
DOI: 10.2478/auom-2018-0026

An. Şt. Univ. Ovidius Constanţa Vol. 26(2),2018, 209–230

Convective Flow of Blood in Square and
Circular Cavities

P. Senel and M. Tezer-Sezgin

Abstract

In this study, the fully developed, steady, laminar flow of blood is
studied in a long pipe with square and circular cross-sections subjected
to a magnetic field generated by an electric wire. Temperature difference
between the walls causes heat transfer within the fluid by the displace-
ment of the magnetizable fluid particles in the cavity. The governing
equations are the coupled Navier-Stokes and energy equations including
magnetization terms. The axial velocity is also computed with the ob-
tained plane velocity. The Dual Reciprocity Boundary Element Method
(DRBEM) is used by taking all the terms other than Laplacian as in-
homogeneity which transforms the partial differential equations into the
boundary integral equations. Numerical results are given for increasing
values of Magnetic (Mn) and Rayleigh (Ra) numbers. The numeri-
cal results reveal that an increase in Mn accelerates the plane velocity
in the cavity but decelerates the axial velocity around the magnetic
source. Pressure increases through the channel starting from the mag-
netic source. Isotherms show the cooling of the channel with high Mn
and Ra only leaving a thin hot layer near the top heated wall. As Ra
increases viscous effect is reduced leaving its place to convection in the
channel. The use of DRBEM has considerably small computational ex-
pense compared to domain type methods.
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1 Introduction

Biomagnetic fluid dynamics (BFD) is the area, investigating the biological
fluid in the presence of magnetic fields. The most characteristic biomagnetic
fluid is blood. Blood is a magnetizable fluid due to the cell membrane and the
hemoglobin molecule, iron-based protein, carried by the red blood cells [1]. An
externally applied magnetic field changes the flow and the heat transfer char-
acteristics of blood significantly, resulting in some applications in biomedicine
as cell separation, drug targeting, magnet therapies and controlling bleeding
during surgeries. Tzirtzilakis et al. [2] investigated the fully developed blood
flow in a square cavity. They solved the governing equations with a pressure-
linked pseudotransient method. Biomagnetic fluid flow model is extended by
taking into account both magnetization and Lorentz forces by Tzirtzilakis [3].
Kenjeres [4] carried the blood flow analysis to realistic arteries. He reported
that an imposed non-uniform magnetic field could have created significant
changes in the secondary flow patterns which made it possible to optimize the
targeted drug delivery. Khashan et al. [5] presented a numerical simulation
for magnetically mediated separation of labeled biospecies from a native fluid
flowing through a two-dimensional channel using finite volume method. The
influence of a dipole like field and a magnetic field generated by a thin electric
wire on the flow of biomagnetic fluid flow in a circular duct with stenosis is
studied by Tzirakis et al. [6]. They have used a method based on pressure
correction scheme combining discontinuous and continuous Galerkin approxi-
mations.
The heat transfer through the blood flow in the presence of magnetic field
can be used in hypothermic sessions, thermal simulation and thermal ther-
apy applications [7]. The stretching disk flow of a heated biomagnetic fluid is
investigated as a special case by Tzirtzilakis and Kafoussias [8]. They trans-
formed the nonlinear system of equations to ordinary differential equations by
introducing appropriate non-dimensional variables. The blood flow between
two parallel plates is numerically simulated by Loukopoulos and Tzirtzilakis
[9] using a finite difference scheme. They reported that the temperature and
the rate of heat transfer are increasing the area where the magnetic source is
placed. A finite element study of flow and temperature disturbance between
two parallel plates subjected to multiple point magnetic sources is presented
by Morega and Four [10]. Alimohamadi et al. [11] investigated the influence
of numerous numbers of magnetic dipoles on the heat transfer in a rectangular
duct. They compared MHD (Magnetohydrodynamics) and FHD (Ferrohydro-
dynamics) analysis of the flow which are obtained by a commercial software.
The gravitational acceleration effect on the flow and heat transfer of blood flow
between parallel plates is studied by Idris et al. [12] using a finite difference
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method.
The Dual Reciprocity Boundary Element Method (DRBEM) is essentially a
generalized way of constructing particular solutions to the inhomogeneity of
the differential equation that can be used to solve non-linear and time depen-
dent problems [13]. Senel and Tezer-Sezgin [14] presented DRBEM solutions of
Stokes and Navier-Stokes equations subjected to spatially varying point source
magnetic field in circular and rectangular lid-driven cavities. Biomagnetic fluid
flow between parallel plates imposed to a magnetic source was investigated by
Tezer-Sezgin et al. [15]. They used both finite element and dual reciprocity
boundary element method for solving momentum and energy equations in
terms of stream function and vorticity. Recently, Senel and Tezer-Sezgin [16]
studied the forced convection biomagnetic fluid flow in a square cavity.
In this paper, the fully developed, steady, flow of blood in the cross-section of
a long pipe (cavity) under the influence of magnetization and buoyancy forces
are investigated. The flow configuration, pressure and the temperature dis-
turbance are visualized for various values of magnetic and Rayleigh numbers
in square and circular cavities. The axial velocity profile is also presented.
Viscous dissipation effect on the flow and the heat transfer is studied. To the
best of authors’ knowledge this is the first application of DRBEM to the math-
ematical model for the blood flow in square and circular cavities in primitive
variables. DRBEM has the advantage of discretizing only the boundary of the
cavity and results in considerably low computational expense.

