

 $\overline{\overline{G}}$ Vol. 26(1),2018, 159-168

Commutator Subgroups of Generalized Hecke and Extended Generalized Hecke Groups

Şule Kaymak (Sarıca), Bilal Demir, Özden Koruoğlu and Recep Şahin

Abstract

Let p and q be integers such that $2 \le p \le q$, p + q > 4 and let $H_{p,q}$ be the generalized Hecke group associated to p and q. The generalized Hecke group $H_{p,q}$ is generated by $X(z) = -(z - \lambda_p)^{-1}$ and $Y(z) = -(z + \lambda_q)^{-1}$ where $\lambda_p = 2\cos\frac{\pi}{p}$ and $\lambda_q = 2\cos\frac{\pi}{q}$. The extended generalized Hecke group $\overline{H}_{p,q}$ is obtained by adding the reflection $R(z) = 1/\overline{z}$ to the generators of generalized Hecke group $H_{p,q}$. In this paper, we study the commutator subgroups of generalized Hecke groups $H_{p,q}$ and extended generalized Hecke groups $\overline{H}_{p,q}$.

1 Introduction

In [5], Hecke introduced the groups $H(\lambda)$ generated by two linear fractional transformations

$$T(z) = -\frac{1}{z}$$
 and $U(z) = z + \lambda$,

where λ is a fixed positive real number. Let S = TU, i.e.,

$$S(z) = -\frac{1}{z+\lambda}.$$

Key Words: Generalized Hecke groups, Extended generalized Hecke groups, commutator subgroups.

²⁰¹⁰ Mathematics Subject Classification: 20H10, 11F06, 30F35 Received: 06.02.2016 Revised: 15.06.2017

Accepted: 20.06.2017

Hecke showed that $H(\lambda)$ is discrete if and only if $\lambda = \lambda_q = 2\cos(\frac{\pi}{q}), q \ge 3$ integer, or $\lambda \ge 2$. We consider the former case $q \ge 3$ integer and we denote it by $H_q = H(\lambda_q)$. The Hecke group H_q is isomorphic to the free product of two finite cyclic groups of orders 2 and q,

$$H_q = \langle T, S : T^2 = S^q = I \rangle \simeq C_2 * C_q.$$

The first few Hecke groups H_q are $H_3 = \Gamma = PSL(2,\mathbb{Z})$ (the modular group), $H_4 = H(\sqrt{2})$, $H_5 = H(\frac{1+\sqrt{5}}{2})$, and $H_6 = H(\sqrt{3})$. It is clear from the above that $H_q \subset PSL(2,\mathbb{Z}[\lambda_q])$ unlike in the modular group case (the case q = 3), the inclusion is strict and the index $|PSL(2,\mathbb{Z}[\lambda_q]) : H_q|$ is infinite as H_q is discrete whereas $PSL(2,\mathbb{Z}[\lambda_q])$ is not for $q \geq 4$.

Lehner studied in [11] a more general class $H_{p,q}$ of Hecke groups H_q , by taking

$$X = \frac{-1}{z - \lambda_p}$$
 and $V = z + \lambda_p + \lambda_q$,

where $2 \le p \le q$, p + q > 4. Here if we take $Y = XV = -\frac{1}{z + \lambda_q}$, then we have the presentation,

$$H_{p,q} = \langle X, Y : X^p = Y^q = I \rangle \simeq C_p * C_q.$$

In particular $H_{p,q}$ has the signature $(0; p, q, \infty)$. We call these groups as generalized Hecke groups $H_{p,q}$. We know from [11] that $H_{2,q} = H_q$, $|H_q: H_{q,q}| = 2$, and there is no group $H_{2,2}$. Furthermore all Hecke groups H_q are included in generalized Hecke groups $H_{p,q}$. Generalized Hecke groups $H_{p,q}$ have been also studied by Calta and Schmidt in [2] and [3].

Extended generalized Hecke groups $H_{p,q}$ can be defined similar to extended Hecke groups \overline{H}_q , by adding the reflection $R(z) = 1/\overline{z}$ to the generators of generalized Hecke group $H_{p,q}$. Hence extended generalized Hecke groups $\overline{H}_{p,q}$ have a presentation

$$\overline{H}_{p,q} = < X, Y, R : X^p = Y^q = R^2 = I, \ RX = X^{-1}R, RY = Y^{-1}R >,$$

that is

$$\overline{H}_{p,q} = \langle X, Y, R : X^p = Y^q = R^2 = (XR)^2 = (YR)^2 = I \ge D_p *_{\mathbb{Z}_2} D_q.$$

The groups $H_{p,q}$ is a subgroup of index 2 in $\overline{H}_{p,q}$.

