Bounds on the Third Order Hankel Determinant for Certain Subclasses of Analytic Functions

S.P. Vijayalakshmi, T.V. Sudharsan, Daniel Breaz and K.G.Subramanian

Abstract

Let A be the class of analytic functions $f(z)$ in the unit disc $\Delta=$ $\{z \in \mathbb{C}:|z|<1\}$ with the Taylor series expansion about the origin given by $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, z \in \Delta$. The focus of this paper is on deriving upper bounds for the third order Hankel determinant $H_{3}(1)$ for two new subclasses of A.

1 Introduction

Let A be the class of functions

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in $\Delta=\{z \in \mathbb{C}:|z|<1\}$. A function $f \in A$ is respectively said to be with bounded turning, starlike or convex if and only if for $z \in \Delta$, $R e f^{\prime}(z)>0, \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0$ or $\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0$. The classes of these functions are respectively denoted by R, S^{*} and C. For $n \geq 0$ and $q \geq 1$,

[^0]the $q^{\text {th }}$ Hankel determinant is defined as follows:
\[

H_{q}(n)=\left|$$
\begin{array}{cccc}
a_{n} & a_{n+1} & \ldots & a_{n+q-1} \tag{2}\\
a_{n+1} & \cdots & & \cdots \\
\vdots & & \vdots & \\
a_{n+q-1} & \cdots & & a_{n+2(q-1)}
\end{array}
$$\right|
\]

This determinant has been considered by several authors (see, for example, [1, 2, 3, 10, 17, 18, 22]). In fact Noor [18] determined the rate of growth of $H_{q}(n)$ as $n \rightarrow \infty$ for functions f given by (1) with bounded boundary. In particular, upper bounds for the second Hankel determinant were obtained by several authors $[6,9,12,20,21]$ for different classes of analytic functions. Upper bound on the third Hankel determinant for different classes of functions has been studied recently $[1,2,3,10,16,22]$. In the present investigation, the focus is on the third order Hankel determinant $H_{3}(1)$ for the classes R_{α}^{β} and S_{α}^{β} in Δ defined as follows:
Definition 1.1. Let f be given by (1). Then $f \in R_{\alpha}^{\beta}$ if and only if for any $z \in \Delta, 0 \leq \beta<1,0 \leq \alpha \leq 1$,

$$
\begin{equation*}
\operatorname{Re}\left\{f^{\prime}(z)+\alpha z f^{\prime \prime}(z)\right\}>\beta \tag{3}
\end{equation*}
$$

The choice $\alpha=0, \beta=0$ yields $R e f^{\prime}(z)>0, z \in \Delta$, defining the class R of bounded turning [15] while the choice $\alpha=0$, yields $R e f^{\prime}(z)>\beta$ [5].
Definition 1.2. Let f be given by (1). Then $f \in S_{\alpha}^{\beta}$ if and only if for any $z \in \Delta, 0 \leq \beta<1,0 \leq \alpha \leq 1$,

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}+\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\beta .
$$

The choice $\alpha=0, \beta=0$ yields $\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, z \in \Delta$, defining the class S^{*} of starlike functions [19] and the choice of $\alpha=0$ yields $R e \frac{z f^{\prime}(z)}{f(z)}>\beta, z \in \Delta$, defining the class $S^{*}(\beta)$ starlike functions of order β [19]. Setting $n=1$ in (2), $H_{3}(1)$ is given by

$$
H_{3}(1)=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{2} & a_{3} & a_{4} \\
a_{3} & a_{4} & a_{5}
\end{array}\right|
$$

and for $f \in A$,

$$
H_{3}(1)=a_{3}\left(a_{2} a_{4}-a_{3}^{2}\right)-a_{4}\left(a_{4}-a_{2} a_{3}\right)+a_{5}\left(a_{3}-a_{2}^{2}\right) .
$$

Using the triangle inequality, we have

$$
\begin{equation*}
\left|H_{3}(1)\right| \leq\left|a_{3}\right|\left|a_{2} a_{4}-a_{3}^{2}\right|+\left|a_{4}\right|\left|a_{2} a_{3}-a_{4}\right|+\left|a_{5}\right|\left|a_{3}-a_{2}^{2}\right| \tag{4}
\end{equation*}
$$

In obtaining an upper bound for $\left|H_{3}(1)\right|$, the approach used is to first determine upper bounds for the functionals $\left|a_{2} a_{3}-a_{4}\right|,\left|a_{2} a_{4}-a_{3}^{2}\right|$ and $\left|a_{3}-a_{2}^{2}\right|$. Furthermore techniques employed in $[13,14]$ are useful in establishing the results (see, for example $[6,9,12,21]$).

2 Preliminary Results

Some preliminary results required in the following sections are now listed.
Let P denote the class of functions

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+\cdots \tag{5}
\end{equation*}
$$

which are regular in Δ and satisfy $\operatorname{Re} p(z)>0, z \in \Delta$. Throughout this paper, we assume that $p(z)$ is given by (5) and $f(z)$ is given by (1). To prove the main results, the following known Lemmas are required.

Lemma 2.1. [4] Let $p \in P$. Then $\left|c_{k}\right| \leq 2, k=1,2, \ldots$ and the inequality is sharp.

Lemma 2.2. [13, 14] Let $p \in P$. Then

$$
\begin{equation*}
2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
4 c_{3}=c_{1}^{3}+2 x c_{1}\left(4-c_{1}^{2}\right)-x^{2} c_{1}\left(4-c_{1}^{2}\right)+2 y\left(1-|x|^{2}\right)\left(4-c_{1}^{2}\right) \tag{7}
\end{equation*}
$$

for some x, y such that $|x| \leq 1$ and $|y| \leq 1$.

3 Main Results

For functions $f \in R_{\alpha}^{\beta}$, Lemma 3.1- Lemma 3.3 give the upper bounds for the three functionals mentioned earlier while Theorem 3.1 presents an estimate for $\left|H_{3}(1)\right|$.

