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The existence of positive solutions for
Kirchhoff-type problems via the

sub-supersolution method

Baoqiang Yan, Donal O’Regan and Ravi P. Agarwal

Abstract

In this paper we discuss the existence of a solution between well-
ordered subsolution and supersolution of the Kirchhoff equation. Using
the sub-supersolution method together with a Rabinowitz-type global
bifurcation theory, we establish the existence of positive solutions for
Kirchhoff-type problems when the nonlinearity is singular or sign-changing.
Moreover, we obtain some necessary and sufficient conditions for the ex-
istence of positive solutions for the problem when N = 1.

1. Introduction

In this paper, we consider the following nonlocal elliptic problem
−a
(∫

Ω

|∇u(x)|2dx
)

∆u(x) = f(x, u), x in Ω,

u > 0, x in Ω,
u = 0, x on ∂Ω,

(1.1)

where Ω ⊆ RN is a smooth bounded domain. This problem is related to
the stationary analogue of the Kirchhoff equation (a(t) = a1 + a2t, a1 > 0,
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a2 > 0) which was proposed by Kirchhoff as a generalization of the well-known
d’Alembert’s equation

ρ
∂2u

∂t2
−
(P0

h
+

E

2L

∫ L

0

|∂u
∂x
|2dx

)∂2u

∂x2
= g(x, u)

for free vibrations of elastic strings; see [21]. Kirchhoff’s model takes into
account the changes in length of the string produced by transverse vibrations,
in which L is the length of the string, h is the area of the cross section,
E is the Young modulus of the material, ρ is the mass density and P0 is
the initial tension. Problem (1.1) received some attention after the paper by
Lions [29], where an abstract framework to the problem was proposed and
variational methods were applied to establish existence and multiplicity of
positive solutions for problem (1.1) when f is continuous at u = 0; see also
[3-4, 6, 12, 18-20, 24, 27, 32-33, 35] and the references therein. There are only
a few results on the existence of positive solutions to problem (1.1) when f is
singular at u = 0. When f includes functions like 1/u−µ, µ ∈ (0, 1), Liu and
Sun in [30], Lei el. in [23] and Liao el. in [28] considered multiplicity (using
variational methods) of positive solutions for problem (1.1).

The sub-supersolution method is an important tool to establish the exis-
tence of solutions to an elliptic problem like (1.1); see [7, 9, 17, 31]. However
the presence of a nonlocal term leads to the some additional conditions: (1)
the nonlinearity f is nondecreasing; or (2) a(t) is bounded. Two recent papers
[14-16] pointed out some errors in the literatures and the authors obtained
some theorems using a sub-supersolution method.

There are two main objectives in this paper. First from the ideas in [2,
6-7, 9, 11, 14-15, 17, 25-26, 31, 37-38], we present some new definitions of
sub-supersolutions to problem (1.1) and we obtain the existence of classical
solutions to problem (1.1) between subsolution and supersolution. Second we
present conditions for the existence of positive solutions to problem (1.1) when
f is singular at u = 0 or f is sign-changing.

The paper is organized as follows. In Section 2, we prove some new results
on the existence of classical solutions between subsolution and supersolution
using the maximum principle and in Section 3, existence and uniqueness re-
sults of positive solution for (3.1) are presented. In Section 4, we discuss the
existence of positive solutions to problems (4.1) and (4.2) and the asymptotic
behavior of positive solutions for large λ. In Section 5, we present necessary
and sufficient conditions on the existence of positive solutions for problems
(5.1) when N = 1.
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2. Sub-supersolution method

Now we consider a general problem−a
(∫

Ω

|∇u(x)|2dx
)

∆u(x) = F (x, u(x)), x in Ω,

u = 0, x on ∂Ω,
(2.1)

where Ω ⊆ RN is a smooth bounded domain, and a : [0,+∞)→ (0,+∞) is a
continuous and nondecreasing function with

inf
t∈[0,+∞)

a(t) ≥ a(0)
def.
= a0 > 0.

Let C1(Ω) = {u : Ω → R|u(x) is continuously differentiable on Ω} with
norm ‖u‖ = max{maxx∈Ω |u(x)|, maxx∈Ω |∇u(x)|}. It is easy to see that

C1(Ω) is a Banach space.
Definition 2.1. The pair functions α and β with α, β ∈ C1(Ω) ∩ C2(Ω)

are subsolution and supersolution of (2.1) if α(x) ≤ u(x) ≤ β(x) for x ∈ Ω,
and −∆α(x) ≤ 1

b0
F (x, α(x)), x in Ω,

α|∂Ω ≤ 0,−∆β(x) ≥ 1

a0
F (x, β(x)), x in Ω,

β|∂Ω ≥ 0,

where a0 = a(0) and b0 = a(
∫

Ω
H2(x)dx), E ∈ Lp(Ω)(p > N); here

E(x) = sup
u∈[α(x),β(x)]

|F (x, u)|, x ∈ Ω,

H(x) =
1

a0

∫
Ω

|Gx(x, y)|E(y)dy, x ∈ Ω,

and G(x, y) is the Green’s function for −∆u(x) = h and u|∂Ω = 0.
From the ideas in [11], we give the following definitions.
Definition 2.2. Let u, v ∈ C1(Ω). We say that u ≺ v if u(x) < v(x) on

Ω and u(x) ≤ v(x) for all x ∈ ∂Ω and if u(x) = v(x) for some x ∈ Γ ⊆ ∂Ω,
∂u
∂n |x∈∂Γ >

∂v
∂n |x∈Γ.

Remark 2.1. S = {u ∈ C1(Ω) : α ≺ u ≺ β} is an open set if α ≺ β.
We say that an open set S ⊆ C1(Ω) is admissible for the degree (for the

compact map A) if the compact operator A has no fixed point on its boundary
∂S and the set of fixed points of A in S is bounded.
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In that case, we define

deg(I −A,S, θ) = deg(I −A,S ∩B(0, R), θ)

where R is such that every fixed point u of A in S satisfies ‖u‖ < R. From
the excision property this degree does not depend on R.

To be able to associate a degree to a pair of subsolution and supersolution
we have to reinforce the definition.

Definition 2.3. A subsolution α of (2.1) is said to be strict if every
solution u of (2.1) such that α ≤ u satisfies α ≺ u.

In the same way a strict supersolution β of (2.1) is a supersolution such
that every solution u of (2.1) such that u ≤ β satisfies u ≺ β.

Definition 2.4. The function F : Ω × R is an Lp-Caratheodory function
if

1. F (·, u) is measurable for all u ∈ Ω;
2. F (x, ·) is continuous for a.e. x ∈ Ω;
3. for all bounded set B ⊆ RN , there exists hB ∈ Lp(Ω) such that for a.e.

x ∈ Ω and all u ∈ B,
|F (x, u)| ≤ hB(x).

Remark 2.2. The idea for the above definitions came from [2, 11].
If F is an Lp-Caratheodory function and (α, β) are subsolution and super-

solution to (2.1) as in Definition 2.1, then the operator

N : C1(Ω)→ Lp(Ω) : u 7→ F (x, u(x))

a
(∫

Ω
||∇u(x)| − (|∇u(x)| −H(x))+|2dx

)
is well-defined, continuous, and maps bounded sets to bounded sets; here
(|∇u(x)|−H(x))+ = max{0, |∇u(x)|−H(x)}. Then the operator A : C1(Ω)→
C1(Ω)

Au = (−∆)−1(Nu)

is completely continuous.
Theorem 2.1. Let Ω ⊆ RN (N ≥ 1) be a smooth bounded domain.

Suppose that F : Ω × R → R is a continuous function. Assume α and β are
the subsolution and supersolution of (2.1) respectively. If

F (x, u) ≥ 0, x ∈ Ω, α(x) ≤ u ≤ β(x), (2.2)

then problem (2.1) has at least one solution u such that, for all x ∈ Ω,

α(x) ≤ u(x) ≤ β(x).
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If moreover α(x) and β(x) are strict and satisfy α ≺ β, then

S = {u ∈ C1(Ω)|α ≺ β}.

is admissible for the degree (for the map A) and

deg(I −A,S, θ) = 1.

Proof. Let

F (x, u) =

F (x, α(x)), if u < α(x);
F (x, u), if α(x) ≤ u ≤ β(x);
F (x, β(x)), if u > β(x).