Now we focus on the commutator subgroups of $H_{p,q}$ and $\overline{H}_{p,q}$. The commutator subgroups of H_q , \overline{H}_q , H_q^m (*m*-th power subgroup of H_q) and $H'_{p,q}$ (*p* and *q* are relatively prime) have been studied by many authors see [1], [16], [18], [19], [20] and [22].

In this paper, we study the commutator subgroups of $H_{p,q}$ and $\overline{H}_{p,q}$. We give the generators, the group structures and the signatures of the commutator subgroups of $H_{p,q}$ and $\overline{H}_{p,q}$. Here we use the Reidemeister-Schreier method, the permutation method (see, [21]) and the extended Riemann-Hurwitz condition (see, [10]) to get our results.

Remark 1. i) The Hecke groups H_q , the extended Hecke groups \overline{H}_q and their normal subgroups have been studied extensively for many aspects in the literature. For examples, see [4], [8], [9], [12] and [14]. Also, there are many relationships between the groups H_q (or \overline{H}_q) and the automorphism groups of Riemann (or Klein) surfaces or of regular maps $\{p,q\}$. Naturally, many results related with H_q and \overline{H}_q can be generalized to the groups $H_{p,q}$ and $\overline{H}_{p,q}$.

ii) Generalized Hecke groups $H(p_1, p_2, ..., p_n)$ and extended generalized Hecke groups $H^*(p_1, p_2, ..., p_n)$ have been introduced first by Huang in [6]. Our studied groups are the special cases (n = 2) of these groups given in [6] and [7].

2 Commutator Subgroups of Generalized Hecke Groups $H_{p,q}$

In this section, we study the commutator subgroup $H'_{p,q}$ of generalized Hecke groups $H_{p,q}$. We use standard notation, in particular, G(n) denotes the $n^t h$ derived group of a group G.

Theorem 1. Let p and q be integers such that $2 \le p \le q$, p+q > 4. i) $|H_{p,q}: H'_{p,q}| = pq$.

ii) The commutator subgroup $H'_{p,q}$ of $H_{p,q}$ is a free group of rank (p-1)(q-1) with basis $[X,Y], [X,Y^2], ..., [X,Y^{q-1}], [X^2,Y], [X^2,Y^2], ..., [X^2,Y^{q-1}], ..., [X^{p-1},Y], [X^{p-1},Y^2], ..., [X^{p-1},Y^{q-1}].$ And the signature of $H'_{p,q}$ is $(\frac{pq-p-q-(p,q)+2}{2}; \infty^{(p,q)})$ where (p,q) is the greatest common divisor of p and q.

iii) For $n \ge 2$, $\left| H_{p,q} : H_{p,q}^{(n)} \right| = \infty$.

Proof. i) Firstly, we set up the quotient group $H_{p,q}/H'_{p,q}$. The quotient group $H_{p,q}/H'_{p,q}$ is the group obtained by adding the relation XY = YX to the relations of $H_{p,q}$. Thus we have

$$H_{p,q}/H'_{p,q} = \langle X, Y : X^p = Y^q = I, \ XY = YX \rangle \simeq C_p \times C_q.$$

ii) Now we can determine the generators of $H'_{p,q}$ by the Reidemeister-Schreier method. To do this, we choose the set $\Sigma = \{I, X, X^2, ..., X^{p-1}, Y, Y^2, ..., \}$

 $Y^{q-1},XY,XY^2,...,XY^{q-1},X^2Y,X^2Y^2,...,X^2Y^{q-1},...,X^{p-1}Y,X^{p-1}Y^2,...,X^{p-1}Y^{q-1}\}$ as a Schreier transversal. All possible products are