Lemma 3.1. Let $f \in R_{\alpha}^{\beta}$. Then

$$
\begin{equation*}
\left|a_{2} a_{3}-a_{4}\right| \leq \frac{(1-\beta)}{2(1+3 \alpha)} \tag{8}
\end{equation*}
$$

Proof. Let $f \in R_{\alpha}^{\beta}$. Then there exists a p such that

$$
f^{\prime}(z)+\alpha z f^{\prime \prime}(z)=(1-\beta) p(z)+\beta, p(0)=1, \text { Re } p(z)>0
$$

Equating the coefficients, we find that

$$
a_{2}=\frac{c_{1}(1-\beta)}{2(1+\alpha)}, a_{3}=\frac{c_{2}(1-\beta)}{3(1+2 \alpha)}, a_{4}=\frac{c_{3}(1-\beta)}{4(1+3 \alpha)}, a_{5}=\frac{c_{4}(1-\beta)}{5(1+4 \alpha)} .
$$

The functional $\left|a_{2} a_{3}-a_{4}\right|$ is given by

$$
\begin{equation*}
\left|a_{2} a_{3}-a_{4}\right|=\left|\frac{c_{1} c_{2}(1-\beta)^{2}}{6(1+\alpha)(1+2 \alpha)}-\frac{c_{3}(1-\beta)}{4(1+3 \alpha)}\right| \tag{9}
\end{equation*}
$$

Substituting for c_{2} and c_{3} from (6) and (7) of Lemma 2.2, we obtain

$$
\begin{aligned}
& \left|a_{2} a_{3}-a_{4}\right|= \\
& \left.\frac{(1-\beta)}{48(1+\alpha)(1+2 \alpha)(1+3 \alpha)} \right\rvert\, 4(1+3 \alpha)(1-\beta) c_{1}\left(c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right) \\
& -3(1+\alpha)(1+2 \alpha)\left(c_{1}^{3}+2 x c_{1}\left(4-c_{1}^{2}\right)-x^{2} c_{1}\left(4-c_{1}^{2}\right)+2 y\left(1-|x|^{2}\right)\left(4-c_{1}^{2}\right)\right) \mid \\
& \quad=A(\alpha, \beta) \mid c_{1}^{3}(2 a-3 b)-2 c_{1} x\left(4-c_{1}^{2}\right)(3 b-a)-3 b x^{2} c_{1}\left(4-c_{1}^{2}\right) \\
& \quad-2 y \times 3 b\left(1-|x|^{2}\right)\left(4-c_{1}^{2}\right) \mid
\end{aligned}
$$

where $A(\alpha, \beta)=\frac{(1-\beta)}{48(1+\alpha)(1+2 \alpha)(1+3 \alpha)}, a=2(1+3 \alpha)(1-\beta), b=(1+\alpha)(1+2 \alpha)$. Suppose now that $c_{1}=c$. Since $|c|=\left|c_{1}\right| \leq 2$, using the Lemma 2.1, we may assume without restriction that $c \in[0,2]$ and on applying the triangle inequality with $\rho=|x| \leq 1$, we get

$$
\begin{aligned}
\left|a_{2} a_{3}-a_{4}\right| \leq & A(\alpha, \beta)\left\{c^{3}|2 a-3 b|+2 c \rho\left(4-c^{2}\right)(3 b-a)+3 b \rho^{2} c\left(4-c^{2}\right)\right. \\
& \left.+2 \times 3 b\left(1-\rho^{2}\right)\left(4-c^{2}\right)\right\} \\
= & A(\alpha, \beta)\left\{c^{3}|2 a-3 b|+2 c \rho\left(4-c^{2}\right)(3 b-a)+3 b \rho^{2}\left(4-c^{2}\right)(c-2)\right. \\
& \left.+6 b\left(4-c^{2}\right)\right\}=F(\rho)
\end{aligned}
$$

Next we maximize the function $F(\rho)$.

$$
\begin{equation*}
F^{\prime}(\rho)=A(\alpha, \beta)\left\{2 c\left(4-c^{2}\right)(3 b-a)+6 b \rho\left(4-c^{2}\right)(c-2)\right\} \tag{10}
\end{equation*}
$$

$F^{\prime}(\rho)=0$ implies $\rho=\frac{c(3 b-a)}{3 b(2-c)}$. Set $\rho^{*}=\frac{c(3 b-a)}{3 b(2-c)}$. Now $0 \leq \rho^{*} \leq 1$. Also we have $F^{\prime \prime}(\rho)=A(\alpha, \beta)\left\{6 b\left(4-c^{2}\right)(c-2)\right\}<0$, for $c<2$. Thus ρ^{*} is the only
value in $[0,1]$ at which $F(\rho)$ attains a maximum. Hence $F(\rho) \leq F\left(\rho^{*}\right)$.Thus

$$
\begin{gathered}
F(\rho) \leq A(\alpha, \beta)\left\{c^{3}|2 a-3 b|+\frac{c^{2}}{3 b}(3 b-a)^{2}(2+c)+6 b\left(4-c^{2}\right)\right\} \\
=A(\alpha, \beta)\left\{c^{3}\left\{|2 a-3 b|+\frac{(3 b-a)^{2}}{3 b}\right\}-c^{2}\left\{\left[6 b-\frac{2(3 b-a)^{2}}{3 b}\right]\right\}+24 b\right\} \\
F(\rho) \leq A(\alpha, \beta)\left\{c^{3} \gamma-c^{2} \delta+24 b\right\}=G(c),
\end{gathered}
$$

where $\gamma=|2 a-3 b|+\frac{(3 b-a)^{2}}{3 b}, \delta=\left[6 b-\frac{2(3 b-a)^{2}}{3 b}\right] . G^{\prime}(c)=0$ implies $c=0$ and at $c=0, G^{\prime \prime}(c)<0$. Thus, the upper bound of $F(\rho)$ corresponds to $\rho=\rho^{*}$ and $c=0$. Hence $\left|a_{2} a_{3}-a_{4}\right| \leq \frac{(1-\beta)}{2(1+3 \alpha)}$.

Corollary 3.1. Choosing $\alpha=0, \beta=0$ in (8), we get $\left|a_{2} a_{3}-a_{4}\right| \leq \frac{1}{2}$. This result coincides with the corresponding result in [3].

