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Some Equivalence Relations and Results over
the Commutative Quaternions and Their

Matrices

Hidayet Hüda Kösal and Murat Tosun

Abstract

In this paper, we give some equivalence relations and results over
the commutative quaternions and their matrices. In this sense, con-
similarity, semisimilarity, and consemisimilarity over the commutative
quaternion algebra and commutative quaternion matrix algebra are es-
tablished. Equalities of these equivalence relations are explicitly de-
termined. Also Syvester-s-Conjugate commutative quaternion matrix
equations are studied by means of real representation of the commu-
tative quaternion matrices and consimilarity of the two commutative
quaternion matrices.

1 Introduction

In 1843, Hamilton introduced the concept of real quaternions, which is defined
by [1]

K = {q = q0 + q1i+ q2j + q3k : q0, q1, q2, q3 ∈ R and i, j, k /∈ R} ,

where

i2 = j2 = k2 = −1, ij = −ji = k, ik = −ki = −j, jk = −kj = i.

Key Words: Commutative quaternion, equivalence relation, coneigenvalue, Slyvester
conjugate matrix equation.
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The real quaternion algebra plays an important role in quantum physics, kine-
matic, differential geometry, game development, image processing and signal
processing, etc. Real quaternions are a naturel extension of the complex num-
bers which are also the extension of the real numbers. The multiplication of
real quaternions is non-commutative. Thus, all results about complex numbers
cannot be generalized in real quaternions. There are a lot of works associated
with real quaternions. For instance, Tian defined two types of universal factor-
ization equalities for real quaternions and gave solutions of ax−xb = c in K, [2].
As well as the similarity and consimilarity of elements of the real quaternion,
octanion, and sedenion algebras, Tian considered the similarity and consimi-
larity of general real Cayley-Dickson algebras in [3]. Also, the author studied
the solutions of two fundamental equations, ax = xb and ax = xb, by means of
similarity and consimilarity relations. In [4], Tian defined semisimilarity and
consemisimilarity of real quaternions and investigated the general solutions of
systems xay = b, ybx = a, and xay = b, ybx = a in K. One of the applica-
tions of real quaternions is also the quaternion matrix theory. In [5], Baker
investigated the right eigenvalues of the quaternion matrices using the topo-
logical approach. Besides, Huang and So studied on the left eigenvalues of real
quaternion matrices [6]. Huang discussed the consimilarity of the quaternion
matrices and obtained their Jordan canonical form, using the consimilarity
[7]. Jiang and Wei studied the Kalman-Yakubovich-Conjugate matrix equa-

tion , X − AX̃B = C, in K (where X̃ = −jXj ) via the real representation
of real quaternion matrices [8]. Moreover, Jiang and Ling studied the prob-
lem of the solution of the Sylvester-Conjugate real quaternion matrix equation
, AX̃−XB = C, by means of real representation of the real quaternions matrix
[9].
After the introduction of real quaternions, the set of commutative quaternions
was first introduced by Segre [10]. This number system is sometimes called
the system of reduced bi-quaternion. The set of commutative quaternions
is four-dimensional like the set of real quaternions. However this set con-
tains zero-divisor elements. Commutative quaternions are extensively stud-
ied and applied to several problems in various areas. Catoni et al. studied
the functions of commutative quaternion variable and obtained generalized
Cauchy-Riemann conditions [11]. In [12], the authors introduced digital sig-
nal and image processing, using commutative quaternions. Also, they dis-
cussed the efficient algorithms of the discrete commutative quaternion Fourier
transform, convolution, correlation, and phase-only correlation. In [13], the
authors developed the algorithms for calculating the eigenvalues-eigenvectors
and the singular value decomposition of commutative quaternion matrices.
Moreover, they represented the color images in the digital media by commu-
tative quaternion matrices and applied the techniques, such as separation,
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compression, image enhancement and denosing, to the color images by us-
ing these matrices. In [14], the authors investigated two types of multistate
Hopfield neural networks based on commutative quaternions. In [15], the au-
thors defined commutative quaternion canonical transform which is the gen-
eralization of commutative quaternion Fourier transform. Also, Kosal and
Tosun investigated some algebraic properties of commutative quaternion ma-
trices by means of complex representation of commutative quatrnion matrices
[16]. In [17], Kosal et al. constructed , by means of real representation of a
real matrix, some explicit expression of the solutions of the matrix equations,