We will study the modified problem{
−∆u = F (x,u)

a(
∫
Ω
||∇u(x)|−(|∇u(x)|−H(x))+|2dx)

, x ∈ Ω,

u|∂Ω = 0.
(2.3)

Step 1. Every solution u of (2.3) satisfies α(x) ≤ u(x) ≤ β(x), x ∈ Ω.
We prove that α(x) ≤ u(x) on Ω. Obviously, ||∇u(x)| − (|∇u(x)| −

H(x))+|2 ≤ H(x)2, which together with the monotonicity of a(t) implies that

a0 ≤ a
(∫

Ω

||∇u(x)| − (|∇u(x)| −H(x))+|2dx
)
≤ a

(∫
Ω

H(x)2dx

)
.

By contradiction, assume that maxx∈Ω(α(x)− u(x)) = M > 0. Note that

α(x) − u(x) 6≡ M on Ω (α(x) − u(x) ≤ 0, x ∈ ∂Ω). If x0 ∈ Ω is such that
α(x0)−u(x0) = M , choose A0 = {x ∈ Ω|α(x)−u(x) > 0} a connected domain
with x0 ∈ A0. It follows from (2.2) that

−∆(α(x)− u(x))

≤ 1

b0
F (x, α(x))− 1

a(
∫

Ω
||∇u(x)| − (|∇u(x)| −H(x))+|2dx)

F (x, u(x))

≤ 1

b0
(F (x, α(x))− F (x, α(x)))

≤ 0, x ∈ A0

and
α(x)− u(x) = 0, x ∈ ∂A0.

By the maximum principle, one has α(x)− u(x) ≤ 0 for x ∈ A0. This contra-
dicts α(x0)− u(x0) > 0.

Now we prove that β(x) ≥ u(x) on Ω. By contradiction, assume that
minx∈Ω(β(x)− u(x)) = −m < 0. Note that β(x)− u(x) 6≡ −m on Ω (β(x)−
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u(x) ≥ 0, x ∈ ∂Ω). If x0 ∈ Ω is such that β(x0) − u(x0) = −m, choose
B0 = {x ∈ Ω|β(x) − u(x) < 0} a connected domain with x0 ∈ B0. It follows
from (2.2) that

−∆(β(x)− u(x))

≥ 1

a0
F (x, β(x))− 1

a(
∫

Ω
||∇u(x)| − (|∇u(x)| −H(x))+|2dx))

F (x, u(x))

≥ 1

a0
(F (x, β(x))− F (x, β(x)))

≥ 0, x ∈ B0

and
β(x)− u(x) = 0, x ∈ ∂B0.

By the maximum principle, one has β(x)− u(x) ≥ 0 for x ∈ B0. This contra-
dicts β(x0)− u(x0) = −m < 0.

Consequently,
α(x) ≤ u(x) ≤ β(x), x ∈ Ω.

Step 2. Every solution of (2.3) is a solution of (2.1). Every solution of (2.3)
satisfies α(x) ≤ u(x) ≤ β(x), x ∈ Ω. From the definition of K and F , we have

F (x, u(x)) = F (x, u(x)), |∇u(x)| ≤ 1

a0

∫
Ω

|Gx(x, y)|E(y)dy = H(x), x ∈ Ω

and so

a

(∫
Ω

||∇u(x)| − (|∇u(x)| −H(x))+|2dx
)

= a

(∫
Ω

|∇u(x)|2dx
)
.

Thus, u is a solution of (2.1).
Step 3. The problem (2.1) has at least one solution.
Since E ∈ Lp, there is an R > 0 such that ‖E‖p ≤ R. From (2.2) and the

construction of F , we have, for every u ∈ C1(Ω),∣∣∣∣∣ F (x, u(x))

a
(∫

Ω
||∇u(x)| − (|∇u(x)| −H(x))+|2dx

) ∣∣∣∣∣ ≤ 1

a0
hR(x),∀x ∈ Ω.

Define operators

N : C1(Ω)→ Lp(Ω) : u 7→ F (x, u(x))

a
(∫

Ω
||∇u(x)| − (|∇u(x)| −H(x))+|2dx

)
and A : C1(Ω)→ C1(Ω) by

Au = (−∆)−1(Nu).
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Note A is completely continuous and there exists a K0 > 0 big enough such
that for all v ∈ A(C1(Ω)), we have

‖v‖ ≤ K0.

Then there exists K0 > max{‖α‖, ‖β‖,K0} big enough such that

A(BC1(0,K0)) ⊆ BC1(0,K0),

and by a classical result in degree theory

deg(I −A,BC1(0,K), θ) = 1.

Therefore there exists a u ∈ BC1(0,K0) such that

u = Au.

Now Step 1 and Step 2 yield

α(x) ≤ u(x) ≤ β(x)

and

a

(∫
Ω

||∇u(x)| − (|∇u(x)| −H(x))+|2dx
)

= a

(∫
Ω

|∇u(x)|2dx
)
, x ∈ Ω

and so u(x) is a solution to (2.1).
Step 4. If α(x) and β(x) are strict subsolution and supersolution, we show

deg(I −A,S, θ) = 1.

Since α(x) and β(x) are strict subsolution and supersolution, A has no
fixed point on ∂S and so deg(I −A,S, θ) is well defined. Since A has no fixed
point in BC1(0,K)− S, we have

deg(I −A,S, θ) = deg(I −A,BC1(0,K), θ) = 1.

The proof is complete. �
Now we consider another special problem−a
(∫

Ω

|∇u(x)|2dx
)

∆u(x) = F (x, u(x)) = F1(x, u(x)) + F2(x, u(x)), x in Ω,

u = 0, x on ∂Ω.
(2.4)
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Definition 2.5. The pair functions α and β with α, β ∈ C1(Ω) ∩ C2(Ω)
are subsolution and supersolution of (2.4) if α(x) ≤ u ≤ β(x) for x ∈ Ω, and−∆α(x) ≤ 1

b0
F1(x, α(x)) +

1

a0
F2(x, α(x)), x in Ω,

α|∂Ω ≤ 0,−∆β(x) ≥ 1

a0
F1(x, β(x)) +

1

b0
F2(x, β(x)), x in Ω,

β|∂Ω ≥ 0,

where a0 = a(0) and b0 = a(
∫

Ω
H(x)2dx), E ∈ Lp(Ω)(p > N); here

E(x) = sup
u∈[α(x),β(x)]

|F (x, u)|, x ∈ Ω,

H(x) =
1

a0

∫
Ω

|Gx(x, y)|E(y)dy, x ∈ Ω

and G(x, y) is the Green’s function for −∆u(x) = h and u|∂Ω = 0.
Theorem 2.2. Let Ω ⊆ RN (N ≥ 1) be a smooth bounded domain.

Suppose that F : Ω × R → R is a continuous function. Assume α and β are
the subsolution and supersolution of (2.4) respectively. If

F1(x, u) ≥ 0, F2(x, u) ≤ 0, ∀x ∈ Ω, α(x) ≤ u ≤ β(x), (2.5)

then problem (2.4) has at least one solution u such that, for all x ∈ Ω,

α(x) ≤ u(x) ≤ β(x).

If moreover α(x) and β(x) are strict and satisfy α ≺ β, then

S = {u ∈ C1(Ω)|α ≺ β}.

is admissible for the degree (for the map A) and

deg(I −A,S, θ) = 1.

Proof. Let

F 1(x, u) =

F1(x, α(x)), if u < α(x);
F1(x, u), if α(x) ≤ u ≤ β(x);
F1(x, β(x)), if u > β(x)

F 2(x, u) =

F2(x, α(x)), if u < α(x);
F2(x, u), if α(x) ≤ u ≤ β(x);
F2(x, β(x)), if u > β(x)
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and
F (x, u) = F 1(x, u) + F 2(x, u), ∀(x, u) ∈ Ω× R.

We will study the modified problem{
−∆u = F (x,u)

a(
∫
Ω
||∇u(x)|−(|∇u(x)|−H(x))+|)2dx)

, x ∈ Ω,

u|∂Ω = 0.
(2.6)

Step 1. Every solution u of (2.6) satisfies α(x) ≤ u(x) ≤ β(x), x ∈ Ω.
We prove that α(x) ≤ u(x) on Ω. Obviously, ||∇u(x)| − (|∇u(x)| −

H(x))+|2 ≤ H(x)2, which together with the monotonicity of a(t) implies that

a0 ≤ a
(∫

Ω

||∇u(x)| − (|∇u(x)| −H(x))+|)2dx

)
≤ a

(∫
Ω

H(x)2dx

)
.