Lemma 3.2. Let $f \in R_{\alpha}^{\beta}$. Then

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4}{9} \frac{(1-\beta)^{2}}{(1+2 \alpha)^{2}} \tag{11}
\end{equation*}
$$

Proof. Let $f \in R_{\alpha}^{\beta}$. In a manner similar to the proof of Lemma 3.1, we can derive

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right|=\left|\frac{c_{1} c_{3}(1-\beta)^{2}}{8(1+\alpha)(1+3 \alpha)}-\frac{c_{2}^{2}(1-\beta)^{2}}{9(1+2 \alpha)^{2}}\right| \tag{12}
\end{equation*}
$$

Substituting for c_{2} and c_{3} from (6) and (7) of Lemma 2.2, we obtain

$$
\begin{aligned}
& =\left\lvert\, \frac{c_{1}(1-\beta)^{2}}{32(1+\alpha)(1+3 \alpha)}\left[c_{1}^{3}+2 x c_{1}\left(4-c_{1}^{2}\right)-x^{2} c_{1}\left(4-c_{1}^{2}\right)\right.\right. \\
& \left.+2 y\left(1-|x|^{2}\right)\left(4-c_{1}^{2}\right)\right] \left.-\frac{(1-\beta)^{2}}{36(1+2 \alpha)^{2}}\left[c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right]^{2} \right\rvert\, . \\
& \left.=\frac{(1-\beta)^{2}}{288(1+\alpha)(1+2 \alpha)^{2}(1+3 \alpha)} \right\rvert\, 9 c_{1}(1+2 \alpha)^{2}\left[c_{1}^{3}+2 x c_{1}\left(4-c_{1}^{2}\right)\right. \\
& \left.-x^{2} c_{1}\left(4-c_{1}^{2}\right)+2 y\left(1-|x|^{2}\right)\left(4-c_{1}^{2}\right)\right] \\
& -8(1+\alpha)(1+3 \alpha)\left[c_{1}^{4}+x^{2}\left(4-c_{1}^{2}\right)^{2}+2 x c_{1}^{2}\left(4-c_{1}^{2}\right)\right] \mid .
\end{aligned}
$$

Let $N=\frac{(1-\beta)^{2}}{288(1+\alpha)(1+2 \alpha)^{2}(1+3 \alpha)}, a=9(1+2 \alpha)^{2}, b=8(1+\alpha)(1+3 \alpha)$
and $a-b=9(1+2 \alpha)^{2}-8(1+\alpha)(1+3 \alpha)=1+12 \alpha^{2}+4 \alpha \geq 0$, since $\alpha \geq 0$.

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right| & =N \mid a c_{1}\left[c_{1}^{3}+2 x c_{1}\left(4-c_{1}^{2}\right)-x^{2} c_{1}\left(4-c_{1}^{2}\right)+2 y\left(1-|x|^{2}\right)\left(4-c_{1}^{2}\right)\right] \\
& -b\left[c_{1}^{4}+x^{2}\left(4-c_{1}^{2}\right)^{2}+2 x c_{1}^{2}\left(4-c_{1}^{2}\right)\right] \mid \\
& =N \mid c_{1}^{4}(a-b)+2 x c_{1}^{2}\left(4-c_{1}^{2}\right)(a-b)-x^{2}\left(4-c_{1}^{2}\right)\left[a c_{1}^{2}+b\left(4-c_{1}^{2}\right)\right] \\
& +2 y a c_{1}\left(1-|x|^{2}\right)\left(4-c_{1}^{2}\right) \mid .
\end{aligned}
$$

Suppose now that $c_{1}=c$. Since $|c|=\left|c_{1}\right| \leq 2$, using the Lemma 2.1, we may assume without restriction that $c \in[0,2]$ and on applying the triangle inequality with $\rho=|x| \leq 1$, we get

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right| & \leq N\left\{c^{4}(a-b)+2 \rho c^{2}\left(4-c^{2}\right)(a-b)\right. \\
& \left.+\rho^{2}\left(4-c^{2}\right)\left[c^{2}(a-b)-2 a c+4 b\right]+2 a c\left(4-c^{2}\right)\right\} \\
& =N\left\{c^{4}(a-b)+2 \rho c^{2}\left(4-c^{2}\right)(a-b)\right. \\
& \left.+\rho^{2}\left(4-c^{2}\right)(a-b)(c-2)\left(c-\frac{2 b}{(a-b)}\right)+2 a c\left(4-c^{2}\right)\right\}=F(\rho) .
\end{aligned}
$$

Differentiating $F(\rho)$, we get

$$
F^{\prime}(\rho)=N\left[2 c^{2}\left(4-c^{2}\right)(a-b)+2 \rho\left(4-c^{2}\right)(a-b)(c-2)\left(c-\frac{2 b}{(a-b)}\right)\right] \geq 0
$$

since $a-b>0,2 b /(a-b)>2$ so that $c-2 b /(a-b)<c-2<0$ and $(c-2)\left(c-\frac{2 b}{(a-b)}\right)>0$ for all $c \in[0,2]$. This implies that $F(\rho)$ is an increasing function of ρ on the closed interval $[0,1]$. Hence $F(\rho) \leq F(1)$ for all $\rho \in[0,1]$. That is,

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right| & \leq N\left\{c^{4}(a-b)+2 c^{2}\left(4-c^{2}\right)(a-b)\right. \\
& \left.+\left(4-c^{2}\right)(a-b)(c-2)\left(c-\frac{2 b}{(a-b)}\right)+2 a c\left(4-c^{2}\right)\right\} \\
& =N\left\{-2 c^{4}(a-b)-4 c^{2}(4 b-3 a)+16 b\right\}=G(c) .
\end{aligned}
$$

$G^{\prime}(c)=0$ implies $c=0$ so that at $c=0, G^{\prime \prime}(c)<0$. Therefore $c=0$ is a point of maximum for $G(c)$. Thus, the upper bound of $F(\rho)$ corresponds to $\rho=1$ and $c=0$. Hence, $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4}{9} \frac{(1-\beta)^{2}}{(1+2 \alpha)^{2}}$.
Corollary 3.2. Choosing $\alpha=0, \beta=0$ in (11), we get $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4}{9}$. This result coincides with [7].

Corollary 3.3. Choosing $\alpha=0$ in (11), we get $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4}{9}(1-\beta)^{2}$. This result coincides with [11].

Lemma 3.3. Let $f \in R_{\alpha}^{\beta}$. Then for $1 / 3 \leq \beta<1$,

$$
\begin{equation*}
\left|a_{3}-a_{2}^{2}\right| \leq \frac{2(1-\beta)}{3(1+2 \alpha)} \tag{13}
\end{equation*}
$$

Proof. Let $f \in R_{\alpha}^{\beta}$. Then by proceeding as in Lemma 3.1, we have

$$
\begin{gather*}
\left|\left(a_{3}-a_{2}^{2}\right)\right|=\left|\frac{c_{2}(1-\beta)}{3(1+2 \alpha)}-\frac{c_{1}^{2}(1-\beta)^{2}}{4(1+\alpha)^{2}}\right| \tag{14}\\
\left|\left(a_{3}-a_{2}^{2}\right)\right|=\frac{(1-\beta)}{12(1+2 \alpha)(1+\alpha)^{2}}\left|4(1+\alpha)^{2} c_{2}-3(1+2 \alpha)(1-\beta) c_{1}^{2}\right|
\end{gather*}
$$