X −AXB = C, X −AX̃B = C, and X −AX̃B = C, which, for convenience,
are called the Kalman-Yakubovich-Conjugate commutative quaternion matrix
equations.
This article is organized as follows. In Section 2, after we give algebraic proper-
ties of commutative quaternions, consimilarity, semisimilarity and consemisim-
ilarity of commutative quaternions are defined. Also, equalities of these equiva-
lence relations are studied. In Section 3, we define consimilarity, semisimilarity,
and consemisimilarity of commutative quaternion matrices and obtain equal-
ities of these equivalence relations. Lastly, we introduce Syvester-s-Conjugate
matrix equations, A

(
sX
)
− XB = C,(s = 1, 2, 3) via real representation of

commutative quaternion matrices and consimilarity of the two commutative
quaternion matrices. Throughout this paper, the following notations are used.
Let R,K, and H denote the real numbers field, the real quaternion skew field,
and the commutative quaternion ring, respectively. Rm×n (Km×n or Hm×n)
denotes the set of all matrices on R (K or H) .

2 Equivalence Relations and Results over the Commu-
tative Quaternions

The set of commutative quaternions is expressed by

H = {a = a0 + a1i+ a2j + a3k : a0, a1, a2, a3 ∈ R and i, j, k /∈ R } , (1)

where

i2 = k2 = −1, j2 = 1, ij = ji = k, jk = kj = i, ki = ik = −j.

It is clear that multiplication in H is commutative. Summation of the com-
mutative quaternions a = a0 + a1i+ a2j + a3k, b = b0 + b1i+ b2j + b3k ∈ H
is defined as a + b = (a0 + b0) + (a1 + b1) i + (a2 + b2) j + (a3 + b3) k. Scalar
multiplication of a commutative quaternion a ∈ H with a scalar λ ∈ R is
defined as λa = λ (a0 + a1i+ a2j + a3k) = λa0 + λa1i+ λa2j + λa3k. In ad-
dition, quaternionic multiplication of two commutative quaternions a, b ∈ H



Some Equivalence Relations and Results over the Commutative Quaternions
and Their Matrices 128

is defined

ab = (a0b0 − a1b1 + a2b2 − a3b3) + (a1b0 + a0b1 + a3b2 + a2b3) i
+ (a0b2 + a2b0 − a1b3 − a3b1) j + (a3b0 + a0b3 + a1b2 + a2b1) k.

There are three types of conjugates of a ∈ H. They are 1a = a0 − a1i+ a2j −
a3k,

2a = a0 + a1i− a2j− a3k, and 3a = a0− a1i− a2j+ a3k. Also, the norm
of a ∈ H is defined as

‖a‖ = 4
√

a (1a) (2a) (3a) = 4

√[
(a0 + a2)

2 + (a1 + a3)
2] [(a0 − a2)

2 + (a1 − a3)
2].
(2)

In case of

a0 + a2 = 0, a1 + a3 = 0 or a0 − a2 = 0, a1 − a3 = 0 (3)

norm of a is equal to zero. The planes of equations (3) are called planes of the
zero divisors or characteristic planes [11].
If a ∈ H and ‖a‖ 6= 0 then a has multiplicative inverse. Multiplicative inverse

of a is equal to a−1 =
(1a)(2a)(3a)
‖a‖4 [11].

It is nearby to identify a commutative quaternion a ∈ H with a real vector
a ∈ R4. We may define any commutative quaternion as

a = a0 + a1i+ a2j + a3k ∼= a =


a0
a1
a2
a3

 .

Then multiplication of a and b can be shown, with the help of ordinary matrix
multiplication,

ab = ba ∼=


a0 −a1 a2 −a3
a1 a0 a3 a2
a2 −a3 a0 −a1
a3 a2 a1 a0




b0
b1
b2
b3

 = ϕ (a) b, (4)

where ϕ (a) is sometimes called fundamental matrix of a [11].

Theorem 1. ([12]) Let a, b ∈ H and λ ∈ R. Then the following identities
hold:
1. ϕ (ab) = ϕ (a)ϕ (b) ,
2. ϕ (ϕ (a) b) = ϕ (a)ϕ (b) ,
3. a = b⇔ ϕ (a) = ϕ (b) ,
4. ϕ (a+ b) = ϕ (a) + ϕ (b) ,
5. ϕ (λa) = λϕ (a) ,
6. trace (ϕ (a)) = a+ 1a+ 2a+ 3a = 4a0,

7. ‖a‖4 = |det (ϕ (a))| .
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Definition 1. Two commutative quaternions a and b said to be consimilar
according to sth (s = 1, 2, 3) conjugate if there exists a commutative quater-

nion p, ‖p‖ 6= 0 such that spap−1 = b; this is written as a
cs∼ b. Consimilarity

relation
c∼ is an equivalence relation on the commutative quaternions.