By contradiction, assume that maxx∈Ω(α(x)− u(x)) = M > 0. Note that

α(x) − u(x) 6≡ M on Ω (α(x) − u(x) ≤ 0, x ∈ ∂Ω). If x0 ∈ Ω is such that
α(x0)−u(x0) = M , choose A0 = {x ∈ Ω|α(x)−u(x) > 0} a connected domain
with x0 ∈ A0. It follows from (2.5) that

−∆(α(x)− u(x))

≤ 1

b0
F1(x, α(x)) +

1

a0
F2(x, α(x))

− 1

a
(∫

Ω
||∇u(x)| − (|∇u(x)| −H(x))+|2dx

)F (x, u(x))

=
1

b0
F1(x, α(x))− 1

a
(∫

Ω
||∇u(x)| − (|∇u(x)| −H(x))+|2dx

)F 1(x, u(x))

+
1

a0
F2(x, α(x))− 1

a
(∫

Ω
||∇u(x)| − (|∇u(x)| −H(x))+|2dx

)F 2(x, u(x))

≤ 1

b0
[F1(x, α(x))− F1(x, α(x))] +

1

a0
[F2(x, α(x))− F2(x, α(x))]

= 0, x ∈ A0

and
α(x)− u(x) = 0, x ∈ ∂A0.

From the maximum principle, one has α(x) − u(x) ≤ 0 for x ∈ A0. This
contradicts α(x0)− u(x0) > 0.

Now we prove that β(x) ≥ u(x) on Ω. By contradiction, assume that
minx∈Ω(β(x)− u(x)) = −m < 0. Note that β(x)− u(x) 6≡ −m on Ω (β(x)−
u(x) ≥ 0, x ∈ ∂Ω). If x0 ∈ Ω is such that β(x0) − u(x0) = −m, choose
B0 = {x ∈ Ω|β(x) − u(x) < 0} a connected domain with x0 ∈ B0. It follows
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from (2.5) that

−∆(β(x)− u(x))

≥ 1

a0
F1(x, β(x)) +

1

b0
F2(x, β(x))

− 1

a
(∫

Ω
||∇u(x)| − (|∇u(x)| −H(x))+|2dx

)F (x, u(x))

=
1

a0
F1(x, β(x))− 1

a
(∫

Ω
||∇u(x)| − (|∇u(x)| −H(x))+|2dx

)F 1(x, u(x))

+
1

b0
F2(x, β(x))− 1

a
(∫

Ω
||∇u(x)| − (|∇u(x)| −H(x))+|2dx

)F 2(x, u(x))

≥ 1

b0
[F1(x, β(x))− F1(x, β(x))] +

1

a0
[F2(x, β(x))− F2(x, β(x))]

= 0, x ∈ B0

and
β(x)− u(x) = 0, x ∈ ∂B0.

From the maximum principle, one has β(x) − u(x) ≥ 0 for x ∈ B0. This
contradicts β(x0)− u(x0) = −m < 0.

Consequently,
α(x) ≤ u(x) ≤ β(x), x ∈ Ω.

The proof of Step 2-Step 4 are the same as that in the proof of Theorem
2.1 so we omit them.

The proof is complete. �
Remark 2.3. The difference between the above two theorems and those in

[6, 8, 13-14, 16, 28] are:
(1) we remove the monotonicity of f on u in [6, 9, 14-15];
(2) we define only one subsolution instead of a sequence of subsolutions

{uδ} with ‖uδ‖ → 0 as δ → 0 as in [14-15];
(3) we obtain the existence of a classical solution instead of a weak solution

in [6, 9, 14-15, 17, 31];
(4) we give information on how to compute the topological degree.
Remark 2.4. It is also natural to give the following definition of sub-

supersolutions to (2.1).
Definition 2.1′. The pair functions α and β with α, β ∈ C1(Ω) ∩ C2(Ω)

are subsolution and supersolution of (2.1) if α(x) ≤ u(x) ≤ β(x) for x ∈ Ω,
and −∆α(x) ≤ 1

a(
∫

Ω
|∇α(x)|2dx)

F (x, α(x)), x in Ω,

α|∂Ω ≤ 0,
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−∆β(x) ≥ 1

a(
∫

Ω
|∇β(x)|2dx)

F (x, β(x)), x in Ω,

β|∂Ω ≥ 0.

We give an example which illustrates that perhaps there is no solution between
the subsolution and supersolution if we use Definition 2.1′.

Example 2.1. We consider the following nonlocal problem{
−u′′(t) = 1

a(
∫
Ω
|u′(t)|2dt) · 1, t ∈ (0, 1),

u(0) = u(1) = 0,
(2.7)

where
a(t) = t, t ∈ [0,+∞).

Obviously, the following problem{
−u′′(t) = 1, t ∈ (0, 1),
u(0) = u(1) = 0

has a unique positive solution e(t) = 1
2 t(1− t), t ∈ [0, 1].

Now we show (2.7) has a unique positive solution.
Let

G(s) = sa(
s2

12
)− 1, t ∈ [0,+∞).

It easy to see that G(s) is increasing on [0,+∞) with

G(0) = −1, lim
s→+∞

G(s) = +∞,

which guarantees that there exists a unique s0 > 0 such that G(s0) = 0, i.e.,

s0 =
1

a(
s20
12 )

.

Let u(t) = s0e(t), t ∈ (0, 1). Then

−u′′(t) = −(s0e(t))
′′

= s0

= 1

a(
s2
0

12 )

= 1
a(

∫ 1
0
|u′(t)|2dt) · 1, t ∈ (0, 1),

u(0) = u(1) = 0,

i.e., (2.7) has at least one positive solution u(t) = s0e(t).



POSITIVE SOLUTIONS FOR KIRCHHOFF-TYPE PROBLEMS 16

Now let u0(t) be a positive solution of (2.7). Let λ0 = 1
a(

∫ 1
0
|u′

0(t)|2dt) . Then{
−u′′0(t) = λ0, t ∈ (0, 1),
u0(0) = u0(1) = 0,

which implies u0(t) = λ0e(t), t ∈ [0, 1] and

λ0 =
1

a(
∫ 1

0
|u′0(t)|2dt)

=
1

a(
∫ 1

0
|λ0e′(t)|2dt)

=
1

a(λ2
0

1
12 )

.

Since G(s) = 0 has a unique positive solution s0, one has λ0 = s0.
Consequently, (2.7) has a unique positive solution.
Next we construct sub-supersolutions which satisfy Definition 2.1′. Let

u(t) = 2s0e(t). The monotonicity of G guarantees that

2s0 >
1

a( (2s0)2

12 )
=

1

a(
∫ 1

0
|u′(t)|2dt)

.

Then 
−u′′(t) = −(2s0e(t))

′′

= 2s0

> 1
a(

∫ 1
0
|u′

0(t)|2dt) · 1, t ∈ (0, 1),

u(0) = u(1) = 0,

i.e., u is supersolution to (2.7) satisfying Definition 2.1′.
For 0 < ε < 1

4 , let

a = − s0

3ε
, b = 2s0,

c = 2s0e
′(ε)− 3aε2 − 2bε = s0(1− 2ε)− 3aε2 − 2bε

and
d = 2s0e(ε)− (aε3 + bε2 + cε).

Let
f(t) = at3 + bt2 + ct+ d, t ∈ [ε, 2ε].

It is easy to see that from

f ′′′(t) = 6a < 0, t ∈ [ε, 2ε]

and
f ′′(ε) = 2s0, f ′′(2ε) = 0,

one has
0 < f ′′(t) < 2s0, |f ′(t)| ≤ |f ′(ε)|+ 2s0ε, t ∈ [ε, 2ε]. (2.8)
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Let
f1(t) = f(1− t), t ∈ [1− 2ε, 1− ε].

Clearly

0 < f ′′1 (t) = f ′′(1− t) < 2s0, |f ′(t)| ≤ |f ′(ε)|+2s0ε, t ∈ [1−2ε, 1−ε]. (2.9)

For 0 < ε < 1
4 , let

uε(t) =


2s0e(t), t ∈ [0, ε],
f(t), t ∈ [ε, 2ε],
f(ε), t ∈ [2ε, 1− 2ε],
f1(t), t ∈ [1− 2ε, 1− ε],
2s0e(t), t ∈ [1− ε, 1].