$$\begin{split} I.X.(X)^{-1} &= I, \\ X.X.(X^2)^{-1} &= I, \\ &\vdots \\ X^{p-1}.X.(I)^{-1} &= I, \\ Y.X.(XY)^{-1} &= YXY^{-1}X^{-1} &= [Y,X], \\ Y^2.X.(XY^2)^{-1} &= Y^2X(XY^2)^{-1} &= [Y^2,X], \\ &\vdots \\ Y^{q-1}.X.(XY^{q-1})^{-1} &= Yq^{-1}XY^{-(q-1)}X^{-1} &= [Y^{q-1},X], \\ XY.X.(X^2Y)^{-1} &= XYXY^{-1}X^{-2} &= [X,Y].[Y,X^2], \\ XY^2.X.(X^2Y)^{-1} &= XY^2XY^{-2}X^{-2} &= [X,Y^2].[Y^2,X^2], \\ &\vdots \\ XY^{q-1}.X.(X^2Y^{q-1})^{-1} &= XYq^{-1}XY^{-(q-1)}X^{-2} &= [X,Y^{q-1}].[Y^{q-1},X^2], \\ X^2Y.X.(X^3Y)^{-1} &= X^2YXY^{-1}X^{-3} &= [X^2,Y].[Y,X^3], \\ X^2Y^2.X.(X^3Y^2)^{-1} &= X^2Y^2XY^{-2}X^{-3} &= [X^2,Y^2].[Y^2,X^3], \\ &\vdots \\ X^2Y^{q-1}.X.(X^3Y^{q-1})^{-1} &= X^2Y^{q-1}XY^{-(q-1)}X^{-3} &= [X^2,Y^{q-1}].[Y^{q-1},X^3], \\ &\vdots \\ X^{p-1}Y.X.(Y)^{-1} &= X^{p-1}YXY^{-1} &= [X^{-1},Y], \\ X^{p-1}Y^2.X.(Y^2)^{-1} &= X^{p-1}Y^2XY^{-2} &= [X^{-1},Y^2], \\ &\vdots \\ X^{p-1}Y^{q-1}.X.(Y^{q-1})^{-1} &= X^{p-1}Y^{q-1}XY^{-(q-1)} &= [X^{-1},Y^{q-1}]. \end{split}$$

The other products are equal to the identity. Thus, we find the generators of $H'_{p,q}$ as [X,Y], $[X,Y^2]$, ..., $[X,Y^{q-1}]$, $[X^2,Y]$, $[X^2,Y^2]$, ..., $[X^2,Y^{q-1}]$, ..., $[X^{p-1},Y]$, $[X^{p-1},Y^2]$, ..., $[X^{p-1},Y^{q-1}]$. The signature of $H'_{p,q}$ can be obtained by permutation method and Riemann-Hurtwitz formula.

iii) If we take relations and abelianizing, we find that the resulting quotient is infinite. Thus, it follows that $H''_{p,q}$ has infinite index in $H'_{p,q}$. Further since this has infinite index it follows that in each group in the derived series from this point on have infinite index.

Example 1. If p = 3 and q = 4, then $|H_{3,4} : H'_{3,4}| = 12$. We choose $\Sigma = \{I, X, X^2, Y, Y^2, Y^3, XY, XY^2, XY^3, X^2Y, X^2Y^2, X^2Y^3\}$ as a Schreier transversal for $H'_{3,4}$. Using the Reidemeister-Schreier method, we get the generators of $H'_{3,4}$ as $[X,Y], [X,Y^2], [X,Y^3], [X^2,Y], [X^2,Y^2], [X^2,Y^3]$. Also the signature of $H'_{3,4}$ is $(3; \infty)$.

Corollary 1. If p = 2, then the generators of $H'_{2,q}$ are [X,Y], $[X,Y^2]$, ..., $[X,Y^{q-1}]$. Also, the signatures of $H'_{2,q}$ is either $(\frac{q-1}{2};\infty)$ if q is odd, or $(\frac{q-2}{2};\infty^{(2)})$ if q is even. These results coincide with the ones given in [1] and [20], for Hecke groups H_q .

3 Commutator Subgroups of Extended Generalized Hecke Groups $\overline{H}_{p,q}$

In this section, we study the first commutator subgroups $\overline{H}'_{p,q}$ of extended generalized Hecke groups $\overline{H}_{p,q}$.

Theorem 2. Let p and q be integers such that $2 \le p \le q$, p + q > 4. i) If p and q are both odd numbers, then $\overline{H}'_{p,q} = \langle X, Y : X^p = Y^q = I \rangle \simeq C_p * C_q$. ii) If p is an odd number and q is an even number, then

$$\begin{split} \overline{H}'_{p,q} &= \langle X, YXY^{-1}, Y^2 : X^p = (YXY^{-1})^p = (Y^2)^{\frac{q}{2}} = I > \simeq C_p * C_p * C_{q/2}.\\ iii) \quad If \quad p \quad is \quad an \quad even \quad number \quad and \quad q \quad is \quad an \quad odd \quad number, \quad then \\ \overline{H}'_{p,q} &= \langle X^2, Y, XYX^{-1} : (X^2)^{\frac{p}{2}} = Y^q = (XYX^{-1})^q = I > \simeq C_{p/2} * C_q * C_q.\\ iv) \quad If \quad p \quad and \quad q \quad are \quad both \ even \ numbers, \ then \quad \overline{H}'_{p,q} &= \langle X^2, \ YX^2Y^{-1}, \ Y^2, \\ XY^2X^{-1}, \ XYXY^{-1} : (X^2)^{p/2} = (YX^2Y^{-1})^{p/2} = (Y^2)^{q/2} = (XY^2X^{-1})^{q/2} = I > \simeq C_{p/2} * C_{p/2} * C_{q/2} * C_{q/2} * \mathbb{Z}. \end{split}$$