2 Mathematical Formulation

Consider a fully developed, steady flow of biofluid in a long impermeable pipe
with square or circular cross-section. The fluid is flowing through the axis
of the pipe due to an imposed constant pressure gradient Pz in the same
direction. The flow and the heat transfer in the pipe are also affected by mag-
netization and buoyancy forces. Magnetization force is generated by a long
wire carrying electric current placed c̄ units below and parallel to the axis of
the pipe. Buoyancy force occurs due to the temperature differences between
the walls of the pipe and the gravitational acceleration. Being a hydrody-
namically and thermally fully developed flow the problem is considered in the
two-dimensional cross-section of the pipe (cavity) and in this case the electric
wire serves as a point magnetic source. There is a longitudinal heat transport,
but isotherms have the same profile on each cross-section of the pipe [17].
Magnetization, buoyancy forces and the constant pressure gradient in the ax-
ial direction develops a forced convection flow in the cavity. The axial velocity
can be separately obtained with the computed plane velocity components.
The governing equations in dimensional form are given by continuity, Navier-
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Stokes and the energy equations in terms of pressure P̄ , velocity (ū, v̄, w̄) and
the temperature T̄ of the fluid which are two-dimensional
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= 0 (1)
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∂ȳ

)
+ k

(
∂2T̄

∂x̄2
+
∂2T̄

∂ȳ2
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Here, µ, ν, ρ, cp, k and β are the dynamic viscosity, the kinematic viscosity,
the density, the specific heat, the thermal conductivity and the thermal ex-
pansion coefficient of the fluid, µ0 is the magnetic permeability of vacuum and
g is the magnitude of the gravitational acceleration.
H̄ is the magnetic field strength and M̄ = χH̄(Tc − T̄ ) is the magnetization
where χ is the magnetic susceptibility of the blood and Tc is the Curie tem-
perature of iron.

The terms
µ0M̄

ρ

∂H̄

∂x̄
and

µ0M̄

ρ

∂H̄

∂ȳ
are the components of the magnetization

force. gβ(T̄ − Tcold) is the buoyancy force, where Tcold is the temperature
of the cold wall. The second term in the energy equation is the heating due
to magnetization and the last term is the viscous dissipation which is a heat
source caused by the friction between the fluid particles.
In fully developed flows the pressure is split as in [18]

P̄ (x̄, ȳ, z̄) = p̄(x̄, ȳ) + P̄1(z̄) (6)

∂P̄

∂z̄
=
∂P̄1
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= P̄z = constant . (7)

The components of the magnetic field ~̄H = (H̄x, H̄y) generated by an infinitely
long electric wire is defined as in [19]

H̄x =
−I
2π

ȳ − b̄
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, H̄y =
I

2π
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(x̄− ā)2 + (ȳ − b̄)2

(8)
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where I is the electric current, (ā, b̄) is the place of the point magnetic source.
For square cavity (ā, b̄) = (h/2,−c̄) and for circular cavity (ā, b̄) = (0,−h −
c̄). Here, c̄ denotes the distance between the source and the cavity. Then,
magnetic field strength is

H̄ =
√
H̄2

x + H̄2
y =

I

2π

1√
(x̄− ā)2 + (ȳ − b̄)2

(9)