Now (2.8) and (2.9) guarantee that
−u′′ε (t) ≤ 2s0,∫ 1

0

|u′ε(t)|2dt =

∫ 2ε

0

|u′ε(t)|2dt+

∫ 1

1−2ε

|u′ε(t)|2dt→ 0, as ε→ 0.
(2.10)

Choose ε0 > 0 small enough such that

2s0a(

∫ 1

0

|u′ε0(t)|2dt) < 1,

which together with (2.10) implies that
−u′′ε0(t) ≤ 2s0

< 1
a(

∫ 1
0
|u′

ε0
(t)|2dt) · 1, t ∈ (0, 1),

uε0(0) = uε0(1) = 0,

i.e., uε0 is sub-solution to (2.7) satisfying Definition 2.1′.
Finally, we show there is no solution between u and uε0 .
In fact, suppose that u0 is a positive solution to (2.7) between u and uε0 .

It is easy to see that

u0(t) = 2s0e(t) 6= s0e(t), t ∈ [0, ε],

which implies that u0 6= s0e. However we know that (2.7) has a unique positive
solution s0e(t). This is a contradiction.
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3. The positive solutions when f(x, u) = K(x)u−p

In this section, we consider the singular problems
−a
(∫

Ω

|∇u(x)|2dx
)

∆u(x) = K(x)u(x)−p, x in Ω,

u > 0, x in Ω,
u = 0, x on ∂Ω,

(3.1)

where Ω ⊆ RN is a smooth bounded domain. Let d(x) = min{d(x, ∂Ω)|x ∈ Ω}.
Let e ∈ C2,α(Ω) be defined by

−∆u = 1, x ∈ Ω;u(x) = 0, x ∈ ∂Ω (3.2)

with 0 ≤ e(x) ≤ 1 for all x ∈ Ω and let Φ1 is the eigenfunction with 0 ≤
Φ1(x) ≤ 1 for x ∈ Ω corresponding to the principle eigenvalue λ1 of{

−∆u = λu, x ∈ Ω,
u|∂Ω = 0.

(3.3)

Note that λ1 > 0, Φ1(x) > 0 for x ∈ Ω and

|∇Φ1(x)| > 0, ∀x ∈ ∂Ω. (3.4)

From [39], the following results is true

Φ1

e
∈ C(Ω). (3.5)

Now we note the following conditions:
(H1) K ∈ C(Ω, R) with K(x) > 0 for all x ∈ Ω and

there exists a 1 > τ ≥ 0 such that K[d(x)]τ−p ∈ L∞(Ω), (3.6)

(H2)

lim
t→+∞

t

a(t)2(p−1)
= +∞. (3.7)

Theorem 3.1. If (H1) − (H2) hold, (3.1) has a unique positive solution
u ∈ C2+α(Ω) ∩ C(Ω) with u(x) > 0 for all x ∈ Ω. If p > 1, then there exist

positive constants b1 and b2 such that b1Φ1(x)
2

1+p ≤ u(x) ≤ b2Φ1(x)
2

1+p .
Proof. The proof is based on Theorem 2.1 and we construct the pairs of

sub-supersolutions. The construction of supersolutions to (1.1) when p > 1 is
different from that when 0 < p ≤ 1.



POSITIVE SOLUTIONS FOR KIRCHHOFF-TYPE PROBLEMS 19

(1) Assume first that p > 1. In this case, let t = 2/(1 + p) and let Ψ(x) =
bΦ1(x)t where b > 0 is a constant. From (3.3), we deduce that

∆Ψ(x) + q(x, b)Ψ−p(x) = 0, x ∈ Ω, (3.8)

where q(x, b) = b1+p[t(1 − t)|∇Φ1(x)|2 + tλ1Φ1(x)2]. Since 0 < t < 1, from
(3.4), choose a positive constant b such that

1

a0
K(x) < q(x, b), ∀x ∈ Ω.

Let u(x) = bΦ1(x)t. Hence,

∆u(x) +
1

a0
K(x)u(x)−p =

[
1

a0
K(x)− q(x, b)

]
u−p(x) < 0, x ∈ Ω. (3.9)

(2) Assume that 0 < p ≤ 1. Let s be chosen to satisfy the two inequalities

0 < s < 1, s(1 + p) < 2. (3.10)

Let u(x) = cΦ1(x)s, where c is a large positive constant to be chosen below.
For x ∈ Ω, we have

∆u(x) +
1

a0
K(x)u(x)−p

= −Φ1(x)s−2
[
|∇Φ1(x)|2cs(1− s)− 1

a0
K(x)c−pΦ1(x)2−(1+p)s

]
− cλ1sΦ1(x)−p.

Since the inequalities (3.10) hold, we can choose c > 0 so large that

∆u(x) +
1

a0
K(x)u(x) p = −Φ1(x)s−2

[
|∇Φ1(x)|2cs(1− s)

− 1

a0
K(x)c−pΦ1(x)2−(1+p)s]− cλ1sΦ1(x)−p

< 0, x ∈ Ω.
(3.11)

Choose d = max{b, c} and define

u∗(x) =

{
dΦt1(x), x ∈ Ω if p > 1;
dΦs1(x), x ∈ Ω if 0 < p ≤ 1.

From (3.11) and (3.9), we have

∆u∗(x) +
1

a0
K(x)u∗(x)−p < 0, ∀x ∈ Ω.
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It follows that for each n ∈ N

∆u∗(x) +
1

a0
K(x)

(
u∗(x) +

1

n

)−p
< ∆u∗(x) +

1

a0
K(x)u∗(x)−p < 0, ∀x ∈ Ω.

(3.12)
Let u∗(x) = 0, x ∈ Ω and let

En(x) = K(x)(
1

n
)−p, Hn(x) =

1

a0

∫
Ω

|Gx(x, y)|En(y)dy, x ∈ Ω

and

bn = a(

∫
Ω

H2
n(x)dx).

From the definitions of u∗ and u∗, for n ∈ N = {1, 2, · · · }, from (3.12), we
have for each n ∈ N∆u∗(x) +

1

a0

(
u∗(x) +

1

n

)−p
< 0, x ∈ Ω,

u∗|∂Ω = 0

and ∆u∗(x) +
1

bn

(
u∗(x) +

1

n

)−p
> 0, x ∈ Ω,

u∗|∂Ω = 0.

Now Theorem 2.1 guarantees that for n ∈ N, there exist {un} with u∗(x) ≤
un(x) ≤ u∗(x) for all x ∈ Ω such that∆un(x) +

1

a(
∫

Ω
|∇un(x)|2dx)

K(x)

(
un(x) +

1

n

)−p
= 0, x ∈ Ω,

un|∂Ω = 0.

(3.13)

Choose an L > 0 such that

0 ≤ un(x) +
1

n
≤ L, ∀x ∈ Ω.

It follows that

un(x) =
1

a(‖un‖2)

∫
Ω

G(x, y)K(y)(un(y) +
1

n
)−pdy

≥ 1

a(‖un‖2)

∫
Ω

G(x, y)K(y)dyL−p.
(3.14)

Now we show that {‖un‖} is bounded.
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From the definition of Φ1, Theorem 2.2 in [16] implies that there exists a
θ1 > 0 and θ2 > 0 such that

θ1d(x) ≤
∫

Ω

G(x, z)K(z)dz ≤ θ2d(x), x ∈ Ω,

which together with (3.14) yields that

∂u

∂xi
(x) =

1

a(‖un‖2)

∫
Ω

Gxi
(x, y)K(y)(un(y) +

1

n
)−pdy

≤ 1

a(‖un‖2)

∫
Ω

|Gxi
(x, y)|K(y)(

1

a(‖un‖2)

∫
Ω

G(y, z)K(z)dzL−p)−pdy

= Lp
2

a(‖un‖2)p−1

∫
Ω

|Gxi
(x, y)|K(y)θ−p1 d(y)−pdy, i = 1, 2, · · · , N.

Then

‖u‖2 ≤ L2p2

a(‖un‖2)2(p−1)

∫
Ω

2∑
i=1

(

∫
Ω

Gxi(x, y)K(y)θ−p1 d(y)−pdy)2)dx,

i.e.,

‖u‖2

a(‖u‖2)2(p−1)
≤ L2p2

∫
Ω

2∑
i=1

(

∫
Ω

Gxi
(x, y)K(y)θ−p1 d(y)−pdy)2)dx,

which together with (3.7) implies that there exists a α0 > 0 such

‖un‖ ≤ α0, n = 1, 2, · · · .