Proof. The quotient group $\overline{H}_{p,q}/\overline{H}'_{p,q}$ is

$$\overline{H}_{p,q}/\overline{H}'_{p,q} = \langle X, Y, R : X^p = Y^q = R^2 = I, \ XR = RX^{-1}, \ YR = RY^{-1}, XY = YX, \ XR = RX, \ YR = RY > .$$
(3.1)

i) If p and q are both odd numbers, then from (3.1), we get

$$\overline{H}_{p,q}/\overline{H}'_{p,q} = < R : R^2 = I > \simeq C_2.$$

Now we can determine the Schreier transversal as $\Sigma = \{I, R\}$. According to the Reidemeister-Schreier method, we can form all possible products :

$$\begin{split} I.X.(I)^{-1} &= X, & I.Y.(I)^{-1} = Y, & I.R.(R)^{-1} = I, \\ R.X.(R)^{-1} &= RXR, & R.Y.(R)^{-1} = RYR, & R.R.(I)^{-1} = I. \end{split}$$

Since $RXR = X^{-1}$ and $RYR = Y^{-1}$, the generators of $\overline{H}'_{p,q}$ are X and Y. Thus we have $\overline{H}'_{p,q} = \langle X, Y : X^p = Y^q = I \rangle \simeq H_{p,q}$. The signature of $\overline{H}'_{p,q}$ is $(0; p, q, \infty)$. ii) If p is an odd number and q is an even number, then from (3.1), we obtain

$$\overline{H}_{p,q}/\overline{H}'_{p,q} = \langle Y, R : Y^2 = R^2 = I, YR = RY \rangle \simeq C_2 \times C_2.$$

Now we can determine the Schreier transversal as $\Sigma = \{I, Y, R, YR\}$. According to the Reidemeister-Schreier method, we can form all possible products :

$$\begin{array}{lll} I.X.(I)^{-1} = X, & I.Y.(Y)^{-1} = I, & I.R.(R)^{-1} = I, \\ Y.X.(Y)^{-1} = YXY^{-1}, & Y.Y.(I)^{-1} = Y^2, & Y.R.(YR)^{-1} = I, \\ R.X.(R)^{-1} = RXR, & R.Y.(YR)^{-1} = RYRY^{-1}, & R.R.(I)^{-1} = I, \\ YR.X.(YR)^{-1} = YRXRY^{-1}, & YR.Y.(R)^{-1} = YRYR, & YR.R.(Y)^{-1} = I. \end{array}$$

After required calculations, we get the generators of $\overline{H}'_{p,q}$ as X, YXY^{-1} and Y^2 . Thus we obtain $\overline{H}'_{p,q} = \langle X, YXY^{-1}, Y^2 : X^p = (YXY^{-1})^p = (Y^2)^{\frac{q}{2}} = I \rangle \simeq C_p * C_p * C_{q/2}$. The signature of $\overline{H}'_{p,q}$ is $(0; p, p, (q/2), \infty)$.

iii) The proof is similar to ii). Also, the signature of $\overline{H}'_{p,q}$ is $(0; (p/2), q, q, \infty)$. *iv*) If p and q are both even numbers, then from (3.1), we find

 $\overline{H}_{p,q}/\overline{H}_{p,q}' = < X, Y, R: X^2 = Y^2 = R^2 = (XY)^2 = (XR)^2 = (YR)^2 = I > 0$

$$\simeq C_2 \times C_2 \times C_2.$$

Now we can determine the Schreier transversal as $\Sigma = \{I, X, Y, R, XY, XR, YR, XYR\}$. According to the Reidemeister-Schreier method, we can form all possible products :