Substituting for c_{2} from (6) of Lemma 2.2, we obtain

$$
\begin{aligned}
& \left|\left(a_{3}-a_{2}^{2}\right)\right| \\
& =\frac{(1-\beta)}{12(1+2 \alpha)(1+\alpha)^{2}}\left|2(1+\alpha)^{2}\left[c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right]-3(1+2 \alpha)(1-\beta) c_{1}^{2}\right| \\
& =M\left|k_{1} c_{1}^{2}+k_{1} x\left(4-c_{1}^{2}\right)-k_{2} c_{1}^{2}\right|
\end{aligned}
$$

where $M=\frac{(1-\beta)}{12(1+2 \alpha)(1+\alpha)^{2}}, k_{1}=2(1+\alpha)^{2}, k_{2}=3(1+2 \alpha)(1-\beta)$. Set $c_{1}=c$. Since $|c|=\left|c_{1}\right| \leq 2$, using the Lemma 2.1, we may assume without restriction that $c \in[0,2]$ and on applying the triangle inequality with $\rho=|x| \leq 1$, we get

$$
\left|a_{3}-a_{2}^{2}\right| \leq M\left[c^{2}\left|k_{1}-k_{2}\right|+k_{1} \rho\left(4-c^{2}\right)\right]=F(\rho)
$$

Differentiating $F(\rho)$, we get $F^{\prime}(\rho)=M\left[k_{1}\left(4-c^{2}\right)\right] \geq 0$, implying that $F(\rho)$ is an increasing function of ρ on a closed interval $[0,1]$. Hence $F(\rho) \leq F(1)$ for all $\rho \in[0,1]$. That is,

$$
\left|\left(a_{3}-a_{2}^{2}\right)\right| \leq M\left[c^{2}\left|k_{1}-k_{2}\right|+k_{1}\left(4-c^{2}\right)\right]=G(c)
$$

By hypothesis, $\beta \geq 1 / 3$ and hence $k_{1}-k_{2}=2 \alpha^{2}-2 \alpha-1+3 \beta(1+2 \alpha) \geq 2 \alpha^{2}$. Hence $G(c)=M\left[4 k_{1}-c^{2} k_{2}\right], G^{\prime}(c)=-2 M k_{2} c$ and $G^{\prime \prime}(c)=-2 M k_{2}$. Since $c \in[0,2]$, it follows that $\mathrm{G}(\mathrm{c})$ attains the maximum at $c=0$. Thus, the upper bound of $F(\rho)$ corresponds to $\rho=1$ and $c=0$. Hence $\left|a_{3}-a_{2}^{2}\right| \leq M\left[4 k_{1}\right]=$ $\frac{2(1-\beta)}{3(1+2 \alpha)}$.

Corollary 3.4. Choosing $\alpha=0$ in (13), we get $\left|a_{3}-a_{2}^{2}\right| \leq \frac{2}{3}(1-\beta)$. This result coincides with [10], for $1 / 3 \leq \beta<1$.

Remark 3.1. Let $f \in R_{\alpha}^{\beta}$. By Lemma 2.1, we have

$$
\begin{aligned}
& \left|a_{3}\right|=\left|\frac{c_{2}(1-\beta)}{3(1+2 \alpha)}\right| \leq \frac{2(1-\beta)}{3(1+2 \alpha)} \\
& \left|a_{4}\right|=\left|\frac{c_{3}(1-\beta)}{4(1+3 \alpha)}\right| \leq \frac{(1-\beta)}{2(1+3 \alpha)} \\
& \left|a_{5}\right|=\left|\frac{c_{4}(1-\beta)}{5(1+4 \alpha)}\right| \leq \frac{2(1-\beta)}{5(1+4 \alpha)}
\end{aligned}
$$

Using the above results, the upper bound for $\left|H_{3}(1)\right|, f \in R_{\alpha}^{\beta}$ is immediately obtained.

Theorem 3.1. Let $f \in R_{\alpha}^{\beta}$. Then for $1 / 3 \leq \beta<1$,

$$
\left|H_{3}(1)\right| \leq \frac{8(1-\beta)^{3}}{27(1+2 \alpha)^{3}}+\frac{(1-\beta)^{2}}{4(1+3 \alpha)^{2}}+\frac{4(1-\beta)^{2}}{15(1+2 \alpha)(1+4 \alpha)}
$$

In the following results, with similar approach and technique, an upper bound for $\left|H_{3}(1)\right|$ is attained for $f \in S_{\alpha}^{\beta}$. As before, we first derive estimates for the functionals $\left|a_{2} a_{3}-a_{4}\right|,\left|a_{2} a_{4}-a_{3}^{2}\right|$ and $\left|a_{3}-a_{2}^{2}\right|$. Their estimates are given in Lemmas 3.4, 3.5, and 3.6.

Lemma 3.4. Let $f \in S_{\alpha}^{\beta}$. Then

$$
\begin{equation*}
\left|a_{2} a_{3}-a_{4}\right| \leq \frac{2(1-\beta)}{3(1+4 \alpha)} \tag{15}
\end{equation*}
$$

Proof. Let $f \in S_{\alpha}^{\beta}$. Then there exists a $p \in P$ such that

$$
z f^{\prime}(z)+\alpha z^{2} f^{\prime \prime}(z)=[(1-\beta) p(z)+\beta] f(z)
$$

for some $z \in \Delta$. Equating the coefficients, we have

$$
\begin{gathered}
a_{2}=\frac{c_{1}(1-\beta)}{1+2 \alpha}, \quad a_{3}=\frac{c_{2}(1-\beta)}{2(1+3 \alpha)}+\frac{c_{1}^{2}(1-\beta)^{2}}{2(1+2 \alpha)(1+3 \alpha)} \\
a_{4}=\frac{c_{3}(1-\beta)}{3(1+4 \alpha)}+\frac{c_{1} c_{2}(3+8 \alpha)(1-\beta)^{2}}{6(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)}+\frac{c_{1}^{3}(1-\beta)^{3}}{6(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)}
\end{gathered}
$$

and

$$
\begin{aligned}
a_{5} & =\frac{c_{1}^{4}(1-\beta)^{4}}{24(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)(1+5 \alpha)}+\frac{c_{2}^{2}(1-\beta)^{2}}{8(1+3 \alpha)(1+5 \alpha)} \\
& +\frac{c_{1}^{2} c_{2}(1-\beta)^{3}(20 \alpha+6)}{24(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)(1+5 \alpha)}+\frac{c_{1} c_{3}(1-\beta)^{2}(4+14 \alpha)}{12(1+2 \alpha)(1+4 \alpha)(1+5 \alpha)} \\
& +\frac{c_{4}(1-\beta)}{4(1+5 \alpha)} .
\end{aligned}
$$