Theorem 2. Let a, b ∈ H and a is consimilar to b according to sth (s = 1, 2, 3)
conjugate. Then norm of a is equal to norm of b.

Proof. If a and b are consimilar according to sth (s = 1, 2, 3) conjugate, then
there exists p such as

spap−1 = b.

In last equation, we can calculate the norm both sides. Then we have

‖sp‖ ‖a‖
∥∥p−1∥∥ = ‖b‖ .

Since ‖sp‖ = ‖p‖ and
∥∥p−1∥∥ = ‖p‖−1, we get ‖a‖ = ‖b‖ .

Definition 2. Two commutative quaternions a and b are said to be semisim-
ilar if there exist a commutative quaternions x and y that satisfying the equa-
tion

xay = b and ybx = a, (5)

this is written as a ≈ b. Semisimilarity relation ≈ is an equivalence relation
on H.

Theorem 3. Let a, b ∈ H are semisimilar and ‖a‖ 6= 0, ‖b‖ 6= 0 . Then
‖a‖ = ‖b‖ and a2 = b2.

Proof. Let a ≈ b and ‖a‖ 6= 0, ‖b‖ 6= 0. Then there exist x and y such that
xay = b, ybx = a. Thus we get

‖a‖
‖b‖

=
‖b‖
‖a‖

that is ‖a‖ = ‖b‖.
If the right side of first equation in (5) multiplied by y−1a−1 , then we obtain
x = by−1a−1. Substitution x = by−1a−1 into the second equation in (5) and
simplifying gives us yb2y−1 = a2 that is a2 = b2.

Theorem 4. Let x, y, a, b ∈ H, ‖a‖ 6= 0, ‖b‖ 6= 0 and a ≈ b. Then there exist
x, y ∈ H satisfying

xay = b, ybx = a (6)

and
x = bq−12 a−1, y = q2 (7)



Some Equivalence Relations and Results over the Commutative Quaternions
and Their Matrices 130

or
x = q1, y = aq1

−1b−1 (8)

where q1, q2 ∈ H are arbitrary and ‖q1‖ , ‖q2‖ 6= 0.

Proof. If ‖a‖ 6= 0 and ‖b‖ 6= 0, then the norms of x and y satisfying (6) are
nonzero. If the right side of first equation in (6) multiplied by y−1a−1, then
we obtain x = by−1a−1. Substitution x = by−1a−1 into the second equation
in (6) gives us

yb2 = ya2. (9)

Similarly, getting solution for y from the second equation in (6) and subsiti-
tuting it into the first equation in (6) gives

xb2 = xa2. (10)

Since a ≈ b, we get a2 = b2. In the present case, y that satisfies (9) is arbitrary.
Substituting this y into the first equation in (6) gives (7). Solving for x in (10)
and substituting this x into the second equation in (6) gives (8).

Definition 3. Two commutative quaternions a and b are consemisimilar ac-
cording to sth conjugate if there exist a commutative quaternions x and y
satisfying

(sx) ay = b, (sy) bx = a, s = 1, 2, 3,

this is written as a
cs≈ b. Consemisimilarity relation

cs≈ is an equivalence relation
on H.

Theorem 5. Let ‖a‖ 6= 0, ‖b‖ 6= 0 and a, b ∈ H are consemisimilar according
to sth (s = 1, 2, 3) conjugate. Then ‖a‖ = ‖b‖ and (sa) a =

(
sb
)
b.

The proof of Theorem 8 may be proved along the same way as the proof of
Theorem 5.