 $\begin{array}{ll} I.X.(X)^{-1} = I, & I.Y.(Y)^{-1} = I, \\ X.X.(I)^{-1} = X^2, & X.Y.(XY)^{-1} = I, \\ Y.X.(XY)^{-1} = YXY^{-1}X^{-1}, & Y.Y.(I)^{-1} = Y^2, \\ R.X.(XR)^{-1} = RXRX^{-1}, & R.Y.(YR)^{-1} = RYRY^{-1}, \\ XY.X.(Y)^{-1} = XYXY^{-1}, & XY.Y.(X)^{-1} = XY^2X^{-1}, \\ XR.X.(R)^{-1} = XRXR, & XR.Y.(XYR)^{-1} = XRYRY^{-1}X^{-1}, \\ YR.X.(XYR)^{-1} = YRXRY^{-1}X^{-1}, & YR.Y.(R)^{-1} = YRYR, \\ XYR.X.(YR)^{-1} = XYRXRY^{-1}, & XYR.Y.(XR)^{-1} = XYRYRX^{-1}, \end{array}$

The other products are equal to the identity. Since $RXRX^{-1} = X^{-2}$, XRXR = I, $YRXRY^{-1}X^{-1} = YXY^{-1}X^{-1}$, $XYRXRY^{-1} = XYXY^{-1}$, $RYRY^{-1} = Y^{-2}$, $XRYRY^{-1}X^{-1} = I$, YRYR = I and $XYRYRX^{-1} = XY^2X^{-1}$, we have the generators of $\overline{H}'_{p,q}$ as X^2, YX^2Y^{-1} , Y^2, XY^2X^{-1} , $XYXY^{-1}$. Then we get $\overline{H}'_{p,q} = \langle X^2, YX^2Y^{-1}, Y^2, XY^2X^{-1}, XYXY^{-1}$: $(X^2)^{p/2} = (YX^2Y^{-1})^{p/2} = (Y^2)^{q/2} = (XY^2X^{-1})^{q/2} = I > \simeq C_{p/2} * C_{p/2} *$ $C_{q/2} * C_{q/2} * \mathbb{Z}$. Also, the signature of $\overline{H}'_{p,q}$ is $(0; (p/2)^{(2)}, (q/2)^{(2)}, \infty^{(2)})$. \Box **Corollary 2.** 1) The first commutator subgroup of $\overline{H}_{p,q}$ does not contain any reflection and so $\overline{H}'_{p,q}$ is a subgroup of $H_{p,q}$.

2) If p = 2, then the first commutator subgroups $\overline{H}'_{2,q}$ coincide with the ones given in [16] for extended Hecke groups \overline{H}_q .

3) $H'_{p,q} \leq \overline{H}'_{p,q} \leq \overline{H}_{p,q}$.

Now we study the second commutator subgroup $\overline{H}_{p,q}^{"}$ of $\overline{H}_{p,q}$, except the case p and q are both even numbers, since in this case $\overline{H}_{p,q}^{"}$ has infinite index in $\overline{H}_{p,q}$.

Theorem 3. Let p and q be integers such that $2 \le p \le q$, p+q > 4.

i) If p and q are both odd numbers, then $\overline{H}_{p,q}^{\prime\prime} = H_{p,q}^{\prime}$.

ii) If p is an odd number and q is an even number, then $\overline{H}_{p,q}^{\prime\prime}$ is a free group of rank $(q-1)p^2 - pq + 1$.

iii) If p is an even number and q is an odd number, then $\overline{H}''_{p,q}$ is a free group of rank $(p-1)q^2 - pq + 1$.

Proof. The case *i*) can be seen from the Theorem 2.1. Since the cases *ii*) and *iii*) are similar, we prove only the case *iii*). If we take $a = X^2$, b = Y, $c = XYX^{-1}$, then the quotient group $\overline{H}'_{p,q}/\overline{H}''_{p,q}$ is the group obtained by adding the relations ab = ba, ac = ca and bc = cb to the relations of $\overline{H}'_{p,q}$. Then

$$\overline{H}'_{p,q}/\overline{H}''_{p,q} \cong C_{p/2} \times C_q \times C_q.$$