From (3.14) and the monotonicity of a(t), one has

un(x) ≥ 1

a(α0)

∫
Ω

G(x, y)K(y)dyL−p
def.
= v0(x), n = 1, 2, · · · .

Let Ωk = {x ∈ Ω|v0(x) > 1
k}, k ∈ N. From (3.13), we have

|∆un(x)| ≤ 1

a0
K(x)v0(x)−p ≤ 1

a0
max
x∈Ω

K(x)( min
x∈Ωk

v0(x))−p, x ∈ Ωk,

which implies that

{un(x)} is equicontinous and uniformly bounded on Ωk, k ∈ N.

and

{∇un(x)} is equicontinous and uniformly bounded on Ωk, k ∈ N.
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Therefore, {un(x)} has a uniformly convergent subsequence {u(k)
n (x)} on ev-

ery Ωk and {∇u(k)
n (x)} converges uniformly on Ωk also. From the diagonal

method, we can choose a subsequence {u(k)
n,k(x)} of {un(x)} which converges to

a u0 on every Ωk uniformly and {∇u(k)
n,k(x)} converges uniformly on Ωk also.

Without loss of generality, assume that

lim
n→+∞

un(x) = u0(x), uniformly on Ωk, k ∈ N

and
lim

n→+∞
∇un(x) = ∇u0(x), uniformly on Ωk, k ∈ N.

Obviously,
v0(x) ≤ u0(x) ≤ u∗(x), ∀x ∈ Ω,

which implies
u0(x) = 0, x ∈ ∂Ω.

Moreover, from

|∇un(x)| ≤ 1

a0

∫
Ω

|Gx(x, y)|K(y)[v0(y)−p]dy, x ∈ Ω,

the Dominated Convergence Theorem implies that

lim
n→+∞

∫
Ω

|∇un(x)|2dx =

∫
Ω

|∇u0(x)|2dx,

which together with the continuity of a(t) yields

lim
n→+∞

a

(∫
Ω

|∇un(x)|2dx
)

= a

(∫
Ω

|∇u0(x)|2dx
)
.

Letting n→ +∞ in (3.13), we have{
∆u0(x) + 1

a(
∫
Ω
|∇u0(x)|2dx)

K(x)u0(x)−p > 0, x ∈ Ω,

u0|∂Ω = 0.

From Theorem 1 in [22], if p > 1, there exist a b1 > 0 and b2 > 0 such that

b1Φ1(x)
2

1+p ≤ u0 ≤ b2Φ1(x)
2

1+p , ∀x ∈ Ω.

We consider the uniqueness of positive solution of (3.1). Assume that u1

and u2 are two positive solutions. Let ci = (a(
∫

Ω
|∇ui(x)|2dx))1/(p+1) and

vi = ciui, i = 1, 2. Then vi satisfies{
−∆vi = K(x)v−pi ,
vi|∂Ω = 0.



POSITIVE SOLUTIONS FOR KIRCHHOFF-TYPE PROBLEMS 23

It is easy to see that Theorem 3.4 in [16] guarantees that{
−∆v = K(x)v−p,
v|∂Ω = 0

has a unique positive solution, which implies v1 = v2, i.e.(
a

(∫
Ω

|∇u1(x)|2dx
))1/(p+1)

u1(x)

=

(
a

(∫
Ω

|∇u2(x)|2dx
))1/(p+1)

u2(x),∀x ∈ Ω,

(3.15)

and so(
a

(∫
Ω

|∇u1(x)|2dx
))1/(p+1)

∂u1(x)

∂xi

=

(
a

(∫
Ω

|∇u2(x)|2dx
))1/(p+1)

∂u2(x)

∂xi
,∀x ∈ Ω, i = 1, 2, · · · , N.

Hence, (
a

(∫
Ω

|∇u1(x)|2dx
))2/(p+1)

|∇u1(x)|2

=

(
a

(∫
Ω

|∇u2(x)|2dx
))2/(p+1)

|∇u2(x)|2, ∀x ∈ Ω.

Integration in Ω yields that(
a

(∫
Ω

|∇u1(x)|2dx
))2/(p+1) ∫

Ω

|∇u1(x)|2dx

=

(
a

(∫
Ω

|∇u2(x)|2dx
))2/(p+1) ∫

Ω

|∇u2(x)|2dx.

The monotonicity of a implies that (a(t))2/(p+1)t is increasing on [0,+∞),
which guarantees that∫

Ω

|∇u1(x)|2dx =

∫
Ω

|∇u2(x)|2dx,

and so(
a

(∫
Ω

|∇u1(x)|2dx
))1/(p+1)

=

(
a

(∫
Ω

|∇u2(x)|2dx
))1/(p+1)

,
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which together with (3.15) yields that u1(x) = u2(x). The proof is complete.
�

In fact, using an idea in [9], we get a result even if a(t) is not increasing.
Assume that v is a positive solution to the following problem{

∆u(x) +K(x)u(x)−p = 0, x ∈ Ω,
u|∂Ω = 0

(3.16)

and c0 =
∫

Ω
|∇v(x)|2dx.

Theorem 3.2. Suppose that K ∈ C(Ω) with K(x) > 0 for all x ∈ Ω.
Then (3.1) has at least one positive solution u ∈ C2+α(Ω) ∩ C(Ω) if a(t)
is continuous on [0,+∞) with a(t) ≥ a0 = a(0). Moreover, the number of
positive solutions of (3.1) is the number of positive solutions of the following
algebraic equation

tp+1a(t2c0) = 1.

Proof. From [16] and [22], problem (3.16) has a unique positive solution
v. If u is a positive solution to (3.1), we define λ = a(

∫
Ω
|∇u|2dx) and v0 =

λ1/(p+1)u. Then we have

−∆v0(x) = −λ1/(p+1)∆u(x)

= λ1/(p+1) 1

λ
K(x)u−p(x)

= λ1/(p+1) 1

λ
K(x)λp/(p+1)v−p0 (x)

= K(x)v−p0 (x), x ∈ Ω,
v0|∂Ω = 0,

i.e., v0(x) ≡ v(x), x ∈ Ω. This shows that

each positive solution u(x) of (3.1) can be denoted by tv(x), x ∈ Ω. (3.17)

Since a(t) ≥ a0 > 0, we have

lim
t→0+

tp+1a(t2c0) = 0, lim
t→+∞

tp+1a(t2c0) = +∞,

which implies that there exists a t0 > 0 such that tp+1
0 a(t20c0) = 1. Let
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u(x) = t0v(x). Then

−∆u(x) = −t0∆v(x)
= t0K(x)v−p(x)
= t0t

p
0K(x)u−p(x)

=
1

a(t20c0)
K(x)u−p(x)

=
1

a(
∫

Ω
|∇u(x)|2dx)

K(x)u−p(x), x ∈ Ω,

u|∂Ω = 0,

i.e, u(x) is a positive solution to (3.1). Moreover, (3.17) guarantees that the
number of positive solutions of (3.1) is the number of positive solutions of the
following algebraic equation

tp+1a(t2c0) = 1.

The proof is complete. �
We give an example which illustrates that the term a(t) can leads to the

existence of an infinite number of positive solutions to (3.1).
Assume that p > 1 and

∫
Ω
|∇Φt1(x)|2dx = c′0 > 0 and

a(t) =

{
3, t = 0;

2 + (t−
1+p

2 c′0
p+1

2 − 2)[sin(t
1
2 c′0
− 1

2 )]1+p, t > 0.

Obviously, a(t) is not monotone on [0,+∞). For bk = 2kπ + π
2 , we have

a(b2kc
′
0) = 2 + ((b2kc

′
0)−

1+p
2 c′0

p+1
2 − 2)[sin((b2kc

′
0)

1
2 c′0
− 1

2 )]1+p = b
−(1+p)
k , k ∈ N.

Let uk(x) = bkΦ1(x)t and K(x) = [t(1 − t)|∇Φ1(x)|2 + tλ1Φ1(x)2], x ∈ Ω.
Clearly, we have{

∆uk(x) + 1
a(

∫
Ω
|∇uk(x)|2dx)

K(x)uk(x)−p = 0, x ∈ Ω,

uk|∂Ω = 0,

i.e., {
∆u(x) + 1

a(
∫
Ω
|∇u(x)|2dx)

K(x)u(x)−p = 0, x ∈ Ω,

u|∂Ω = 0,

has an infinite number of positive solutions.
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4. The positive solutions when f(x, u) is sign-changing in
u

In this section, we consider the following problems
−a
(∫

Ω

|∇u(x)|2dx
)

∆u(x) = λuq(x)− up+1, x in Ω,

u > 0, x in Ω,
u = 0, x on ∂Ω,

(4.1)λ

where Ω ⊆ RN is a smooth bounded domain, q ∈ (0, 1) and p > 0 and
−a
(∫

Ω

|∇u(x)|2dx
)

∆u(x) = λu+ f(u)− up+1, x in Ω,

u > 0, x in Ω,
u = 0, x on ∂Ω.