Thus, we have

$$
\begin{align*}
\left|a_{2} a_{3}-a_{4}\right| & \left.=\frac{(1-\beta)}{6(1+2 \alpha)^{2}(1+3 \alpha)(1+4 \alpha)} \right\rvert\, c_{1} c_{2}(1-\beta) 4 \alpha(1+2 \alpha) \tag{16}\\
& +2 c_{1}^{3}(1-\beta)^{2}(1+5 \alpha)-2 c_{3}(1+2 \alpha)^{2}(1+3 \alpha) \mid
\end{align*}
$$

Substituting for c_{2} and c_{3} from (6) and (7) of Lemma 2.2, we have

$$
\begin{aligned}
& \left|a_{2} a_{3}-a_{4}\right| \\
& =B(\alpha, \beta) \left\lvert\, \frac{4 \alpha(1+2 \alpha)(1-\beta) c_{1}}{2}\left(c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right)\right. \\
& \quad+c_{1}^{3} 2(1-\beta)^{2}(1+5 \alpha)-\frac{2(1+2 \alpha)^{2}(1+3 \alpha)}{4}\left[c_{1}^{3}+2 x c_{1}\left(4-c_{1}^{2}\right)\right. \\
& \left.\quad-x^{2} c_{1}\left(4-c_{1}^{2}\right)+2 y\left(1-|x|^{2}\right)\left(4-c_{1}^{2}\right)\right] \mid \\
& =B(\alpha, \beta)\left|r_{1} c_{1}^{3}+r_{2} c_{1} x\left(4-c_{1}^{2}\right)+\frac{r_{3}}{4} x^{2} c_{1}\left(4-c_{1}^{2}\right)-\frac{r_{3}}{2} y\left(1-|x|^{2}\right)\left(4-c_{1}^{2}\right)\right|,
\end{aligned}
$$

where

$$
\begin{aligned}
B(\alpha, \beta) & =\frac{(1-\beta)}{6(1+2 \alpha)^{2}(1+3 \alpha)(1+4 \alpha)}, \\
r_{1} & =2 \alpha(1+2 \alpha)(1-\beta)+2(1-\beta)^{2}(1+5 \alpha)-\frac{(1+2 \alpha)^{2}(1+3 \alpha)}{2}, \\
r_{2} & =2 \alpha(1+2 \alpha)(1-\beta)-(1+2 \alpha)^{2}(1+3 \alpha), r_{3}=(1+2 \alpha)^{2}(1+3 \alpha) .
\end{aligned}
$$

Suppose now that $c_{1}=c$. Since $|c|=\left|c_{1}\right| \leq 2$, using the Lemma 2.1, we may assume without restriction that $c \in[0,2]$ and on applying the triangle inequality with $\rho=|x| \leq 1$, we get,

$$
\begin{aligned}
& \left|a_{2} a_{3}-a_{4}\right| \\
& \leq \beta(\alpha, \beta)\left\{\left|r_{1}\right| c^{3}+\left|r_{2}\right| \rho c\left(4-c^{2}\right)+\frac{r_{3}}{2} \rho^{2} c\left(4-c^{2}\right)+r_{3}\left(4-c^{2}\right)-r_{3} \rho^{2}\left(4-c^{2}\right)\right\} \\
& =\beta(\alpha, \beta)\left\{\left|r_{1}\right| c^{3}+\left|r_{2}\right| \rho c\left(4-c^{2}\right)+\frac{r_{3}}{2} \rho^{2}(c-2)\left(4-c^{2}\right)+r_{3}\left(4-c^{2}\right)\right\}=F(\rho) .
\end{aligned}
$$

Next we maximize the function $F(\rho)$. Differentiating $F(\rho)$, we get

$$
F^{\prime}(\rho)=B(\alpha, \beta)\left[\left|r_{2}\right| c\left(4-c^{2}\right)+r_{3} \rho\left(4-c^{2}\right)(c-2)\right]
$$

$F^{\prime}(\rho)=0$ implies $\rho=\frac{\left|r_{2}\right| c}{r_{3}(2-c)}$. Set $\rho^{*}=\frac{\left|r_{2}\right| c}{r_{3}(2-c)}$. Now, $0 \leq \rho^{*} \leq 1$. Also we have $F^{\prime \prime}(\rho)=B(\alpha, \beta) r_{3}\left(4-c^{2}\right)(c-2) \leq 0$. Thus ρ^{*} is the only value in $[0,1]$ at which $F(\rho)$ attains maximum. Hence $F(\rho) \leq F\left(\rho^{*}\right)$.Thus

$$
\begin{aligned}
F(\rho) & \leq B(\alpha, \beta)\left[\left|r_{1}\right| c^{3}+\frac{r_{2}^{2} c^{2}(2+c)}{2 r_{3}}+4 r_{3}-r_{3} c^{2}\right] \\
& =B(\alpha, \beta)\left[c^{3} \gamma-c^{2} \delta+4 r_{3}\right]=G(c)
\end{aligned}
$$

where $\gamma=\left|r_{1}\right|+\frac{r_{2}^{2}}{2 r_{3}}, \delta=r_{3}-\frac{r_{2}^{2}}{r_{3}} \geq 0, G^{\prime}(c)=0$ implies $c=0$ and at $c=0, \quad G^{\prime \prime}(c)<0$. Therefore $c=0$ is a point of maximum of $G(c)$. Thus the upper bound of $F(\rho)$ corresponds to $\rho=\rho^{*}$ and $c=0$. Hence $\left|a_{2} a_{3}-a_{4}\right| \leq$ $\frac{2(1-\beta)}{3(1+4 \alpha)}$.

