then the Fourier transform of the image sequence function (2.4) is given by

f̂(ω) = f̂(ωx, ω3) =
∑
i∈[Np]

e−i〈ωx,x
(i)〉δ(ω1u

(i)
1 + ω3). (2.5)

Proof. Let h(x) = h(x1, x2) denote an arbitrary 2D image function. Then, for any
fixed vector u ∈ R2, the image sequence function h̃(x, t) = h(x − ut) corresponds
to the translation of the function h(x) with constant velocity u. Applying the 3D
Fourier transform to this image sequence yields

F(h̃) =

∫
R3

h(x− ut)e−i(〈ωx,x〉+w3t) dx dt =

∫
R2

h(z)e−i〈ωx,z〉 dz

∫
R

e−i(〈ωx,u〉+ω3)t dt

(2.6a)

= ĥ(ωx)δ(〈ωx, u〉+ ω3), (2.6b)

where the evaluation of the last integral follows from (2.2) and (2.3). Now, setting
h(i)(x) = δ(x− x(i)), Eq. (2.4) reads

f(x, t) =
∑
i∈Np

h(i)(x− u(i)t). (2.7)

Applying relation (2.6) and taking into account the linearity of the Fourier transform,
we get

f̂(ω) =
∑
i∈Np

ĥ(i)(ωx)δ(〈ωx, u(i)〉+ ω3)
(2.3)
=
∑
i∈Np

e−i〈ωx,x
(i)〉δ(〈ωx, u(i)〉+ ω3),

(2.8)
which due to the specific form (1.1) of the flow, is equal to (2.5).

Equation (2.5) says that the spectrum f̂ of the image sequence f is the sum of
complex phase functions on a corresponding pencil of planes through the origin ω =

0 with normal vectors n(i) = (u
(i)
1 , 0, 1)>. Figure 2.1 depicts the resulting support

of f̂(ω), which is bounded by two extremal planes corresponding to zero velocity
u = 0 and normal (0, 0, ω3)T , and to the peak velocity u = (vm, 0)> and normal
(vm, 0, 1)>, respectively.

This finding suggests to estimate the peak velocity vm and hence the full flow due
to (1.1) by estimating the spectral support of the Fourier transform of a given image
sequence. We describe our approach in the next section.
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Figure 2.1: Spectral support of the Fourier transform of an image sequence corre-
sponding to the Poiseuille pipe flow model. This non-pointed cone, that extends
along the ω2 axis, is bounded by two planes including the plane ω3 = 0. The normal
vector of the other plane depends on the unknown peak velocity vm that we wish to
estimate from image sequence data.

3 Peak Velocity Estimation

We derive in Section 3.1 a piecewise linear model of the cone geometry depicted in
Figure 2.1, that takes into account noise suppression and the symmetry of real signals
in the complex Fourier domain. Based on this model, a numerical method for robustly
estimating the spectral support of a real image sequence is developed in Section 3.2.

3.1 Direct Spectral Support Estimation

The cone shown in Figure 2.1 is bounded by the box [−π, π] × [−π, π] × [−π, π]
and the planes ω3 = 0, vmω1 + ω3 = 0. Due to the high noise level of real data,
we discard the spectrum at large frequencies as well as a redundant half-space due
to the symmetry of real signals f(x, t) in Fourier space. As a consequence, we only
consider the spectrum in the smaller box [0, π/4]× [−π/4, π/4]× [−π/4, 0].

Assuming a uniform distribution of the amplitude spectrum

|f̂(ω)| ≈ Cf , Cf > 0 (3.1)

of the image sequence signal f(x, t), for some constant Cf > 0, which is justified by
(2.4) (Np is unknown) and (2.2), we define the region

Ω(v) =
{
ω ∈ R3 : 0 ≤ ω1 ≤

π

4
, −π

4
≤ ω2 ≤

π

4
, −min(v ω1,

π

4
) ≤ ω3 ≤ 0

}
, v ≥ 0

(3.2)
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(a) (b) (c)

Figure 3.1: This figure illustrates the set Ω(vm) (a) for vm < 1, (b) for vm = 1, and
(c) for vm > 1, that defines the relevant spectral support of f̂ . Conversely, estimating
the actual support for a given spectrum f̂ corresponding to real image sequence data
f , enables to estimate the parameter vm.

and estimate the spectral support of f̂ by the volume integral

s(v) =
1

|Ω(vm)|

∫
Ω(v)

|f̂(ω)|dω , vm, v > 0, (3.3)

which in practice, for f̂ corresponding to real data, is computed using the FFT and
evaluating numerically a Riemannian sum that accurately approximates (3.3). Note,
that the support of |f̂(ω)| is restricted to Ω(vm), and that the volume integral attains
its maximum when v ≥ vm, in which case s(v) = Cf .