Theorem 6. Let x, y, a, b ∈ H, ‖a‖ 6= 0, ‖b‖ 6= 0 and a
cs≈ b. Then there exist

x, y ∈ H satisfying
(sx̄) ay = b, (sȳ) bx = a (11)

and
x =

(
sb
)

(sq2)
−1

(sa)
−1
, y = q2 (12)

or
x = q1, y = (sa) (sq1)

−1(sb)−1 (13)

where q1, q2 ∈ H are arbitrary and ‖q1‖ , ‖q2‖ 6= 0.
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Proof. If ‖a‖ 6= 0 and ‖b‖ 6= 0, then the norms of x and y satisfying (11)
are nonzero. If the right side of first equation in (11) multiplied by y−1a−1,

then we get x =
(
sb
)

(sy)
−1

(sa)
−1
. Substitution x =

(
sb
)

(sy)
−1

(sa)
−1

into the
second equation in (11) gives us

y
(
sb
)
b = y (sa) a. (14)

In a similar way, getting solution for y from the second equation in (11) and
subsitituting it into the first equation in (11) gives

x
(
sb
)
b = x (sa) a. (15)

Since a
cs≈ b, we get (sa) a =

(
sb
)
b. In the circumstances, y that satisfies

(14) is arbitrary. Substituting this y into the first equation in (11) gives (12).
Solving for x in (15) and substituting this x into the second equation in (11)
gives (13).

3 Equivalence Relations and Results over the Commu-
tative Quaternions Matrices

The set of m × n matrices with commutative quaternion entries, which is
denoted by Hm×n, with usual matrix summation and multiplication is a ring
with unity. There exist three kinds of conjugate of A = (aij) ∈ Hm×n and they
are 1A =

(
1aij

)
∈ Hm×n, 2A =

(
2aij

)
∈ Hm×n and 3A =

(
3aij

)
∈ Hm×n. A

matrix AT ∈ Hn×m is transpose of A ∈ Hm×n. Also A∗s =
(
sA
)T ∈ Hn×m

is called conjugate transpose according to sth (s = 1, 2, 3) conjugate of A ∈
Hm×n, [16].

Theorem 7. ([17]) Let A and B be matrices of appropriate sizes. Then
followings are satisfied:

1.
(
sA
)T

= s(AT ) ,
2. (AB)

∗s = B∗sA∗s ,

3. (AB)
T

= BTAT ,
4. s(AB) =

(
sA
) (

sB
)
,

5. If A−1 and B−1 exist then (AB)
−1

= B−1A−1,

6. If A−1 exists then (A∗s)
−1

=
(
A−1

)∗s
,

7.
(
sA
)−1

= s(A−1) .

Definition 4. Two commutative quaternion matrices A,B ∈ Hn×n said to be
consimilar according to sth (s = 1, 2, 3) conjugate if there exists a commutative

quaternion P ∈ Hn×n such that sPAP−1 = B; this is written as A
cs∼B.
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Definition 5. ([17]) Let A ∈ Hn×n, λ ∈ H. If there exists 0 6= x ∈ Hn×1 such
that

Ax = xλ

then λ is said to be eigenvalues of A and x is said to be a eigenvector of A
corresponding to the eigenvalue λ. The set of eigenvalues is defined as

ξ (A) =
{
λ ∈ H : Ax = λx, for some 0 6= x ∈ Hn×1} .

Definition 6. Let A ∈ Hn×n, λ ∈ H. If there exists 0 6= x ∈ Hn×1 such that

A (sx) = xλ

then λ is said to be coneigenvalues according to sth conjugate of A and x is
said to be a coneigenvector of A corresponding to the coneigenvalue λ. The
set of coneigenvalues according to sth conjugate is denoted as

σ =
{
λ ∈ H : A (sx) = xλ, for some 0 6= x ∈ Hn×1} .

Theorem 8. Let A,B ∈ Hn×n. If A
cs∼B, then A and B have the same

coneigenvalues according to sth conjugate.

Proof. Let A
cs∼B, then, there exists a regular matrix P ∈ Hn×n such that

sPAP−1 = B. Let λ ∈ H be a coneigenvalue according to sth conjugate for
the matrix A, then we find the matrix x ∈ Hn×1 such that A (sx) = xλ, 0 6=
x ∈ Hn×1. Let y = P (sx). Then

By = sPAP−1y = sPAP−1P (sx) = sPA (sx) = sPxλ = syλ.

Thus, A and B have the same coneigenvalues according to sth conjugate.

Theorem 9. If A ∈ Hn×n, then λ is coneigenvalue according to sth conjugate
of A if and only if for any β ∈ H, (0 6= ‖β‖),

(
sβ
)
λβ−1 is a coneigenvalue

according to sth conjugate of A.