 $\begin{array}{l} \text{Therefore, we obtain } \left| \overline{H}_{p,q}': \overline{H}_{p,q}'' \right| &= pq^2/2. \text{ Now we choose } \Sigma = \{I, \, a, \, a^2, \\ \cdots, \, a^{(p/2)-1}, \, b, \, b^2, \, \cdots, \, b^{q-1}, \, c, \, c^2, \, \cdots, \, c^{q-1}, \, ab, \, ab^2, \cdots, \, ab^{q-1}, \, a^2b, \, a^2b^2, \, \cdots, \\ a^2b^{q-1}, \cdots, \, a^{(p/2)-1}b, \, a^{(p/2)-1}b^2, \, \cdots, \, a^{(p/2)-1}b^{q-1}, \, ac, \, ac^2, \cdots, \, ac^{q-1}, \, a^2c, \, a^2c^2, \\ \cdots, \, a^2c^{q-1}, \cdots, \, a^{(p/2)-1}c, \, a^{(p/2)-1}c^2, \, \cdots, \, a^{(p/2)-1}c^{q-1}, \, bc, \, bc^2, \, \cdots, \, bc^{q-1}, \, b^2c, \\ b^2c^2, \, \cdots, \, b^2c^{q-1}, \cdots, \, b^{q-1}c, \, b^{q-1}c^2, \, \cdots, \, b^{q-1}c^{q-1}, \, abc, \, abc^2, \, \cdots, \, abc^{q-1}, \, ab^2c, \\ ab^2c^2, \, \cdots, \, a^2c^{q-1}, \cdots, \, ab^{q-1}c, \, ab^{q-1}c^2, \, \cdots, \, a^{dp-1}c^{q-1}, \, \cdots, \, a^{(p/2)-1}bc, \, a^{(p/2)-1}b^2c, \\ \cdots, \, a^{(p/2)-1}b^{q-1}, \, a^{(p/2)-1}b^2c, \, a^{(p/2)-1}b^2c^2, \, \cdots, \, a^{(p/2)-1}b^2c^{q-1}, \, \cdots, \, a^{(p/2)-1}b^{q-1}c, \\ a^{(p/2)-1}b^{q-1}c^2, \, \cdots, \, a^{(p/2)-1}b^{q-1}c^{q-1}\} \end{array}$

According to the Reidemeister-Schreier method, we get the generators of $\overline{H}_{p,q}''$ as follows. There are total $(p-1)q^2 - pq + 1$ generators obtained by using the theorem of Nielsen in [13]. These generators are $[a,b], [a,b^2], \cdots, [a,b^{q-1}], [a^2,b], [a^2,b^2], \cdots, [a^2,b^{q-1}], \cdots, [a^{(p/2)-1},b], [a^{(p/2)-1},b^2], \cdots, [a^{(p/2)-1},b^{q-1}], [a,c], [a,c^2], \cdots, [a,c^{q-1}], [a^2,c], [a^2,c^2], \cdots, [a^2,c^{q-1}], \cdots, [a^{(p/2)-1},c], [a^{(p/2)-1},c^2], \cdots, [a^{(p/2)-1},c^{q-1}], [b,c], [b,c^2], \cdots, [b,c^{q-1}], [b^2,c], [b^2,c^2], \cdots, [b^2,c^{q-1}], \cdots, [b^{q-1},c], [b^{q-1},c^2], \cdots, [b^{q-1},c^{q-1}], [a,bc], [a,b^2c], \cdots, [a,b^{q-1}c], [a,bc^2], [a^2,b^2c], \cdots, [a,b^{q-2}c], \cdots, [a,b^{q-2}c],$

 $\begin{array}{l} [a^2,b^{q-1}c], \ [a^2,bc^2], \ [a^2,b^2c^2], \ \cdots, \ [a^2,b^{q-1}c^2], \ \cdots, \ [a^2,bc^{q-1}], \ [a^2,b^2c^{q-1}], \ \cdots, \\ [a^2,b^{q-1}c^{q-1}], \ \cdots, \ [a^{(p/2)-1},bc], \ [a^{(p/2)-1},b^2c], \ \cdots, \ [a^{(p/2)-1},b^{q-1}c], \ [a^{(p/2)-1},b^{c^2}], \\ [a^{(p/2)-1},b^2c^2], \ \cdots, \ [a^{(p/2)-1},b^{q-1}c^2], \ \cdots, \ [a^{(p/2)-1},bc^{q-1}], \ [a^{(p/2)-1},b^2c^{q-1}], \ \cdots, \\ [a^{(p/2)-1},b^{q-1}c^{q-1}], \ [ab,bc], \ [ab,b^2c], \ \cdots, \ [ab,b^{q-1}c], \ [ab,b^{c^2}], \ (ab,b^{c^2}c^2], \ \cdots, \ [a^{b},b^{q-1}c^2], \\ \ \cdots, \ [ab,bc^{q-1}], \ [ab,b^2c^{q-1}], \ \cdots, \ [ab,b^{q-1}c^{q-1}], \ [a^{2}b,bc], \ [a^{2}b,b^{2}c], \ \cdots, \ [a^{2}b,b^{q-1}c^2], \\ \ \cdots, \ [a^{2}b,bc^2], \ [a^{2}b,b^{2}c^2], \ \cdots, \ [a^{2}b,b^{q-1}c^2], \ \cdots, \ [a^{2}b,b^{q-1}c], \ [a^{2}b,b^{2}c^{q-1}], \ \cdots, \ [a^{2}b,b^{q-1}c^{q-1}], \\ \ \cdots, \ [a^{(p/2)-1}b,bc], \ [a^{(p/2)-1}b,b^{2}c], \ \cdots, \ [a^{(p/2)-1}b,b^{2}c^{q-1}], \ \cdots, \ [a^{(p/2)-1}b,b^{2}c^{2}], \\ \ \cdots, \ [a^{(p/2)-1}b,b^{2}c^{2}], \ \cdots, \ [a^{(p/2)-1}b,b^{2}c^{$