For simplicity the non-dimensional variables are given as
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where h is the width of the square cavity and the radius of the circular cavity,
H0 is the magnetic field strength at (h/2, 0) for square and (0,−h) for circular
cavity. Thot is the temperature of the hot wall. The reference values for the
physical properties are ρ = 1050 kgm−3, µ = 3.2 × 10−3 kgm−1s−1, Thot =
316.15◦K, Tcold = 276.65◦K as in [9] and h = 1.1× 10−3 m.
The magnetic field strength H in non-dimensional form for square cavity
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(11)

and for circular cavity

H(x, y) =
|c|√
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(12)

where (a, b) = (ā/h, b̄/h) and c = c̄/h.
Thus, the non-dimensional equations are
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In order to simulate the flow in terms of velocity and the pressure of the fluid
pressure equation is derived by differentiating the x− and
y−components of Navier-Stokes equations and adding them with the use of
continuity equation
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The non-dimensional parameters entering the problem are
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µ0χH

2
0 (Thot − Tcold)h2

ν2ρ
(Magnetic number) (19)
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ρcpν

k
(Prandtl number) (20)
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(Rayleigh number) (21)
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Magnetic number expresses the ratio of the magnetic forces and the inertia
forces. Prandtl number is the ratio of the momentum and thermal diffusivi-
ties. Rayleigh number is the product of the Grashof number and the Prandtl
number where Grashof number denotes the ratio of the buoyancy forces to
viscous forces. Eckert number defines the kinetic energy of the flow relative
to the boundary layer enthalpy difference.
2D stream function is introduced satisfying the continuity equation as u =
∂Ψ
∂y , v = −∂Ψ

∂x . To visualize the flow pattern in the cavity, the stream
function equation is obtained
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The walls of the cavities are motionless and the velocity has no-slip boundary
conditions. The square cavity is heated from the top and cooled from the
bottom walls, horizontal walls are adiabatic. The circular cavity has no adia-
batic walls. The pressure boundary conditions are approximated through x−
and y−components of the momentum equations using a forward difference for
the pressure gradients and the DRBEM coordinate matrix F for all the other
terms.
The problem geometry and the boundary conditions are presented in Figure
1 for both square and circular cavities.

y

x
0 1

1

u = 0, v = 0

w = 0, Ψ = 0, T = 1

u = 0, v = 0

w = 0, Ψ = 0

∂T

∂x
= 0

∂T

∂x
= 0

w = 0, Ψ = 0

u = 0, v = 0

u = 0, v = 0

w = 0, Ψ = 0, T = 0

point magnetic source

~g

-1 1
x

0

point

magnetic source

uθ = 0, ur = 0

w = 0, Ψ = 0, T = 1

uθ = 0, ur = 0

w = 0, Ψ = 0, T = 0

~g

Figure 1: Problem geometry and boundary conditions

Eqs. (14)-(18) and (24) together with the mentioned boundary conditions
define the two-dimensional flow and heat transfer of biomagnetic fluid (blood)
in the cross-section of a long pipe, and the axial velocity.

3 Application of DRBEM

The dual reciprocity boundary element method is used to transform Eqs. (14)-
(18) and (24) into the boundary integral equations using the fundamental
solution of Laplace equation (u∗ = (1/2π)ln(1/r)) [13]. The main advantage of
the method is the reduction of problem dimension. It enables one to discretize
only the boundary of the problem domain. Taking all the terms other than
Laplacian as inhomogeneity, weighting the equations with the fundamental
solution u∗ and using the Green’s first identity two times an integral equation
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for the unknown is obtained

ciRi +

∫
Γ

Rq∗dΓ−
∫

Γ

u∗
∂R

∂n
dΓ = −

∫
Ω

bRu
∗dΩ (25)

where R denotes u, v, w, T , p or Ψ and bR is the right-hand side of each
corresponding equation for R. Γ = ∂Ω, q∗ = ∂u∗/∂n and n is the outward
unit normal to the boundary. ci = 1/2 for the boundary and ci = 1 for the
interior nodes.
To eliminate the domain integral on the right-hand side of Eq. (25) bR is
approximated by a linear radial basis function fj(r) = 1+rj which is connected
to the particular solution ûj as ∇2ûj = fj , [13] and rj is the distance between
the source and field points. Then,

bR =

N+L∑
j=1

(αR)j∇2ûj (26)

where (αR)j ’s are the undetermined coefficients for the approximation of the
right-hand side bR. N and L are the number of boundary and the interior
nodes, respectively.
Green’s first identity is applied to the right-hand side of Eq. (25) and the
boundary is discretized with N constant elements to achieve a boundary inte-
gral equation for the unknown R.
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∂ûj
∂n

dΓ) . (27)