Proof. From A (sx) = xλ , we get A
(
sxβ−1

)
= x

(
sβ
)−1 (sβ)λβ−1. Thus λ is

coneigenvalue according to sth conjugate of A if and only if any β ∈ H, (0 6=
‖β‖),

(
sβ
)
λβ−1 is a coneigenvalue according to sth conjugate of A.

Definition 7. Two commutative quaternion matrices A ∈ Hn×n and B ∈
Hn×n are said to be semisimilar if there exist a commutative quaternion ma-
trices X and Y that satisfying the equation

Y AX = B, XBY = A.

This is written as A ≈ B.
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Definition 8. Two commutative quaternion matrices A ∈ Hn×n and B ∈
Hn×n are said to be consemisimilar according to sth conjugate if there exist a
commutative quaternion matrices X and Y that satisfying the equation(

sY
)
AX = B,

(
sX
)
BY = A.

This is written as A
cs
≈B.

Theorem 10. Let A,B,X, Y ∈ Hn×n and A is semisimilar to B. Then the
following hold:
1. A2kX = X B2k, B2kX = X A2k, k = 1, 2, 3, ...,
2. (XY )

k
A(XY )

k
= A, k = 1, 2, 3, ...,

Proof. 1. Since Y AX = B and XBY = A,

A = XBY = (XY )A (XY ) and B = Y AX = (Y X)B (Y X) .

Then

A2X = (XBY ) (XBY )X = XB2 and B2Y = (Y AX) (Y AX)Y = Y A2,

by induction we get

A2kX = XB2k, B2kX = XA2k, k = 1, 2, 3, ...

2. From the proof of part 1, It is easily follows by induction that

A = (XY )A (XY ) = (XY )XBY (XY ) = (XY )X(Y AX)Y (XY )
= (XY )X(Y (XBY )X)Y (XY ) = (XY )X(Y (X (Y AX)Y )X)Y (XY )
...

= (XY )
k
A(XY )

k
, k = 1, 2, 3, ...

Theorem 11. Let A,B,X, Y ∈ Hn×n, A
c
≈B. Then the following hold:

1.
((

sX
) (

sY
))k

A(XY )
k

= A,
((

sY
) (

sX
))k

B(Y X)
k

= B, k = 1, 2, 3, ...,

2.
(
A
(
sA
))k (sX) =

(
sX
) (
B
(
sB
))k

,
(
sY
) (
A
(
sA
))k

=
(
B
(
sB
))k (sY ),

k = 1, 2, 3, ...

Proof. 1. Since (
sY
)
AX = B,

(
sX
)
BY = A

We have

A =
(
sX
)
BY =

((
sX
) (

sY
))
A (XY ) =

((
sX
) (

sY
)) (

sX
)
BY (XY )
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=
((

sX
) (

sY
)) (

sX
) ((

sY
)
AX

)
Y (XY )

=
((

sX
) (

sY
)) (

sX
) ((

sY
) ((

sX
)
BY

)
X
)
Y (XY )

...

=
((

sX
) (

sY
))k

A
((

sX
) (

sY
))k

, k = 1, 2, 3, ...

Symmetry yields the
((

sY
) (

sX
))k

B(Y X)
k

= B for k = 1, 2, 3, ...

2. From the proof of part 1, B =
(
sY
) (

sX
)
BYX. Then we have

A
(
sA
) (

sX
)

=
(
sX
)
BYX

(
sB
) (

sY
) (

sX
)

=
(
sX
)
B
(
Y X

(
sB
) (

sY
) (

sX
) )

=
(
sX
)
B
(
sB
)

which may be applied repeatedly to obtain
(
A
(
sA
))k (sX) =

(
sX
) (
B
(
sB
))k

for k = 1, 2, 3, ... Symmetry yields the
(
sY
) (
A
(
sA
))k

=
(
B
(
sB
))k (sY ) for

k = 1, 2, 3, ...

3.1 Real Representations of Commutative Quaternion Matrices

Let A = A0 + A1i + A2j + A3k ∈ Hm×n where A0, A1, A2, A3 ∈ Rm×n. We
will define the linear transformations φA (X) = A

(
1X
)
, µA (X) = A

(
2X
)

and ηA (X) = A
(
3X
)
.