(4.2)λ

where Ω ⊆ RN is a smooth bounded domain, λ ≥ 0, p > 0, f(u) is a non-
negative function of C1 class for u ≥ 0 such that f(0) = 0, f ′(0) = 0 and

lim
u→+∞

f(u)/up+1 = 0. Define

g(u) =
f(u)

u
− up, u ≥ 0.

It is easy to see that g(0) = 0 and lim
u→+∞

g(u)/up = −1 and then lim
u→+∞

g(u) =

−∞. Let
g∞ = sup

u≥0
g(u).

Theorem 4.1. If q ∈ (0, 1) and p > 0, (4.1)λ has at least one positive
solutions in C2(Ω) ∩ C1(Ω) for λ > 0.

Proof. For given λ ∈ (0, 1], since q ∈ (0, 1), we can choose k2 > 0 big
enough such that

k2 >
1

a0
kq2. (4.3)

Let β(x) = k2e(x), x ∈ Ω, where e is defined in (3.2). Define

H1(x) =
1

a0

∫
Ω

|Gx(x, y)|dy(kq2 + kp+1
2 ), x ∈ Ω

and

b1 = a

(∫
Ω

H2
1 (x)dx

)
.
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Since q ∈ (0, 1) and p ∈ (0,+∞), by (3.5), we can choose ε > 0 small enough
such that

λ1 <
λ

b1
εq−1Φq−1

1 (x)− 1

a0
εpΦp1(x), ∀x ∈ Ω (4.4)

and
εΦ1(x) < k2e(x), ∀x ∈ Ω. (4.5)

Set α(x) = εΦ1(x), x ∈ Ω and

H(x) =
1

a0

∫
Ω

|Gx(x, y)| sup
u∈[α(y),β(y)]

|uq − up+1|dy, x ∈ Ω,

which together with (4.5) and the definition of H1(x) implies that

H(x) ≤ H1(x), x ∈ Ω.

Then

b0 = a

(∫
Ω

H2(x)dx

)
≤ b1, i.e.,

1

b0
≥ 1

b1
.

It follows from (4.3)-(4.5) that
−∆α(x) = ελΦ1(x)

≤ λ

b0
αq(x)− 1

a0
α(x)p+1, x in Ω,

α(x) > 0, x in Ω,
α(x) = 0, x on ∂Ω,
−∆β(x) = k2 >

1

a0
kq2

≥ λ

a0
βq(x)− 1

b0
β(x)p+1, x in Ω,

β(x) > 0, x in Ω,
β(x) = 0, x on ∂Ω

and
α(x) ≤ β(x), x ∈ Ω.

Now Theorem 2.2 guarantees that (4.1)λ has at least one positive solution
uλ with

α(x) ≤ uλ(x) ≤ β(x), x ∈ Ω, λ ∈ (0, 1].

In the following we consider C = {(λ, uλ)|λ > 0, uλ is a positive solution to
(4.1)λ}. Obviously, C is not empty. From Theorem 3.8 in [34], C is unbounded.
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Moreover, for (λ, uλ) ∈ C, one has
−∆uλ =

1

a(
∫

Ω
|∇uλ(x)|2)dx

λuqλ(x)− up+1
λ (x)

≤ λ

a0
uqλ(x), x ∈ Ω,

uλ(x) = 0, x on ∂Ω.

Since equation −∆u(x) =
λ

a0
uq(x), x ∈ Ω,

u(x) = 0, x on ∂Ω
(4.6)

has a unique positive solution vλ for all λ > 0 and uλ is a sub-solution to (4.6),
one has

uλ(x) ≤ vλ(x), x ∈ Ω,

which together with the unboundedness of C implies that (4.1)λ has at least
one positive solutions for all λ > 0. The proof is complete. �

Now we consider the problem (4.2)λ. In [13], the authors discussed the
following problems

− 1

λ
∆u(x) = mu(x)− u(x)p+1, x in Ω,

u > 0, x in Ω,
u = 0, x on ∂Ω,

(4.7)λ

where Ω ⊆ RN is a smooth bounded domain and m > 0 and obtained the
following Lemma.

Lemma 4.1. ( see [13]) For λ > λ1, (4.7)λ has a unique positive solution
θλ,m and for any compact K ⊆ Ω,

lim
λ→+∞

θλ,m(x) = m1/p

uniformly on K.
From the ideas in [5] and [13], we have the following result.
Theorem 4.2. Suppose the following conditions are satisfied:
(1)

lim
u→+∞

u

a(u2(p+1)c)
= +∞, ∀c > 0; (4.8)

(2)

lim
u→+∞

up

u2 + f(u)
> 0. (4.9)

Then
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(1) if λ < −g∞, (4.2)λ has no positive solution;
(2) there exists a λ0 > 0 such that (4.2)λ has at least one positive solution

uλ for all λ ≥ λ0; and moreover if a(t) is bounded, for any compact K ⊆ Ω,

lim
λ→+∞

uλ
λ1/p

= 1

uniformly on K.
Proof. (1) Suppose λ < −gλ and uλ is a positive solution with uλ(x0) =

maxx∈Ω uλ(x), x0 ∈ Ω. Then

0 ≤ −∆uλ(x0) =
1

a(
∫

Ω
|∇uλ(x)|2dx)

uλ(x0)[λ+ g(uλ(x0))],

which means that
λ ≥ −g(uλ(x0)) ≥ −g∞.

This is a contradiction. Then (4.2)λ has no positive solution if λ < −g∞.
(2) It is easy to see that from (4.9), p ≥ 2 and

lim
u→+∞

up

f(u)
> 0,

which implies that there is a c0 > 0 and c1 > 0 such that

f(u) ≤ c0up, ∀u ≥ c1.

Let K0 = maxu∈[0,c1] f(u) + 1. One has

f(u) ≤ K0 + c0u
p, ∀u ≥ 0

and then
λu+ f(u) ≤ λu+K0 + c0u

p, ∀u ≥ 0.

Choose K ′0 > 0 big enough such that

λp

λ2 +K0 + c0λp
≥ 1

c0 + 2
, ∀λ ≥ K ′0. (4.10)

It follows from (4.8) and (4.10) that there is a λ0 > max{1, c1,K ′0} big enough
such that

λ

a(λ2(p+1)(c0 + 3)2 1
a2

0

∫
Ω
|
∫

Ω
|Gx(x, y)|dy|2dx)

λp

λ2 +K0 + c0λp
>

1

a0
, ∀λ ≥ λ0

(4.11)
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and

λ

a(λ2(p+1)(c0 + 3)2 1
a2

0

∫
Ω
|
∫

Ω
|Gx(x, y)|dy|2dx)

> λ1, ∀λ ≥ λ0, (4.12)

where λ1 is the principle eigenvalue of problem (3.3).
For λ ≥ λ0, let β(x) ≡ λ, ∀x ∈ Ω and

b1 = a(λ2(p+1)(c0 + 3)2 1

a2
0

∫
Ω

|
∫

Ω

|Gx(x, y)|dy|2dx).

It follows from (4.12) that λ
b1

> λ1 for all λ ≥ λ0. Since p ≥ 2, choose
1 > ε > 0 small enough such that

εΦ1(x) < λ = β(x), ∀x ∈ Ω (4.13)

and

λ1 ≤
λ

b1
− 1

a0
εpΦp1(x), ∀x ∈ Ω,

which guarantees that

λ1εΦ1(x) ≤ λ

b1
εΦ1(x)− 1

a0
(εΦ1(x))p+1, ∀x ∈ Ω. (4.14)

Set α(x) = εΦ1(x), x ∈ Ω and

H(x) =
1

a0

∫
Ω

|Gx(x, y)| sup
u∈[α(y),β(y)]

|λu+ f(u)− up+1|dy, x ∈ Ω.

From the definition of λ0, one has

H(x) ≤ 1

a0

∫
Ω

|Gx(x, y)|dy(c0 + 3)λp+1, x ∈ Ω.