Corollary 3.5. Choosing $\alpha=0, \beta=0$ in (15), we get $\left|a_{2} a_{3}-a_{4}\right| \leq \frac{2}{3}$.
Corollary 3.6. Choosing $\alpha=0$, in (15), we get

$$
\left|a_{2} a_{3}-a_{4}\right| \leq \frac{2(1-\beta)}{3}
$$

Lemma 3.5. Let $f \in S_{\alpha}^{\beta}$. Then

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{(1-\beta)^{2}}{(1+3 \alpha)^{2}} \tag{17}
\end{equation*}
$$

Proof. Let $f \in S_{\alpha}^{\beta}$. Then by proceeding as in Lemma 3.4, we have

$$
\begin{align*}
& \left|a_{2} a_{4}-a_{3}^{2}\right|= \\
& \left\lvert\, \frac{c_{1} c_{3}(1-\beta)^{2}}{3(1+2 \alpha)(1+4 \alpha)}-\frac{c_{2}^{2}(1-\beta)^{2}}{4(1+3 \alpha)^{2}}-\frac{c_{1}^{4}(1-\beta)^{4}(1+6 \alpha)}{12(1+2 \alpha)^{2}(1+3 \alpha)^{2}(1+4 \alpha)}\right. \\
& \left.-\frac{c_{1}^{2} c_{2}(1-\beta)^{3}(2 \alpha)}{12(1+2 \alpha)^{2}(1+3 \alpha)^{2}(1+4 \alpha)} \right\rvert\, \tag{18}\\
& \left.=\frac{(1-\beta)^{2}}{48(1+2 \alpha)^{2}(1+3 \alpha)^{2}(1+4 \alpha)} \right\rvert\, 16(1+2 \alpha)(1+3 \alpha)^{2} c_{1} c_{3} \\
& -12 c_{2}^{2}(1+2 \alpha)^{2}(1+4 \alpha)-4 c_{1}^{4}(1-\beta)^{2}(1+6 \alpha)-4(1-\beta) 2 \alpha c_{1}^{2} c_{2} \mid
\end{align*}
$$

Substituting for c_{2} and c_{3} from (6) and (7) of Lemma 2.2, we obtain

$$
\begin{aligned}
& \left|a_{2} a_{4}-a_{3}^{2}\right|=M \mid k_{1} c_{1}\left[c_{1}^{3}+2 x c_{1}\left(4-c_{1}^{2}\right)-x^{2} c_{1}\left(4-c_{1}^{2}\right)+2 y\left(1-|x|^{2}\right)\left(4-c_{1}^{2}\right)\right] \\
& \quad-k_{2}\left[c_{1}^{4}+x^{2}\left(4-c_{1}^{2}\right)^{2}+2 x c_{1}^{2}\left(4-c_{1}^{2}\right)\right]-k_{3} c_{1}^{4}-k_{4} c_{1}^{2}\left[c_{1}^{2}+x\left(4-c_{1}^{2}\right) \mid\right.
\end{aligned}
$$

where $M=\frac{(1-\beta)^{2}}{48(1+2 \alpha)^{2}(1+3 \alpha)^{2}(1+4 \alpha)}$,
$k_{1}=4(1+2 \alpha)(1+3 \alpha)^{2}, k_{2}=3(1+2 \alpha)^{2}(1+4 \alpha), k_{3}=4(1-\beta)^{2}(1+6 \alpha)$ and $k_{4}=8 \alpha(1-\beta)$.

$$
\begin{aligned}
& \left|a_{2} a_{4}-a_{3}^{2}\right|= \\
& M \mid c_{1}^{4}\left[k_{1}-k_{2}-k_{3}-k_{4}\right]+x c_{1}^{2}\left(4-c_{1}^{2}\right)\left[2 k_{1}-2 k_{2}-k_{4}\right]-x^{2} c_{1}^{2}\left(4-c_{1}^{2}\right) k_{1} \\
& -x^{2}\left(4-c_{1}^{2}\right)^{2} k_{2}+2 y c_{1} k_{1}\left(1-|x|^{2}\right)\left(4-c_{1}^{2}\right) \mid
\end{aligned}
$$

Suppose now that $c_{1}=c$. Since $|c|=\left|c_{1}\right| \leq 2$, using the Lemma 2.1, we may assume without restriction that $c \in[0,2]$ and on applying triangle inequality with $\rho=|x| \leq 1$, we obtain

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right| & \leq M\left\{c^{4}\left|k_{1}-k_{2}-k_{3}-k_{4}\right|+\rho c^{2}\left(4-c^{2}\right)\left|2 k_{1}-2 k_{2}-k_{4}\right|\right. \\
& \left.+\rho^{2}\left(4-c^{2}\right)\left(c^{2}\left(k_{1}-k_{2}\right)-2 c k_{1}+4 k_{2}\right)+2 c k_{1}\left(4-c^{2}\right)\right\} \\
& =M\left\{c^{4}\left|k_{1}-k_{2}-k_{3}-k_{4}\right|+\rho c^{2}\left(4-c^{2}\right)\left|2 k_{1}-2 k_{2}-k_{4}\right|\right. \\
& \left.+\rho^{2}\left(4-c^{2}\right)\left(k_{1}-k_{2}\right)(c-2)\left(c-\frac{2 k_{2}}{k_{1}-k_{2}}\right)+2 c k_{1}\left(4-c^{2}\right)\right\}=F(\rho)
\end{aligned}
$$

Differentiating $F(\rho)$, we get

$$
\begin{aligned}
F^{\prime}(\rho) & =M\left[c^{2}\left(4-c^{2}\right)\left|2 k_{1}-2 k_{2}-k_{4}\right|\right. \\
& +2 \rho\left(4-c^{2}\right)\left(k_{1}-k_{2}\right)(c-2)\left(c-\frac{2 k_{2}}{\left(k_{1}-k_{2}\right)}\right) \geq 0
\end{aligned}
$$

since $2 k_{2} /\left(k_{1}-k_{2}\right)>2$ so that $c-2 k_{2} /\left(k_{1}-k_{2}\right)<c-2<0$ and $k_{1}-k_{2}=$ $(1+2 \alpha)\left(36 \alpha^{2}+12 \alpha+1\right)>0$ as $\alpha>0$, and so $(c-2)\left(c-\frac{2 k_{2}}{\left(k_{1}-k_{2}\right)}>0\right.$ for all $c \in[0,2]$. This implies that $F(\rho)$ is an increasing function of ρ on a closed interval $[0,1]$. Hence $F(\rho) \leq F(1)$ for all $\rho \in[0,1]$. That is,

$$
\begin{aligned}
& F(\rho) \\
& \leq M\left\{c^{4}\left|k_{1}-k_{2}-k_{3}-k_{4}\right|+\left(4-c^{2}\right)\left[c^{2}\left|2 k_{1}-2 k_{2}-k_{4}\right|+\left(c^{2}\left(k_{1}-k_{2}\right)+4 k_{2}\right)\right]\right\} \\
& =M\left\{\left[c^{4}\left[\left|k_{1}-k_{2}-k_{3}-k_{4}\right|-\left(\left|2 k_{1}-2 k_{2}-k_{4}\right|-\left(k_{1}-k_{2}\right)\right)\right]\right.\right. \\
& \left.-c^{2}\left[4 k_{2}-4\left(\left|2 k_{1}-2 k_{2}-k_{4}\right|-4\left(k_{1}-k_{2}\right)\right)\right]+16 k_{2}\right\}=G(c)
\end{aligned}
$$

$G^{\prime}(c)=0$ implies $c=0$ so that at $c=0, G^{\prime \prime}(c)<0$. Therefore $c=0$ is a point of maximum for $G(c)$. Thus the upper bound of $F(\rho)$ corresponds to $\rho=1$ and $c=0$. Hence $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{(1-\beta)^{2}}{(1+3 \alpha)^{2}}$.