Matrices of these linear transformations according to basis {1, i, j, k} are

φA =


A0 A1 A2 A3

A1 −A0 A3 −A2

A2 A3 A0 A1

A3 −A2 A1 −A0

 ∈ R4m×4n, µA =


A0 −A1 −A2 A3

A1 A0 −A3 −A2

A2 −A3 −A0 A1

A3 A2 −A1 −A0

 ∈ R4m×4n,

ηA =


A0 A1 −A2 −A3

A1 −A0 −A3 A2

A2 A3 −A0 −A1

A3 −A2 −A1 A0

 ∈ R4m×4n

respectively [17].

Theorem 12. ([17]) Let A ∈ Hm×n. The following identities are satisfied:
1. If A ∈ Hm×n , then(

1Pm

)−1
φA
(
1Pn

)
= φ(1A) , Q

−1
m φAQn = −φA, R−1m φARn = φA, S

−1
m φASn = −φA,

(
2Pm

)−1
µA

(
2Pm

)
= φ(2A) , Q

−1
m µAQn = φA, R

−1
m µARn = −φA, S−1m µASn = −φA
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and

(
3Pm

)−1
ηA
(
3Pm

)
= η(3A) , Q

−1
m ηAQn = −ηA, R−1m ηARn = −ηA, S−1m ηASn = ηA

where

1Pt =

(
It 0 0 0
0 −It 0 0
0 0 It 0
0 0 0 −It

)
, 2Pt =

(
It 0 0 0
0 It 0 0
0 0 −It 0
0 0 0 −It

)
, 3Pt =

(
It 0 0 0
0 −It 0 0
0 0 −It 0
0 0 0 It

)

Qt =

(
0 −It 0 0
It 0 0 0
0 0 0 −It
0 0 It 0

)
, Rt =

(
0 0 It 0
0 0 0 It
It 0 0 0
0 It 0 0

)
, St =

(
0 0 0 −It
0 0 It 0
0 −It 0 0
It 0 0 0

)
.

(16)
2. If A,B ∈ Hm×n then φA+B = φA + φB , µA+B = µA + µB and ηA+B =
ηA + ηB .
3. If A ∈ Hm×n, B ∈ Hn×l, then

φAB = φA
(
1Pn

)
φB = φAφ(1B)

(
1Pl

)
, µAB = µA

(
2Pn

)
µB = µAµ(2B)

(
2Pl

)
and

ηAB = ηA
(
3Pn

)
ηB = ηAη(3B)

(
3Pl

)
.

4. If A ∈ Hm×m then there exists A−1 if and only if there exist (φA)
−1
, (µA)

−1

and (ηA)
−1

and they are

φA
−1 =

(
1Pm

)
φA−1

(
1Pm

)
, µA

−1 =
(
2Pm

)
µA−1

(
2Pm

)
and

ηA
−1 =

(
3Pm

)
ηA−1

(
3Pm

)
.

3.2 Sylvester-s-Conjugate Matrix Equations over the Commuta-
tive Quaternion Matrices

For A ∈ Hm×m, B ∈ Hn×n and C ∈ Hm×n, matrix equations A
(
sX
)
−XB =

C,(s = 1, 2, 3) are called Sylvester-s-Conjugate matrix equations on commu-
tative quaternion matrices. In here, we construct some explicit expressions
of the solutions of the matrix equations A

(
sX
)
−XB = C by means of real

representation of a commutative quaternion matrices and consimilarity of the
two commutatative quaternion matrices.
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i. Sylvester-1-Conjugate Matrix Equation A
(
1X
)
−XB = C

In here, we investigate the solution of the Sylvester-1-conjugate matrix equa-
tion

A
(
1X
)
−XB = C (17)

via the real representation, where A ∈ Hm×m, B ∈ Hn×n and C ∈ Hm×n. We
define the real representation of the matrix equation (17) by

φAY − Y φB = φC . (18)

Theorem 13. The equation (17) has a solution X if and only if the equation
(18) has a solution Y = φX

(
1Pn

)
.

Theorem 14. The equation (18) has a solution Y ∈ R4m×4n if and only if
the equation (17) has a solution X ∈ Hm×n; in that case, if Y ∈ R4m×4n is a
solution to (18), then the matrix;

X =
1

4
(Im iIm jIm kIm)Y ′


In
iIn
jIn
kIn

 (19)

is a solution to (17) where

Y ′ =
1

4

(
Y
(
1Pn

)
− Q−1m Y

(
1Pn

)
Qn +R−1m Y

(
1Pn

)
Rn − S−1m Y

(
1Pn

)
Sn

)
.