Also, the signature of $\overline{H}_{p,q}^{\prime\prime}$ is $(\frac{q^2(p-1)-q(p+1)+2}{2};\infty^{(q)})$.

Example 2. Let p = 4 and q = 5. Then we have $\left|\overline{H}'_{4,5}:\overline{H}''_{4,5}\right| = 50$. We choose $\Sigma = \{I, a, b, b^2, b^3, b^4, c, c^2, c^3, c^4, ab, ab^2, ab^3, ab^4, ac, ac^2, ac^3, ac^4, bc, bc^2, bc^3, bc^4, b^2c, b^2c^2, b^2c^3, b^2c^4, b^3c, b^3c^2, b^3c^3, b^3c^4, b^4c, b^4c^2, b^4c^3, b^4c^4, abc, abc^2, abc^3, abc^4, ab^2c, ab^2c^2, ab^2c^3, ab^2c^4, ab^3c, ab^3c^2, ab^3c^3, ab^3c^4, ab^4c, ab^4c^2, ab^4c^3, ab^4c^4 \}$ as a Schreier transversal for $\overline{H}''_{4,5}$. According to the Reidemeister-Schreier method, we get total 56 generators of $\overline{H}'_{4,5}$ as $[a, b], [a, b^2], [a, b^3], [a, b^4], [a, c], [a, c^2], [a, c^3], [a, c^4], [b, c], [b, c^2], [b, b^3], [b, c^4], [b^2, c], [b^2, c^2], [b^2, c^3], [b^2, c^4], [b^3, c], [b^3, c^2], [b^3, c^3], [b^3, c^4], [b^4, c], [b^4, c^2], [a, bc^3], [a, b^2c^3], [a, b^3c^3], [a, b^4c^3], [a, b^4c^3], [a, b^4c^4], [a, bc^2d^3], [a, b^3c^3], [ab, b^4c^3], [ab, b^2c^4], [ab, b^2c^4], [ab, b^3c^4], [ab, b^4c^4], [ab, bc^2d^3], [ab, b^4c^3], [ab, b^4c^4], [ab, bc^2d^3], [ab, b^4c^4], [ab, bc^2d^3], [ab, b^4c^3], [ab, b^4c^4], [ab, b^2c^4], [ab, b^3c^4], [ab, b^4c^4], [ab, b^2c^4], [ab, b^3c^4], [ab, b^4c^4], [ab, b^2c^4], [ab, b^3c^4], [ab, b^4c^3], [ab, b^4c^4], [ab, b^2c^4], [ab, b^3c^4], [ab, b^4c^3], [ab, b^4c^3], [ab, b^4c^4], [ab, b^2c^4], [ab, b^3c^4], [ab, b^4c^4], [ab, b^2c^4], [ab, b^4c^4], [ab, b^4c^4], [ab, b^2c^4], [ab, b^4c^4], [ab,$

Corollary 3. Let p and q be integers such that $2 \le p \le q$, p + q > 4. In case p and q are both even numbers, $\left|\overline{H}_{p,q}:\overline{H}_{p,q}^{(n)}\right| = \infty$ for $n \ge 2$ and, in other cases of p and q, $\left|\overline{H}_{p,q}:\overline{H}_{p,q}^{(n)}\right| = \infty$ for $n \ge 3$.

Corollary 4. If p = q odd number, then the commutator subgroups $\overline{H}_{q,q}^{"}$ coincides with the ones given in [15] for extended Hecke groups \overline{H}_{q} .