To obtain an analytical model of s(v) given by (3.3), we have to distinguish between
two cases.

Case 1: If vm ≤ 1, then |Ω(vm)| =
(
π
4

)3
vm and (3.3) has the form of a piecewise

linear function

s(v) =


Cf
vm
v, 0 ≤ v < vm,

Cf , v ≥ vm.
(3.4)

This case is illustrated in Figure 3.2 (a) and (b).

Case 2: If vm > 1, then |Ω(vm)| =
(
π
4

)3
(2− 1

vm
) and (3.3) is given by

s(v) =


Cf

2− 1
vm

v, 0 ≤ v < 1,

Cf
2− 1

vm

(1− 1
v ), 1 ≤ v < vm,

Cf , v ≥ vm.

(3.5)
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This case is illustrated in Figure 3.2 (c).

vm
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Figure 3.2: (Left) The dependence |Ω(vm)| on vm. The red dashed line is the upper
bound of |Ω(vm)| as vm → ∞ that equals 2

(
π
4

)3
. (Right) The normalized function

s(v) for vm < 1 (case 1) and vm > 1 (case 2).

3.2 Parameter Estimation by Robust Numerical Piecewise Fitting

We first develop smooth parametric representations of (3.4) and (3.5), respectively,
that are amenable to efficient numerical optimization, followed by sketching the nu-
merical approach.

3.2.1 Case vm ≤ 1.

Equation (3.4) suggests that the data set {v̂i, s(v̂i)}i=1,...,n estimated numerically
from (3.3) via the Riemannian sum is best approximated by a two-segment piecewise
linear continuous function of the form

g : R 7→ R, g(x) =

{
a1 + b1x, x ≤ ξ,
a2 + b2x, x > ξ.

(3.6)

We define
l1(x) = a1 + b1x, l2(x) = a2 + b2x, (3.7)

and rewrite (3.6) as
g(x) = −max{−l1(x),−l2(x)}. (3.8)

A smooth approximation of this concave function can be achieved by using the log-
exponential function,

gε(x) = −ε ln
(

e−l1(x)/ε + e−l2(x)/ε
)
, (3.9)
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where ε > 0 is the smoothing parameter that enables a uniform approximation of
(3.8) as ε→ 0 [RW09, Ch. 1.-H].

Using (3.7) and the continuity of g(x) at the breakpoint ξ which implies that
a1 + b1ξ = a2 + b2ξ, we express (3.9) as

gε(x) = −ε ln
(

e−(a1+b1x)/ε + e−(a1+(b1−b2)ξ+b2x)/ε
)

(3.10a)

= α+ βx− ε ln
(

1 + e−γ(x−ξ)/ε
)
, (3.10b)

where
α = a1, β = b1, and γ = b2 − b1. (3.11)

3.2.2 Case vm > 1.

In view of (3.5) we consider the piecewise non-linear continuous function

h(x) : R+ \ {0} 7→ R, h(x) =


a1 + b1x, 0 < x ≤ ξ1,
a2 + b2

x , ξ1 < x ≤ ξ2,
a3 + b3x, x < ξ2,

(3.12)

where 0 < ξ1 ≤ ξ2 are the breakpoints.

Lemma 3.1. For two breakpoints 0 < ξ1 ≤ ξ2 the function defined in (3.12) has the
canonical representation

h(x) = α+ βx+
∑

i={1,2}

δi

∣∣∣∣ 1x − 1

ξi

∣∣∣∣+
∑

i={1,2}

φi|x− ξi| (3.13)

where

α =
a1 + a3

2
, β =

b1 + b3
2

, δ1 = −δ2 = −b2
2
, φ1 = −b1

2
, and φ2 =

b3
2
.