Proof. We demonstrate that if the real matrix

Y =


Y11 Y12 Y13 Y14
Y21 Y22 Y23 Y24
Y31 Y32 Y33 Y34
Y41 Y42 Y43 Y44

 , Yuv ∈ Rm×n, u, v = 1, 2, 3, 4

is solution to (18) , then the matrix represented in (19) is a solution to (17).
Since

Q−1m φXQn = −φX , R−1m φXRn = φX , S
−1
m φXSn = −φX and Y = φX

(
1Pn

)
we have

φA
(
−Q−1m Y

(
1Pn

)
Qn

) (
1Pn

)
−
(
−Q−1m Y

(
1Pn

)
Qn

) (
1Pn

)
φB = φC ,

φA
(
R−1m Y

(
1Pn

)
Rn

) (
1Pn

)
−
(
R−1m Y

(
1Pn

)
Rn

) (
1Pn

)
φB = φC ,

φA
(
−S−1m Y

(
1Pn

)
Sn

) (
1Pn

)
−
(
−S−1m Y

(
1Pn

)
Sn

) (
1Pn

)
φB = φC .

(20)
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Last equations show that if Y is a solution to (18), then(
−Q−1m Y

(
1Pn

)
Qn

) (
1Pn

)
,
(
R−1m Y

(
1Pn

)
Rn

) (
1Pn

)
and (

−S−1m Y
(
1Pn

)
Sn

) (
1Pn

)
are solutions to (18). Thus the undermentioned real matrix:

Y ′ =
1

4

(
Y −

(
Q−1m Y

(
1Pn

)
Qn −R−1m Y

(
1Pn

)
Rn − S−1m Y

(
1Pn

)
Sn

) (
1Pn

))
(21)

is a solution to (18). If the right side of last equation multipled by
(
1Pn

)
, then

we get

φX =


Z0 Z1 Z2 Z3

Z1 −Z0 Z3 −Z2

Z2 Z3 Z0 Z1

Z3 −Z2 Z1 −Z0

 ,

where φX = Y
(
1Pn

)
and

Z0 = 1
4 (Y11 + Y22 + Y33 + Y44) , Z1 = 1

4 (−Y12 + Y21 − Y34 + Y43) ,

Z2 = 1
4 (Y13 + Y24 + Y31 + Y42) , Z3 = 1

4 (−Y14 + Y23 − Y32 + Y41) .
(22)

Thus, we get

X =
1

4
(Im iIm jIm kIm)Y ′


In
iIn
jIn
kIn

 .

Theorem 15. Let A
(
1X
)
−XB = 0, X be regular and A,B ∈ Hn×n. Then

A is consimilar to B according to 1 nd conjugate and φA is similar to φB .

Proof. Since X is reguler, we have X−1A
(
1X
)

= B from A
(
1X
)
−XB = 0.

Thus A is consimilar to B according to 1 nd conjugate. We can write from
X−1A

(
1X
)

= B

φ(X−1)AφX
(
1Pn

)
= φB ⇒ φ(X−1)

(
1Pn

)
φAφX

(
1Pn

)
= φB

⇒
(
1Pn

)
(φX)

−1 (1Pn

) (
1Pn

)
φAφX

(
1Pn

)
= φB
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and(
1Pn

)−1
(φX)

−1
φA
(
φX
(
1Pn

))
= φB ⇒

(
φX
(
1Pn

))−1
φA
(
φX
(
1Pn

))
= φB

Thus φA is similar to φB .

ii. Sylvester-2-Conjugate Matrix Equation A
(
2X
)
−XB = C

Now, we investigate the solution of matrix equation

A
(
2X
)
−XB = C (23)

by the method of real representation, where A ∈ Hm×m, B ∈ Hn×n ve C ∈
Hm×n. We first define the real representation matrix equation (23) by

µAY − Y µB = µC . (24)

In here Y = µX

(
2Pn

)
.

Theorem 16. The matrix equation (24) has a solution Y ∈ R4m×4nif and
only if the matrix equation (23) has a solution X ∈ Hm×n; In this case, if Y
is a solution to (24), then the matrix

X =
1

4
(Im iIm jIm kIm)Y ′


In
−iIn
−jIn
kIn

 (25)

is a solution to (23) where

Y ′ =
1

4

(
Y
(
2Pn

)
+Q−1m Y

(
2Pn

)
Qn −R−1m Y

(
2Pn

)
Rn − S−1m Y

(
2Pn

)
Sn

)
.