Then

b0 = a

(∫
Ω

H2(x)dx

)
≤ a(λ2(p+1)(c0 + 3)2 1

a2
0

∫
Ω

|
∫

Ω

|Gx(x, y)|dy|2dx) = b1,

i.e.,
1

b0
≥ 1

b1
. (4.15)

From (4.11) and (4.15), one has

λ

b0

λp

λ2 + f(λ)
≥ λ

b1

λp

λ2 +K0 + c0λp
>

1

a0
, ∀λ ≥ λ0
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i.e.

0 >
1

a0
(λ2 + f(λ))− 1

b0
λp+1, ∀λ ≥ λ0. (4.16)

It follows from (4.13)-(4.16) that

−∆α(x) = λ1εΦ1(x)

≤ λ

b1
εΦ1(x)− 1

a0
(εΦ1(x))p+1

≤ 1

b1
[λεΦ1(x) + f(εΦ1(x))]− 1

a0
(εΦ1(x))p+1

≤ 1

b0
[λα(x) + f(α(x))]− 1

a0
(α(x))p+1

α(x) > 0, x in Ω,
α(x) = 0, x on ∂Ω

and 
−∆β(x) = 0

>
1

a0
(λβ(x) + f(β(x)))− 1

b0
β(x)p+1, x in Ω,

β(x) > 0, x in Ω,
β(x) = 0, x on ∂Ω

with
α(x) ≤ β(x), x ∈ Ω.

Now Theorem 2.2 guarantees that for λ ≥ λ0, (4.2)λ has at least one
positive solution uλ with

α(x) ≤ uλ(x) ≤ β(x), x ∈ Ω, ∀λ ≥ λ0.

Suppose that uλ is a positive solution of (4.2) for λ ≥ λ0. We show that
for any ε > 0, there is a λ(ε) > λ0 such that∣∣∣∣ 1λ f(uλ)

uλ

∣∣∣∣ < ε, ∀λ > λ(ε). (4.17)

Let cλ be the largest real number such that

λ+ g(cλ) = 0.

Observe lim
λ→+∞

cλ = +∞. Moreover, λ + g(u) < 0 for all u > cλ. For any

positive solution uλ, we have uλ(x0) ≤ cλ, where uλ(x0) = maxx∈Ω uλ(x).

Hence, uλ(x) ≤ cλ for all x ∈ Ω. Since

λ1/p

cλ
=

[
1− f(cλ)

cp+1
λ

]1/p

and lim
u→+∞

f(u)

up+1
= 0,
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one has

lim
λ→+∞

λ1/p

cλ
= 1. (4.18)

For given ε > 0, as lim
u→+∞

f(u)

up+1
= 0, there is a Mε > 0 such that∣∣∣∣ f(u)

up+1

∣∣∣∣ ≤ ε

3
, ∀u ≥Mε.

From (4.18), there is a λ̂ > 0 such that

cpλ
λ
<

3

2
, ∀λ ≥ λ̂.

Let

λ(ε) = max

{
λ0 + 1, λ̂,

1

ε
sup

u∈[0,Mε]

∣∣∣∣f(u)

u

∣∣∣∣
}
.

For all λ > λ(ε) and uλ a solution, then if uλ(x) ≥Mε, one has∣∣∣∣ 1λ f(uλ(x))

uλ(x)

∣∣∣∣ =

∣∣∣∣∣
(
uλ(x)

cλ

)p
cpλ
λ

f(uλ(x))

up+1
λ (x)

∣∣∣∣∣ ≤ 3

2

ε

3
=
ε

2
; (4.19)

if uλ(x) ≤Mε, one has∣∣∣∣1ε f(uλ(x))

uλ(x)

∣∣∣∣ =

∣∣∣∣∣1ε sup
u∈[0,Mε]

f(u)

u

∣∣∣∣∣ < λ(ε) < λ

i.e.,

| 1
λ

f(uλ(x))

uλ(x)
| < ε. (4.20)

Combining (4.19) and (4.20), we get (4.17).
We suppose that a(t) is bounded, i.e., there is a M0 > 0 such that a0 ≤

a(t) ≤ M0. Let ρ(λ) = a(
∫

Ω
|∇uλ(x)|2dx). Obviously, a0 ≤ ρ(λ) ≤ M0 for

λ > λ0. Let vλ = λ−1/puλ. It is easy to see that vλ satisfies−ρ(λ)

λ
∆vλ = − 1

λ/ρ(λ)
∆vλ = vλ +

f(λ1/pvλ)

λ1+(1/p)
− vp+1

λ , x ∈ Ω,

vλ|∂Ω = 0
(4.21)

and

lim
λ→+∞

λ

ρ(λ)
= +∞.
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Now we consider {
−ρ(λ)

λ
∆v = mv − vp+1, x ∈ Ω

v|∂Ω = 0.
(4.22)

Let θλ,ρ(λ),m be a positive solution.
Now we show that (for ε > 0 small)

θλ,ρ(λ),1−ε(x) ≤ vλ(x) ≤ θλ,ρ(λ),1+ε(x). (4.23)

For fixed ε > 0 small, we first claim

θλ,ρ(λ),1−ε(x) ≤ vλ(x).

Without loss of generality assume θλ,ρ(λ),1−ε(x) 6= vλ(x), and we have

vp+1
λ (x)− θλ,ρ(λ),1−ε(x)p+1

vλ(x)− θλ,ρ(λ),1−ε(x)
= θpλ,ρ(λ),1−ε(x) +Q(x)

where Q(x) > 0 and hence

σ1

[
−ρ(λ)

λ
∆− 1 + ε+

vp+1
λ (x)− θλ,ρ(λ),1−ε(x)p+1

vλ(x)− θλ,ρ(λ),1−ε(x)

]

> σ1

[
−ρ(λ)

λ
∆− 1 + ε+ θλ,ρ(λ),1−ε(x)p

]
.

Hereafter, given an elliptic operator L, σ1(L) stands the principal eigenvalue
of L subject to the homogeneous Dirichlet boundary conditions. From the
Krein-Rutmann’s Theorem and the definition of θλ,ρ(λ),1−ε(x), we have

σ1

[
−ρ(λ)

λ
∆− 1 + ε+ θλ,ρ(λ),1−ε(x)p

]
= 0.

Thus

σ1

[
−ρ(λ)

λ
∆− 1 + ε+

vp+1
λ (x)− θλ,ρ(λ),1−ε(x)p+1

vλ(x)− θλ,ρ(λ),1−ε(x)

]
> 0.

On the other hand, after some straight forward manipulations, it follows from
(4.21) and (4.22) that[
−ρ(λ)

λ
∆− 1 + ε+

vp+1
λ (x)− θλ,ρ(λ),1−ε(x)p+1

vλ(x)− θλ,ρ(λ),1−ε(x)

]
(vλ(x)− θλ,ρ(λ),1−ε(x))

=

[
ε+

1

λ

f(λ1/pv)

λλ1/pv

]
vλ.

(4.24)



POSITIVE SOLUTIONS FOR KIRCHHOFF-TYPE PROBLEMS 34

From (4.17), we have [
ε+

1

λ

f(λ1/pv)

λλ1/pv

]
> 0

for λ > λ(ε). Applying the maximum principle to (4.24), we have

θλ,ρ(λ),1−ε(x) ≤ vλ(x), ∀x ∈ Ω, ∀λ > λ(ε),

so our claim is true.
For fixed ε > 0 small, we next claim

θλ,ρ(λ),1+ε(x) ≥ vλ(x).

Without loss of generality assume θλ,ρ(λ),1+ε(x) 6= vλ(x), and we have

vp+1
λ (x)− θλ,ρ(λ),1+ε(x)p+1

vλ(x)− θλ,ρ(λ),1+ε(x)
= θpλ,ρ(λ),1+ε(x) +Q1(x)

where Q1(x) > 0 and hence

σ1

[
−ρ(λ)

λ
∆− 1− ε+

vp+1
λ (x)− θλ,ρ(λ),1+ε(x)p+1

vλ(x)− θλ,ρ(λ),1+ε(x)

]
> σ1

[
−ρ(λ)

λ
∆− 1− ε+ θλ,ρ(λ),1+ε(x)p

]
.

From the Krein-Rutmann’s Theorem and the definition of θλ,ρ(λ),1+ε(x), we
have

σ1

[
−ρ(λ)

λ
∆− 1− ε+ θλ,ρ(λ),1+ε(x)p

]
= 0.