Corollary 3.7. Choosing $\alpha=0, \beta=0$ in (17), we get $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1$. This result coincides with [8].

Corollary 3.8. Choosing $\alpha=0$, in (17), we get $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq(1-\beta)^{2}$.
Lemma 3.6. Let $f \in S_{\alpha}^{\beta}$. Then for $1 / 2 \leq \beta<1$,

$$
\begin{equation*}
\left|a_{3}-a_{2}^{2}\right| \leq \frac{1-\beta}{1+3 \alpha} \tag{19}
\end{equation*}
$$

Proof. Let $f \in S_{\alpha}^{\beta}$. Then by proceeding as in Lemma 3.4, we have

$$
\begin{equation*}
\left|a_{3}-a_{2}^{2}\right|=\left|\frac{c_{2}(1-\beta)}{2(1+3 \alpha)}-\frac{c_{1}^{2}(1-\beta)^{2}(1+4 \alpha)}{2(1+2 \alpha)^{2}(1+3 \alpha)}\right| \tag{20}
\end{equation*}
$$

Substituting for c_{2} from Lemma 2.2 we obtain

$$
\begin{aligned}
\left|a_{3}-a_{2}^{2}\right| & =\left|\frac{(1-\beta)}{2(1+3 \alpha)} \frac{1}{2}\left[c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right]-\frac{c_{1}^{2}(1-\beta)^{2}(1+4 \alpha)}{2(1+3 \alpha)(1+2 \alpha)^{2}}\right| \\
& =\frac{(1-\beta)}{4(1+2 \alpha)^{2}(1+3 \alpha)}\left|\left[c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right](1+2 \alpha)^{2}-2 c_{1}^{2}(1-\beta)(1+4 \alpha)\right| \\
& =M\left|b_{1}\left[c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right]-b_{2} c_{1}^{2}\right|
\end{aligned}
$$

where $M=\frac{(1-\beta)}{4(1+2 \alpha)^{2}(1+3 \alpha)}, b_{1}=(1+2 \alpha)^{2}, b_{2}=2(1-\beta)(1+4 \alpha)$. Therefore

$$
\left|a_{3}-a_{2}^{2}\right|=M\left|b_{1} c_{1}^{2}+b_{1} x\left(4-c_{1}^{2}\right)-b_{2} c_{1}^{2}\right|=M\left|\left(b_{1}-b_{2}\right) c_{1}^{2}+b_{1} x\left(4-c_{1}^{2}\right)\right|
$$

Suppose now that $c_{1}=c$. Since $|c|=\left|c_{1}\right| \leq 2$, using the Lemma 2.1, we may assume without restriction that $c \in[0,2]$ and on applying triangle inequality with $\rho=|x| \leq 1$, we obtain

$$
\left|a_{3}-a_{2}^{2}\right| \leq M\left[c^{2}\left|b_{1}-b_{2}\right|+b_{1} \rho\left(4-c^{2}\right)\right]=F(\rho)
$$

Differentiating $F(\rho)$, we get $F^{\prime}(\rho)=M b_{1}\left(4-c^{2}\right)>0$, implying that $F(\rho)$ is an increasing function of ρ on a closed interval $[0,1]$. Hence $F(\rho) \leq F(1)$ for all $\rho \in[0,1]$. That is

$$
\left|\left(a_{3}-a_{2}^{2}\right)\right| \leq M\left[c^{2}\left|b_{1}-b_{2}\right|+b_{1}\left(4-c^{2}\right)\right]=G(c)
$$

By hypothesis, $\beta \geq 1 / 2$ and hence $b_{1}-b_{2}=4 \alpha^{2}-4 \alpha-1+2 \beta(1+4 \alpha) \geq 4 \alpha^{2}$. Hence $G(c)=M\left[4 b_{1}-b_{2} c^{2}\right], G^{\prime}(c)=-2 b_{2} M c$ and $G^{\prime \prime}(c)=-2 b_{2} M$. Since $c \in[0,2]$, it follows that $G(c)$ attains a maximum at $c=0$. Thus the upper bound of $F(\rho)$ corresponds to $\rho=1$ and $c=0$. Hence $\left|\left(a_{3}-a_{2}^{2}\right)\right| \leq \frac{(1-\beta)}{(1+3 \alpha)}$.

Corollary 3.9. Choosing $\alpha=0$ in (19), we get $\left|a_{3}-a_{2}^{2}\right| \leq(1-\beta)$.
Using Lemma 2.1, the following estimates can be deduced.
Remark 3.2. Let $f \in S_{\alpha}^{\beta}$. By Lemma 2.1, we have

$$
\begin{aligned}
\left|a_{3}\right| & =\left|\frac{c_{2}(1-\beta)}{2(1+3 \alpha)}+\frac{c_{1}^{2}(1-\beta)^{2}}{2(1+2 \alpha)(1+3 \alpha)}\right| \\
& \leq \frac{(1-\beta)(3+2 \alpha-2 \beta)}{(1+2 \alpha)(1+3 \alpha)}, \\
\left|a_{4}\right| & =\left|\frac{c_{3}(1-\beta)}{3(1+4 \alpha)}+\frac{c_{1} c_{2}(3+8 \alpha)(1-\beta)^{2}}{6(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)}+\frac{c_{1}^{3}(1-\beta)^{3}}{6(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)}\right| \\
& \leq \frac{(1-\beta)\left[12+12 \alpha^{2}+4 \beta^{2}-16 \alpha \beta-14 \beta+26 \alpha\right]}{3(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)} \text { and } \\
\left|a_{5}\right| & =\left\lvert\, \frac{c_{1}^{4}(1-\beta)^{4}}{24(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)(1+5 \alpha)}\right. \\
& +\frac{c_{2}^{2}(1-\beta)^{2}}{8(1+3 \alpha)(1+5 \alpha)}+\frac{c_{1}^{2} c_{2}(1-\beta)^{3}(20 \alpha+6)}{24(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)(1+5 \alpha)} \\
& \left.+\frac{c_{1} c_{3}(1-\beta)^{2}(4+14 \alpha)}{12(1+2 \alpha)(1+4 \alpha)(1+5 \alpha)}+\frac{c_{4}(1-\beta)}{4(1+5 \alpha)} \right\rvert\, \\
& \leq \frac{(1-\beta)\left\{\begin{array}{c}
120+288 \alpha^{2}-16 \beta^{3}+744 \alpha^{2}+548 \alpha-188 \beta \\
+96 \beta^{2}-600 \alpha \beta+144 \alpha^{2} \beta+160 \alpha \beta^{2}
\end{array}\right\}}{24(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)(1+5 \alpha)} .
\end{aligned}
$$

Finally, using the above results, an upper bound for $\left|H_{3}(1)\right|, f \in S_{\alpha}^{\beta}$ is immediately obtained. 3.2.