References

- I. N. Cangül and O. Bizim, Commutator subgroups of Hecke groups, Bull. Inst. Math. Acad. Sinica 30 (2002), no. 4, 253–259.
- [2] K. Calta and T. A. Schmidt, Infinitely many lattice surfaces with special pseudo-Anosov maps, J. Mod. Dyn. 7, No. 2, 239-254 (2013).

- [3] K. Calta and T. A. Schmidt, Continued fractions for a class of triangle groups, J. Aust. Math. Soc. 93, No. 1-2, 21-42 (2012).
- [4] Y.H. He and J. Read, Hecke Groups, Dessins d'Enfants and the Archimedean solids, http://arxiv.org/pdf/1309.2326.
- [5] E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936), 664-699.
- [6] S. Huang, Generalized Hecke groups and Hecke polygons, Ann. Acad. Sci. Fenn., Math. 24, No.1, 187-214 (1999).
- [7] S. Huang, Realizability of torsion free subgroups with prescribed signatures in Fuchsian groups, Taiwanese J. Math. 13 (2009), no. 2A, 441–457.
- [8] S. Ikikardes, R. Sahin and I. N. Cangül, Principal congruence subgroups of the Hecke groups and related results, Bull. Braz. Math. Soc. (N.S.) 40, No. 4, 479-494 (2009).
- [9] G. A. Jones, Combinatorial categories and permutation groups, http://arxiv.org/pdf/1309.6119.
- [10] R. S. Kulkarni, A new proof and an extension of a theorem of Millington on the modular group, Bull. Lond. Math. Soc. 17, 458-462 (1985).
- [11] J. Lehner, Uniqueness of a class of Fuchsian groups, Illinois J. Math. 19 (1975), 308–315.
- [12] D. Mayer, T. Mühlenbruch and F. Strömberg, *The transfer operator for the Hecke triangle groups*, Discrete Contin. Dyn. Syst. 32 (2012), no. 7, 2453-2484.
- [13] J. Nielsen, Kommutatorgruppen for det frie produkt af cykliske gruper, Mat. Tidsskr. B (1948), 49-56.
- [14] A. D. Pohl, Odd and even Maass cusp forms for Hecke triangle groups, and the billiard flow, http://arxiv.org/pdf/1303.0528.
- [15] R. Sahin and O. Bizim, Some subgroups of the extended Hecke groups $\overline{H}(\lambda_q)$, Acta Math. Sci., Ser. B, Engl. Ed. **23**, No.4 (2003), 497-502.
- [16] R. Sahin, O. Bizim and I. N. Cangül, Commutator subgroups of the extended Hecke groups, Czech. Math. J. 54, No.1 (2004), 253-259.
- [17] R. Sahin, S. Ikikardes and O. Koruoğlu, Some normal subgroups of the extended Hecke groups $\overline{H}(\lambda_p)$, Rocky Mountain J. Math. **36** (2006), no. 3, 1033–1048.

- [18] R. Sahin and Ö. Koruoğlu, Commutator subgroups of the power subgroups of some Hecke groups, Ramanujan J. 24 (2011), no. 2, 151–159.
- [19] R. Sahin and Ö. Koruoğlu, Commutator subgroups of the power subgroups of Hecke groups $H(\lambda_q)$ II, C. R. Math. Acad. Sci. Paris 349 (2011), no. 3-4, 127–130.
- [20] T. A. Schmidt and M. Sheingorn, Covering the Hecke triangle surfaces, Ramanujan J. 1 (1997), no. 2, 155–163.
- [21] D. Singerman, Subgroups of Fuchsian groups and finite permutation groups, Bull. Lond. Math. Soc. 2, 319-323 (1970).
- [22] V. V. Tsanov, Valdemar, Triangle groups, automorphic forms, and torus knots, Enseign. Math. (2) 59 (2013), no. 1-2, 73–113.

Şule KAYMAK (SARICA),
Institute of Science, Department of Mathematics,
Balıkesir University,
Çağış Campus, 10145, Balıkesir, Turkey.
Email: sulekaymak0@gmail.com

Bilal DEMİR, Necatibey Faculty of Education, Department of Mathematics, Balıkesir University, Soma Street, 10100, Balıkesir, Turkey. Email: bdemir@balikesir.edu.tr

Özden Koruoğlu, Necatibey Faculty of Education, Department of Mathematics, Balıkesir University, Soma Street, 10100, Balıkesir, Turkey. Email: ozdenk@balikesir.edu.tr Recep Şahin, Faculty of Science and Arts, Department of Mathematics, Balıkesir University, 10145 Çağış Campus, Balıkesir, Turkey Email: rsahin@balikesir.edu.tr