(3.14)

Proof. The result follows immediately from the continuity of h(x) at the breakpoints
ξ1, ξ2 and the expansion of absolute value terms for the cases 0 < x ≤ ξ1, ξ1 < x ≤
ξ2 and x > ξ2.

Lemma 3.2. The piecewise non-linear function (3.13) can be approximated uni-
formly by the smooth function

hε(x) = A+Bx+
∑

i={1,2}

Di ln

(
1 + e

−2
(

1
x−

1
ξi

)
/ε
)

+
∑

i={1,2}

Fi ln
(

1 + e−2(x−ξi)/ε
)
,

(3.15)
where A = α − δ1/ξ1 − δ2/ξ2 − φ1ξ1 − φ2ξ2, B = β + φ1 + φ2, Di = εδi and
Fi = εφi.
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Proof. The absolute value of x ∈ R can be expressed as

|x| = max{−x, x}, (3.16)

and, similar as discussed above, is approximated uniformly by the smooth function

|x|ε = ε ln
(

e−x/ε + ex/ε
)

= x+ ε ln
(

1 + e−2x/ε
)
. (3.17)

The replacement of the absolute value terms in (3.13) with the corresponding smooth
approximations

∣∣∣ 1x − 1
ξi

∣∣∣
ε

and |x− ξi|ε, for i = 1, 2, yields (3.15).

x

l1(x)

l2(x)

g(x)
gε1(x)
gε2(x)

x

h(x)
hε1(x)
hε2(x)

(a) (b)

Figure 3.3: Smooth approximation of two-segment piecewise linear functions defined
in (3.6) and of the piecewise non-linear function defined in (3.12), for smoothing
parameter values ε1 = 0.1 and ε2 = 0.03.

3.2.3 Numerical Optimization

Returning to our application, equations (3.4) and (3.5) suggest that the breakpoints ξ
and ξ2 in (3.6) and (3.12), respectively, correspond to the unknown flow parameter
vm > 0. We define for some small ε > 0 the functions

ĝε : Rn×R4 → R
n, ĝε(v̂;α, β, γ, ξ) = α1+βv̂−ε ln

(
1+ e−γ(v̂−ξ1)/ε

)
(3.18)

ĥε : Rn+ \ {0} × R5 × R+ \ {0} → R
n, (3.19)

ĥε(v̂;α, β, δ, φ1, φ2, ξ2) = (α− δ/ξ1 + δ/ξ2 − φ1ξ1 − φ2ξ2)1+ (3.20)

(β + φ1 + φ2)v̂ + ε ln

(
1+ e−2

(
1
v̂−

1
ξ1
1

)
/ε)δ (

1+ e−2(v̂−ξ11)/ε
)φ1(

1+ e−2
(

1
v̂−

1
ξ2
1

)
/ε)δ (

1+ e−2(v̂−ξ21)/ε
)−φ2

, (3.21)
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where δ = δ1 = −δ2 and ξ1 = 1 is fixed. In both definitions, subdivision, the
logarithmic and exponential functions are applied component-wise. Using the non-
monotone spectral projected gradient method [BMR00] we minimize numerically the
functions

fg(α, β, γ, ξ) =
1

2
‖ĝε(v̂;α, β, γ, ξ)− ŝ(v̂)‖22, 0 ≤ ξ ≤ 1, (3.22)

fh(α, β, δ, φ1, φ2, ξ2) =
1

2
‖ĥε(v̂;α, β, δ, φ1, φ2, ξ2)− ŝ(v̂)‖22, ξ2 ≥ 1. (3.23)

where v̂ = (v̂1, . . . , v̂n)T ∈ R
n and ŝ(v̂) ∈ R

n, with respect to all parameters.
The functions ĝε and ĥε are smooth with respect α, β, γ, ξ and α, β, δ, φ1, φ2, ξ2,
respectively, which implies the smoothness of fg and fh. The constraints on variables
ξ and ξ2 express the model conditions on the breakpoints for each case specified in
(3.4) and (3.5).

The resulting numerically computed optimal values of ξ and ξ2 yield an estimate
of the unknown maximal velocity vm. We illustrate this approach in the next section
by estimating vm with proposed method on synthetic and real data.