Eq. (26) is used to determine the unknown coefficients (αR)j ’s in terms of
the DRBEM coordinate matrix F which is constructed by taking radial basis
functions fj ’s as columns

αR = F−1bR . (28)

Writing Eq. (27) for all boundary and L interior nodes and using Eq. (28)
DRBEM discretized matrix-vector equations are obtained
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l is the length of the element.
The matrices Û, Q̂ are constructed by taking each vector ûj and q̂j = ∂ûj/∂n
as columns, respectively.
The spatial derivatives of the unknowns on the right-hand sides of Eqs. (29)-
(34) are approximated by using DRBEM coordinate matrix F as

∂R

∂η
=
∂F

∂η
F−1R,

∂2R

∂ξ∂η
=
∂F

∂ξ
F−1 ∂F

∂η
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with η, ξ being x or y.
The discretized system of Eqs. (29)-(34) are solved iteratively by taking ini-
tially

u(0) = v(0) = 0 in Ω ∪ Γ (38)

and

T (0) =

{
1 on the hot boundary

0 otherwise
(39)
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In the stagnant situation of the fluid the transverse pressure gradient forces
are balanced by the effect of the magnetic and buoyancy forces hence, initial
pressure gradients are

∂p

∂x

(0)

= Mn(T − Tc)H(
∂H

∂x
) + 10−12

∂p

∂y

(0)

= Mn(T − Tc)H(
∂H

∂y
) +

Ra

Pr
T + 10−12 . (40)

The system of Eqs. (29)-(34) with the boundary conditions specified on Figure
1 are solved iteratively starting from Eq. (29) and relaxing temperature and
pressure values with relaxation parameters in (0,1) to accelerate the conver-
gence. The iteration continues until a preassigned tolerance is reached. The
stopping criteria for the iteration is

||R(n+1) −R(n)||∞
||R(n)||∞

< 10−3 (41)

where R denotes u, v, w, p, T or Ψ and n is the iteration number.

4 Numerical Results and Discussions

Convection flow of blood in square and circular cavities under point magnetic
source are investigated by using DRBEM. The physical properties of blood
presented in [9] are considered to set the dimensionless parameters. Pr = 20,
Ec = 1.25× 10−8, ε = 7 are taken. The pressure gradient given to the fluid in
the axial direction is Pz = −8000 [2] and c = 0.05. The proposed numerical
scheme and results are validated with the natural convection flow of air in a
square cavity without magnetization force by taking Pr = 0.7 and Ra = 103.
The obtained results are in good agreement with the ones in [20]. The flow is
studied in a square cavity with adiabatic vertical walls. Both in square and
circular cavities the top wall is hot and the bottom wall is cold.

4.1 Convection of blood in a square cavity

The effect of buoyancy force only on the flow (Mn = 0) is seen in Figures 2-
and 3. The buoyancy force divides the flow into two vortices with centers on
y = 0.5 line. Pressure is highly concentrated at the top of the cavity showing
a drop at the center. Horizontal velocity consists of four loops emanating from
the corners and vertical velocity spreads through the cavity. The buoyancy
force shifts the isotherms through the hot wall. Thus, an increase in Rayleigh
number accelerates the planar velocities, increases the pressure in magnitude
and squeezes the isotherms through the hot wall.
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Figure 2: Viscous dissipation is neglected. N = 160, Ra = 103, Mn = 0
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Figure 3: Viscous dissipation is neglected. N = 160, Ra = 105, Mn = 0

Figures 4 and 5 display the effect of the magnetic source only on the flow
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profiles and the temperature of the fluid for Mn = 5, 200 with Ra = 0. An
increase in Magnetic number causes an increase in the magnitude of the pla-
nar velocities and the pressure. The axial velocity shows a flattening tendency
around the point magnetic source and the pressure around the magnetic source
extends through the cavity. Flow on the transverse plane is divided into two
vortices rotating in opposite directions. A further increase in Mn moves the
center of vortices through the magnetic source. The main effect of the point
magnetic source below the cold wall is the cooling of the channel starting from
the bottom wall. For values Mn ≥ 80 the fluid in the channel is completely
cooled except a thin layer near the upper wall and secondary flows show up
through bottom and top corners. v− velocity shows the pushing effect of the
magnetic point source and a thin boundary layer occurs just above and around
the source.
The main effect of the magnetic source (and its increasing intensity) is to ac-
celerate the fluid flow and increase the pressure on the fluid, and thus to cool
down the channel through the upper wall. This is also the idea of cooling the
head capsules of nuclear reactors.
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Figure 4: Viscous dissipation is neglected. N = 160, Ra = 0, Mn = 5
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Figure 5: Viscous dissipation is neglected. N = 200, Ra = 0, Mn = 200
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Figure 6: Viscous dissipation is neglected. N = 160, Mn = 10, Ra = 103