Thus

σ1

[
−ρ(λ)

λ
∆− 1− ε+

vp+1
λ (x)− θλ,ρ(λ),1+ε(x)p+1

vλ(x)− θλ,ρ(λ),1+ε(x)

]
> 0.

On the other hand, after some straight forward manipulations, it follows from
(4.21) and (4.22) that[
−ρ(λ)

λ
∆− 1− ε+

vp+1
λ (x)− θλ,ρ(λ),1+ε(x)p+1

vλ(x)− θλ,ρ(λ),1+ε(x)

]
(vλ(x)− θλ,ρ(λ),1+ε(x))

=

[
ε− 1

λ

f(λ1/pv)

λλ1/pv

]
vλ.

(4.25)
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From (4.17), we have [
ε− 1

λ

f(λ1/pv)

λλ1/pv

]
> 0

for λ > λ(ε). Applying the maximum principle to (4.25), we have

θλ,ρ(λ),1+ε(x) ≥ vλ(x),

so our claim is true.
Then (4.23) is true. Next note Lemma 4.1 and the fact that limλ→+∞

λ
ρ(λ) =

+∞. The proof is complete. �

5. Sufficient and necessary conditions for the existence of
positive solutions when N = 1

In this section, we consider the problem (1.1) for the case N = 1. First we
consider −u′′ =

1

a(
∫

Ω
|u′|2dx)

f(x, u), x ∈ (0, 1),

u(0) = u(1) = 0.
(5.1)

Now the following condition is listed for convenience:
(H1) f : (0, 1) × [0,+∞) → [0,+∞), continuous and ∃ λ, µ, δ, (0 < λ <

µ < 1, 0 < δ ≤ 1),∀ x ∈ (0, 1), v ∈ (0,+∞), we have

cµ0f(x, v) ≤ f(x, c0v) ≤ cλ0f(x, v), 0 ≤ c0 ≤ δ, (5.2)

cλ0f(x, v) ≤ f(x, c0v) ≤ cµ0f(x, v), c0 ≥ 1/δ. (5.3)

Lemma 5.1.(see [1]) Suppose u ≥ 0 is concave on [0, 1] with u(0) = u(1) = 0.
Then

u(x) ≥ |u|∞x(1− x), t ∈ [0, 1].

Using a standard idea (see for example [33]) sufficient and necessary con-
ditions for the existence of positive solutions to (5.1) are obtained.

Theorem 5.1 Suppose (H1) holds. Then a necessary and sufficient con-
dition for positive solutions C1[0, 1] of (5.1) is

0 <

∫ 1

0

f(x, x(1− x))dx <∞. (5.4)
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Proof. Necessity. Suppose that u0 is a positive solution with u0 ∈ C1[0, 1].
It is easy to see that u′0(0) > 0 and u′0(1) < 0. Lemma 5.1 implies that there
is a k0 > 1/δ big enough such that

x(1− x)

k0u0(x)
≤ δ, x ∈ (0, 1),

which together with (5.2) and (5.3) implies

f(x, x(1− x)) = f(x,
x(1− x)

k0u0(x)
k0u0(x))

≤ (
x(1− x)

k0u0(x)
)λf(x, k0u0(x))

≤ (
x(1− x)

k0u0(x)
)λkµ0 f(x, u0(x))

≤ δλkµ0 f(x, u0(x)), x ∈ (0, 1).

(5.5)

Choose x0 ∈ (0, 1) with u0(x0) = maxx∈[0,1] u0(x). It is easy to see that
u′0(x0) = 0 with u′0(x) > 0 for x ∈ [0, x0) and u′0(x) < 0 for x ∈ (x0, 1].
Moreover, it follows from (5.5) that

u′0(0) = u′0(0)− u′0(x0)

=
1

a(
∫ 1

0
|u′0(x)|2dx)

∫ x0

0

f(s, u0(s))ds

≥ δ−λk−µ0

1

a(
∫ 1

0
|u′0(x)|2dx)

∫ x0

0

f(s, s(1− s))ds.

(5.6)

A similar argument shows that

−u′0(1) ≥ δ−λk−µ0

1

a(
∫ 1

0
|u′0(x)|2dx)

∫ 1

x0

f(s, s(1− s))ds. (5.7)

We deduce from (5.6) and (5.7) that∫ 1

0

f(x, x(1− x))dx < +∞.

Sufficiency. Let

h(x) = (1− x)

∫ x

0

sf(s, s(1− s))ds+ x

∫ 1

x

(1− s)f(s, s(1− s))ds, ∀x ∈ [0, 1].

From Lemma 5.1, we can see h(x) ≥ x(1− x)|h|∞. It follows from (5.4) that
h ∈ C1([0, 1]), which implies that there exists a a2 > 0 such that

h(x) ≤ a2x(1− x), x ∈ [0, 1].
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Let k2 > 0 be big enough such that

1

a0
aµ2k

µ−1
2 δλ−µ ≤ 1, |h|∞k2 > 1.

Define β(x) = k2h(x), x ∈ [0, 1]. From (5.2) and (5.3) we have

1

a0
f(x, β(x)) =

1

a0
f(x, k2h(x))

=
1

a0
f

(
x,

k2h(x)

δx(1− x)
δx(1− x)

)
≤ 1

a0

(
k2h(x)

δx(1− x)

)µ
δλf(x, x(1− x))

≤ 1

a0
aµ2k

µ−1
2 δλ−µk2f(x, x(1− x))

≤ k2f(x, x(1− x)), x ∈ (0, 1).

(5.8)

Let

Γ1(x) =
1

a0

∫ 1

0

|Gx(x, s)| sup
r∈[0,k2h(s)]

f(s, r)ds, x ∈ [0, 1],

where G(x, s) is the Green’s function for −u′′(x) = h with u(0) = u(1) = 0
and

b1 = a

(∫ 1

0

Γ2
1(x)dx

)
.

Now choose k1 < k2 small enough such that

kµ−1
1 δλ−µ|h|µ∞

1

b1
≥ 1, k1a2 ≤ δ2, k1h(x) ≤ 1.

Let α(x) = k1h(x),

Γ(x) =
1

a0

∫ 1

0

|Gx(x, s)| sup
r∈[k1h(s),k2h(s)]

f(s, r)ds, x ∈ [0, 1],

and

b0 = a

(∫ 1

0

Γ2(x)dx

)
.

It is easy to see that

b0 ≤ b1, i.e.,
1

b0
≥ 1

b1
.
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It follows from (5.2) and (5.3) that

1

b0
f(x, α(x)) ≥ 1

b1
f(x, k1h(x))

=
1

b1
f

(
x,

k1h(x)

δx(1− x)
δx(1− x)

)
≥ 1

b1

(
k1h(x)

δx(1− x)

)µ
δλf(x, x(1− x))

≥ 1

b1
|h|µ∞k

µ−1
1 δλ−µk1f(x, x(1− x))

≥ k1f(x, x(1− x)), x ∈ (0, 1).

(5.9)

Consequently, (5.8) and (5.9) guarantee that
−β′′(x) = −(k2h(x))′′

= k2f(x, x(1− x))

≥ 1

a0
f(x, β(x)),

β(0) = β(0) = 0,

and 
−α′′(x) = −(k1h(x))′′

= k1f(x, x(1− x))

≤ 1

b0
f(x, α(x))

α(0) = α(0) = 0.

Moreover, for α(x) ≤ u ≤ β(x), choose c > 0 big enough such that

cu

k2x(1− x)
≥ 1

δ
, and

k2

c
≤ δ, x ∈ (0, 1),

and from (5.2) and (5.3), we have

0 ≤ f(x, u)

= f

(
x,
k2

c

cu

k2x(1− x)
x(1− x)

)
≤ (

k2

c
)λ
(

cu

k2x(1− x)

)µ
f(x, x(1− x)))

≤
(
k2

c

)λ
(ca2)µf(x, x(1− x))),

which together (5.4) guarantees that∫ 1

0

|f(x, u)|dx ≤
(
k2

c

)λ
(ca2)µ

∫ 1

0

f(x, x(1−x))dx < +∞, ∀α(x) ≤ u ≤ β(x).
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From Theorem 2.1, (5.1) has at least one positive solution u ∈ C1[0, 1] with
α(x) ≤ u(x) ≤ β(x), x ∈ [0, 1]. The proof is complete. �
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