4 Experiments

We demonstrate the proposed method for estimating the maximal velocity vm using
both synthetic and real ultrasound data. The synthetic scenes are generated in order
to validate the method based on ground truth, and to show that the method copes with
a broad range of realistic ‘moving textures’ that cover those occuring in practice. The
real data experiments demonstrate that our method is robust against noise.

Numerical experiments were conducted using MATLAB R2015a on a 2.7 GHz
Intel Core i7-7500U processor with 16 GB of RAM memory and running of GNU/Linux
operating system (elementary OS 0.4 64Bit). For the optimization problem we used
the SPG1 version of the non-monotone projected gradient algorithm presented in
[BMR00]. All the parameters related to the initialization of the algorithm were set to
the values given in the original paper. For the non-monotone parameter we decided
to use M = 50. We stopped the execution of the algorithm after 500 and 3000 iter-
ations for the piecewise linear model and piecewise non-linear model, respectively.
The running time for FFT, etimation of ŝ(v̂), and optimization was between 2 - 10
seconds depending on the data sets and number of iterations.

4.1 Synthetic Data

We analysed four synthetic textures, see Figure 4.1, that moved according to Poiseuille
flow model (1.1). The considered textures are:
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Figure 4.1: Considered textures: (a) uniform distribution of particles at low density,
(b) uniform distribution of particles at high density, (c) uniform white noise, and (d)
two dimensional sinusoid.

(a) uniform distribution of Dirac particles at low density,

(b) uniform distribution of Dirac particles at high density,

(c) white noise, and

(d) two dimensional sinusoid.

Figure 4.2 depicts the deformation of the sinusoid under the parabolic velocity field.
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Frame 1
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Frame 3

x1

x2

-R
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Frame 4

Figure 4.2: The first four frames show the Poiseuille flow of a two dimensional sinu-
soid.

All image sequences consist of 256 temporal frames of size 256 × 256 pixels.
The flow direction was from left to right with periodic boundary conditions imposed
at the right boundary. The Fourier spectrum for each sequence was computed with
the fast Fourier transform (FFT). We considered two cases: vm ≤ 1 and vm > 1.

4.1.1 Case vm ≤ 1.

We generated a Poiseuille flow with peak velocity v∗m = 0.5 pixels/frame. The results
are shown in Figure 4.3. The numerically estimated parameter values are listed in
Table 1. Due to the small subpixel peak velocity vm = 0.5 pixel/frame which, due to
the parabolic profile (cf. Fig. 1.2) is noticeable only in the center region of the pipe,
we obtained a slight but systematic overestimation of the peak velocity.
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ŝ(v̂)
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Figure 4.3: First row. Fourier spectrum |f̂(ω)| of the image sequence signal for each
texture moving with the maximum flow velocity vm = 0.5 pixels/frame. The images
illustrate a section of the spectral support by the plane (ω1, 0, ω3) in the frequency
domain. Second row. Numerical evaluation of the integral (3.3) is shown by the
blue dotted line. The red solid line shows the corresponding fit of the piecewise
linear function (3.10b), with ε = 0.1, that minimizes (3.22). The gray line shows
the normalized s(v) calculated from (3.4) for v∗m = 0.5. The numerically estimated
parameter values are listed in Table 1.

α β γ ξ = vm
Reference 0 2.00 -2.00 0.500
low density -0.041 1.403 -1.39 0.713
high density -0.031 1.408 -1.402 0.703
white noise -0.028 1.418 -1.412 0.698
sinusoid 0.015 1.247 -1.239 0.744

Table 1: Parameter values estimated by minimizing (3.22). The reference row gives
the theoretical parameters values defined by (3.11) for v∗m = 0.5, based on the two
segment model (3.4) and (3.6). Our approach slightly overestimates the small sub-
pixel peak velocity.

4.1.2 Case vm > 1.

We generated a Poiseuille flow with peak velocity v∗m = 5 pixels/frame. The results
are shown in Figure 4.4 and discussed in the caption. The numerically estimated
parameter values are listed in Table 2. Since the peak velocity is much larger than
the subpixel velocity considered in the previous section, we obtained fairly accurate
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estimates of vm, except for the sinusoid sequence which is extremely unrealistic and
deviates from our image sequence model (2.4).
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ŝ(v̂)
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Figure 4.4: First row. Fourier spectrum |f̂(ω)| of the image sequence signal for each
texture moving with the maximum flow velocity vm = 5 pixels/frame. The images
illustrate a section of the spectral support by the plane (ω1, 0, ω3) in the frequency
domain. Second row. The numerical evaluation of the integral (3.3) for several v
values that constitute the data set (v̂, ŝ(v̂)) is depicted by the blue dotted line. The
red solid line shows the smooth piecewise non-linear function defined by (3.15), with
ε = 0.03, that minimizes (3.23). The gray line shows the normalized s(v) calculated
from (3.5) for vm = 5. The numerically estimated parameter values are listed in
Table 2.