CONVECTIVE FLOW OF BLOOD 222

Both the buoyancy force and magnetic source effects are seen (Mn = 10
and Ra = 103, 105) on Figures 6, 7. For small Mn the buoyancy effect starts
to dominate the flow as Ra increases. When Ra ≥ 104 the thermal convection
in the flow reduces the pushing effect of the magnetic source and viscous effect
is reduced. As Ra increases the behavior of axial velocity stays the same since
the u− and v−velocities are not altered significantly.
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Figure 7: Viscous dissipation is neglected. N = 160, Mn = 10, Ra = 105

When Mn = 80 is reached (Figures 8-9) the magnetization force dominates
the buoyancy force up to Ra = 104. The influence of buoyancy force is ob-
served in streamlines and pressure as the center of vortices move upwards and
pressure starts to concentrate close to the top heated wall. But with an in-
crease in magnetic number the cooling of the channel is much faster compared
to an increase in Rayleigh number.
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Figure 8: Viscous dissipation is neglected. N = 160, Mn = 80, Ra = 104
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Figure 9: Viscous dissipation is neglected. N = 160, Mn = 80, Ra = 105
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Figure 10: Viscous dissipation is added. N = 160, Mn = 10, Ra = 105
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Figure 11: Viscous dissipation is added. N = 160, Mn = 80, Ra = 105

Figures 10 and 11 show the behavior and heat exchange of a biomagnetic
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dissipative viscous fluid. It is observed that the viscous dissipation does not
influence the flow and the heat transfer characteristics for small Rayleigh num-
bers. A slight difference is observed only when Ra = 105 comparing Figures
7,10 and 9,11.

4.2 Convection of blood in a circular cavity

In this problem, the blood flow and its temperature disturbance is studied in
a circular cavity heated on the upper half wall which is a more realistic case.
The influence of buoyancy force is the acceleration of planar velocities as in
the case of square cavity when Mn = 0. The pressure is concentrated around
the hot wall and the discontinuity points since there is no adiabatic wall. The
cavity is nearly cooled down for Ra ≈ 104 (Figure 12).
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Figure 12: Viscous dissipation is neglected. N = 120, Mn = 0, Ra = 104

Figures 13-14 display the velocity, pressure and the temperature variations
for increasing magnetic effect Mn = 10 and 30 when Ra = 0. The flow
behavior is similar to the square cavity case. Increasing magnetic field intensity
accelerates the flow in the cavity and decelerates it in the axial direction. The
heat transfers directly between the hot and cold walls. Pressure increases and
center of vortices move through the source point.
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Figure 13: Viscous dissipation is neglected. N = 120, Mn = 10, Ra = 0
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Figure 14: Viscous dissipation is neglected. N = 160, Mn = 30, Ra = 0
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Figure 15: Viscous dissipation is neglected. N = 120, Mn = 10, Ra = 104
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Figure 16: Viscous dissipation is neglected. N = 120, Mn = 50, Ra = 104

When both magnetic source and buoyancy force are present the buoyancy
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force dominates the magnetization force when Ra = 104 is reached for small
Mn = 10 (Figure 15). But, for larger Mn values the blood flow and its heat
exchange is under the control of magnetic source up to Ra = 104. (Figure 16)
The viscous dissipation effect on the flow in a circular cavity is not observed
due to the sudden passage from the hot wall to the cold wall for the ranges of
magnetic number and Rayleigh number values considered.

5 Conclusion

The influence of the magnetization and the buoyancy forces on the blood flow
in a long pipe with square and circular cross-sections is investigated. When
the magnetic source is below the cold wall the main effect of the magnetization
and buoyancy forces is to cool down the cavity. However, increasing magnetic
field intensity is more effective than increasing buoyancy force in cooling the
fluid. Increasing magnetic field intensity accelerates the flow in the cavity and
decelerates it in the axial direction around the source. Viscous dissipation can
be seen slightly only when Ra is high and it is lost for larger values of Mn.
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