The proof of Theorem 16 may be proved along the same way as the proof of
Theorem 14.

Theorem 17. Let A
(
2X
)
−XB = 0, X be regular and A,B ∈ Hn×n. Then

A is consimilar to B according to 2 nd conjugate and φA is similar to φB .

The proof of Theorem 17 may be proved along the same way as the proof of
Theorem 15.
iii. Sylvester-3-Conjugate Matrix Equation A

(
3X
)
−XB = C

Lastly, we investigate the solution of matrix equation

A
(
3X
)
−XB = C (26)

by the method of real representation, where A ∈ Hm×m, B ∈ Hn×n ve C ∈
Hm×n. We first define the real representation matrix equation (26) by

ηAY − Y ηB = ηC . (27)

In here Y = ηX
(
3Pn

)
.
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Theorem 18. The matrix equation (27) has a solution Y ∈ R4m×4nif and
only if the matrix equation (26) has a solution X ∈ Hm×n; In this case, if Y
is a solution to (27), then the matrix

X =
1

4
(Im iIm jIm kIm)Y ′


In
iIn
−jIn
−kIn

 (28)

is a solution to (26) where

Y ′ =
1

4

(
Y
(
3Pn

)
−Q−1m Y

(
3Pn

)
Qn −R−1m Y

(
3Pn

)
Rn + S−1m Y

(
3Pn

)
Sn

)
.

The proof of Theorem 18 may be proved along the same way as the proof of
Theorem 14.

Theorem 19. Let A
(
3X
)
−XB = 0, X be regular and A,B ∈ Hn×n. Then

A is consimilar to B according to 3 nd conjugate and φA is similar to φB .

The proof of Theorem 19 may be proved along the same way as the proof of
Theorem 15.

Example. Solve Sylvester-1-Conjugate matrix equation(
1 i
i j

)(
1X
)
−X

(
1 0
0 0

)
=

(
−2i+ j 2 + j + k
1− i− k 1 + i

)
by using its real representation.
Real representation of given equation is

1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0
0 1 −1 0 0 0 0 0
1 0 0 0 0 0 0 −1
0 0 0 0 1 0 0 1
0 1 0 0 0 0 1 0
0 0 0 0 0 1 −1 0
0 0 0 −1 1 0 0 0


Y−Y



1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0
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=



0 2 −2 0 1 1 0 1
1 1 −1 1 0 0 −1 0
−2 0 0 −2 0 1 −1 −1
−1 1 −1 −1 −1 0 0 0
1 1 0 1 0 2 −2 0
0 0 −1 0 1 1 −1 1
0 1 −1 −1 −2 0 0 −2
−1 0 0 0 −1 1 −1 −1


If we solve this equation, we have

Y =



0 1 −1 0 0 1 0 0
0 0 0 −1 0 1 −1 0
1 0 0 1 0 0 0 1
0 1 0 0 1 0 0 1
0 1 0 0 0 1 −1 0
0 1 −1 0 0 0 0 −1
0 0 0 1 1 0 0 1
1 0 0 1 0 1 0 0


If we use the equation

φX =
1

4

(
Y
(
1Pn

)
−
(
Q−1m Y

(
1Pn

)
Qn −R−1m Y

(
1Pn

)
Rn + S−1m Y

(
1Pn

)
Sn

))
We have

φX =



0 1 1 0 0 1 0 0
0 0 0 1 0 1 1 0
1 0 0 −1 0 0 0 −1
0 1 0 0 1 0 0 −1
0 1 0 0 0 1 1 0
0 1 1 0 0 0 0 1
0 0 0 −1 1 0 0 −1
1 0 0 −1 0 1 0 0


Thus
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X = 1
4

(
1 0 i 0 j 0 k 0
0 1 0 i 0 j 0 k

)


0 1 1 0 0 1 0 0
0 0 0 1 0 1 1 0
1 0 0 −1 0 0 0 −1
0 1 0 0 1 0 0 −1
0 1 0 0 0 1 1 0
0 1 1 0 0 0 0 1
0 0 0 −1 1 0 0 −1
1 0 0 −1 0 1 0 0





1 0
0 1
i 0
0 i
j 0
0 j
k 0
0 k


=

(
i 1 + j
k i+ j

)
.
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