α β δ φ1 φ2 ξ2 = vm
Reference 0.500 0.273 0.273 -0.273 0 5.000
low density 0.486 0.220 0.214 -0.189 -0.028 4.754
high density 0.489 0.216 0.215 -0.187 -0.027 4.880
white noise 0.487 0.211 0.230 -0.181 -0.028 4.797
sinusoid 0.493 0.164 -0.029 0.003 -0.164 3.086

Table 2: Parameter values estimated by minimizing (3.23). The reference row gives
the theoretical parameters values defined by (3.14) for v∗m = 5, based on the piece-
wise non-linear function (3.5) and (3.12). Except for the sinusoid sequence that devi-
ates from our image sequence model (2.4), all parameter estimates are fairly accurate.
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air-bubbles flow microbubbles flow
Tube radius,R 0.005 m 0.005 m
Temporal frames 299 99
Image size, N1 ×N2 372× 135 396× 131
Frame rate 6.666 kHz 2.222 kHz
Temporal resolution, ∆t 0.150 ms 0.450 ms
Field of view size, L1 × L2 3.8× 1 cm2 3.8× 1 cm2

Volume flow rate, ∆Φ 15 ml/s 40 ml/s
Estimated v∗m, in m/s 0.382 1.019
Estimated v∗m, in px/frame 0.561 4.777

Table 3: Real plane wave ultrasound experiments: relevant parameters and reference
values.

4.2 Real Data

We evaluated the proposed method on two sets of real plane wave ultrasound images
for bubbles flow in a straight tube. The in vitro experiment was performed under
controlled conditions and the volume flow rate was measured using a flow-meter.
Table 3 summarizes the relevant imaging parameters. We refer to [VKV+16] for
more details about the experiment.

Under the assumption that the captured flow is fully developed, laminar and
steady, we estimate the peak velocity from the measured volume flow rate ∆Φ given
by

v∗m = 2
∆Φ

πR2
· N1∆t

L1
, (4.1)

where R is the radius of the tube and the last term converts the velocity units form
m/s into pixels/frame. The numerical results for the estimated peak velocity are given
in Table 3, and we used them as reference values.

α β γ ξ = vm v∗m
air-bubbles flow -0.0219 1.166 -1.162 0.828 0.561

Table 4: Parameters and peak velocity estimate for the air-bubbles flow shown in
Figure 4.5. Similar to the synthetic sequences with a small subpixel peak velocity
(cf. Fig. 4.3 and Table 1), we obtained a slight overestimate relative to the indepen-
dent measurement v∗m.
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Figure 4.5: First row. Real air-bubbles flow. Second row. Real microbubbles flow.
Estimated parameter values are listed in Tables and 4 and 5.

α β δ φ1 φ2 ξ2 = vm v∗m
microbubbles flow 0.459 0.152 0.203 -0.104 -0.044 4.723 4.777

Table 5: Parameters and peak velocity estimate for the microbubbles flow shown in
Figure 4.5. Similar to the synthetic sequences with a large peak velocity (cf. Fig. 4.4
and Table 2), we obtained accurate estimates relative to the independent measurement
v∗m.

5 Conclusion

We presented a novel method for globally estimating pipe flows from plane wave
ultrasound image sequence data. The method is based on a random particle model
of the image sequence that is driven by the unknown flow. Applying the Fourier
transform results in a piecewise linear model of the spectral support in the Fourier
domain. Given a real image sequence, numerically fitting this model enables us to
estimate the spectral support and in turn the peak velocity.

Attractive features of our method include: (a) It works directly on given image se-
quence data without the need of image preprocessing. (b) Since it is a global method,
parameter estimation effectively copes with noisy scenarios that are encountered in
real applications. (c) The numerical computations are simple enough to render real-
time implementations feasible.
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