Theorem 3.2. Let $f \in S_{\alpha}^{\beta}$. Then for $1 / 2 \leq \beta<1$,

$$
\begin{aligned}
\left|H_{3}(1)\right| & \leq \frac{(1-\beta)^{3}(3+2 \alpha-2 \beta)}{(1+2 \alpha)(1+3 \alpha)^{3}} \\
& +\frac{2(1-\beta)^{2}\left[12+12 \alpha^{2}+4 \beta^{2}-16 \alpha \beta-14 \beta+26 \alpha\right]}{9(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)^{2}} \\
& +\frac{(1-\beta)^{2}\left\{\begin{array}{c}
120+288 \alpha^{2}-16 \beta^{3}+744 \alpha^{2}+548 \alpha-188 \beta \\
+96 \beta^{2}-600 \alpha \beta+144 \alpha^{2} \beta+160 \alpha \beta^{2}
\end{array}\right\}}{24(1+2 \alpha)(1+3 \alpha)^{2}(1+4 \alpha)(1+5 \alpha)}
\end{aligned}
$$

Remark 3.3. The determination of the sharp estimates for $\left|H_{3}(1)\right|$ for functions belonging to the classes R_{α}^{β} and S_{α}^{β} remain to be explored.

References

[1] K.O. Babalola, On $H_{3}(1)$ Hankel determinant for some classes of univalent functions, Inequality Theory and Applications, S.S. Dragomir and J.Y. Cho, (Eds.), Nova Science Publishers, 6 (2010) 1-7.
[2] R. Bucur, D. Breaz and L. Georgescu, Third Hankel determinant for a class of analytic functions with respect to symmetric points, Acta Universitatis Apulensis, 42 (2015) 79-86.
[3] D. Banasal, S. Maharana and J. K. Prajapat, Third Order Hankel determinant for certain univalent functions, J. Korean Math.Soc. 52(6) (2015) 1139-1148.
[4] P.L. Duren, Univalent functions, Springer Verlag, New York Inc., 1983.
[5] R.M. Goel and B.S. Mehrok, A class of univalent functions, J. Austral. Math. Soc. (Series A) 35 (1983) 1-17.
[6] T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. Journal of Math. Analysis, 4(52) (2010) 2473-2585.
[7] A. Janteng, S. Abdulhalim and M. Darus, Coefficient inequality for a function whose derivative has positive real part, J. Inequalities Pure and Applied Math. 7(2) Art. 50 (2006) 1-5.
[8] A. Janteng, S. Abdulhalim and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal., 1(13) (2007) 619-625.
[9] A. Janteng, S.A. Halim and M. Darus, Estimate on the second Hankel functional for functions whose derivative has a positive real part, Journal of Quality Measurement and Analysis, 4(1) (2008) 189-195.
[10] D. V. Krishna, B. Venkateswarlu, T. RamReddy, Third Hankel determinant for bounded turning functions of order alpha, J. Nigerian Mathematical Society, 34 (2015) 121-127.
[11] D. V. Krishna, T. RamReddy, Coefficient inequality for a function whose derivative has a positive real part of order α, Mathematica Bohemica 140(1) (2015) 43-52.
[12] N. Kharudin, A. Akbarally, D. Mohamad and S.C. Soh, The second Hankel determinant for the class of close to convex functions, European J. Scientific Research, 66(3) (2011) 421-427.
[13] R.J. Libera and E.J. Zlotkiewiez, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(2) (1982) 225-230.
[14] R.J. Libera and E.J. Zlotkiewiez, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(2) (1983) 251-257.
[15] T.H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962) 532-537.
[16] A.K. Mishra, J.K. Prajapat and S. Maharana, Bounds on Hankel determinant for starlike and convex functions with respect to symmetric points, Cogent Mathematics, 3: 1160557 (2016).
[17] J.W. Noonan and D.K. Thomas. On the second Hankel determinant of areally mean p-valent functions. Trans. Amer. Math. Soc.,223(2)(1976) 337-346
[18] K.I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures et Appl., 28(c) (1983) 731-739.
[19] M.S. Robertson, On the theory of univalent functions, Annals of Math., 37 (1936) 374-408.
[20] C. Selvaraj and N. Vasanthi, Coefficient bounds for certain subclasses of close-to-convex functions, Int. J. Math. Analysis, 4(37) (2010) 1807-1814.
[21] G. Shanmugam, B. A. Stephen and K.G. Subramanian, Second Hankel determinant for certain classes of analytic functions, Bonfring Int. J. Data Mining, 2(2) (2012) 57-60.
[22] T.V. Sudharsan, S.P. Vijayalakshmi, B.A. Stephen, Third Hankel determinant for a subclass of analytic univalent functions, Malaya J. Matematik, 2(4)(2014) 438-444.
S.P. Vijayalakshmi

Department of Mathematics,
Ethiraj College, Chennai - 600008 India
Email:vijishreekanth@gmail.com
T.V. Sudharsan

Department of Mathematics,
SIVET College, Chennai - 600073 India
Email:tvsudharsan@rediffmail.com

BOUNDS ON THE THIRD ORDER HANKEL DETERMINANT FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS

Daniel Breaz
Department of Mathematics, "1 Decembrie 1918"
University of Alba-Iulia,
Alba-Iulia, Romania
email: dbreaz@uab.ro
K.G.Subramanian

Department of Mathematics,
Madras Christian College,
Chennai 600059 India
Email:kgsmani1948@gmail.com

[^0]: Key Words: Analytic functions, Hankel determinant, Functions with positive real part. 2010 Mathematics Subject Classification: Primary 30C45; Secondary 30C50.
 Received: 09.09.2016
 Accepted: 24.10.2016

