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Siacci’s Theorem According to Darboux Frame
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Abstract

The resolution of the acceleration vector of rigid body moving along
a space curve is well known thanks to Siacci [1]. In this resolution, the
acceleration vector is stated as the sum of two special oblique compo-
nents in the osculating plane of the point of the curve. In this paper,
we have studied the Siacci’s theorem for the curves on regular surfaces
in 3-dimensional Euclidean space. Also, an example is given for a helix
lying on a cylinder.

1 Introduction

The theory of surfaces in 3-dimensional Euclidean space had already been
developed widely when the Frenet-Serret formulas were found out by Serret
and Frenet. The adaptation of the method of moving frames to the study of
curves on surfaces was carried out by J. G. Darboux in the light of Frenet-
Serret approach to curves [2]. This natural moving frame which is constructed
on a surface is called as Darboux frame [3]. The Darboux frame exists at all
non-umbilic points of a surface. Therefore, it exists at all the points of a curve
on a regular surface.
In kinematics, it is well known that a particle moving along a curve in 3-
dimensional Euclidean space has an acceleration which is obtained by differ-
entiating velocity with respect to time parameter. To state the acceleration
vector as the sum of its tangential and normal components, which are orthog-
onal to each other, is useful for numerous applications. However, to state the
acceleration vector as the sum of its tangential and radial components, which
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do not need to be orthogonal to each other, is more useful for motions where
the angular momentum of the particle is constant. The success of stating the
acceleration in this form belongs to F. Siacci. In the Siacci’s resolution of the
acceleration vector, the tangent component lies along the tangent on the path
while the radial component is directed from the particle towards the foot of
the perpendicular that is from an arbitrary fixed origin to the instantaneous
osculating plane to the path [4]. In the literature, there have been numerous
studies about the Siacci’s theorem. After F. Siacci, firstly, E. T. Whittaker
dealt with Siacci’s theorem and gave a geometrical proof of Siacci’s theorem in
the plane [5]. After that, N. Grossman gave a more modern proof in [6] (but
the concomitant diagram was misdrawn). Recently, J. Casey has studied on
the Siacci’s theorem. According to J. Casey, although Siacci’s formulas were
quite striking, his expression of the theorem was not precise; also his proof
was cumbersome. Therefore, J. Casey presented a proof of Siacci’s theorem
in the space which is based on the Frenet-Serret formulas [4]. Recently, M. Y.
Yılmaz et al. [7] have studied Siacci’s theorem for curves in Finsler Manifold
F 3.
In this paper, firstly, we have reviewed the Frenet-Serret frame and Darboux
frame to disambiguate the ensuing sections. Afterwards, we have studied the
Siacci’s theorem for the curves on regular surfaces in E3 by considering the
statement and proof of Siacci’s theorem inspired from [4]. Furthermore, we
have given an example for circular helices.

2 Preliminaries

Let 3-dimensional Euclidean space E3 be provided with the standard scalar
product

〈x , y〉 = x1y1 + x2y2 + x3y3,

where x = (x1 , x2 , x3) and y = (y1 , y2 , y3) are arbitrary vectors in E3.
The norm of a vector x in E3 is expressed by ‖x‖ =

√
〈x , x〉. A curve in E3

α(s) is a unit speed curve if ‖α′(s)‖ = 1 where α′(s) is the tangent vector of
α(s). In this case, s is called arc-length parameter of the curve α(s).

The moving Serret-Ferent frame of the unit speed curve α(s) is denoted
as {T(s) , N(s) , B(s) } which consist of a unit tangent vector T, the unit
principal normal vector N and the unit binormal vector B. Then the derivative
formulas of Frenet-Serret frame in the matrix form are given asT′

N′

B′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 T
N
B

 . (1)
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Here, the functions κ(s) = ‖T′(s)‖ and τ(s) = −〈B′(s),N(s) 〉 are called the
curvature and the torsion of the curve α(s), respectively [8]. Let α : I ⊂ R→
M be a unit speed curve which lies on the regular surface M . Then there
exists the Darboux frame denoted as {T , Y, U } along the curve α. T is the
unit tangent vector of α, U is the unit normal vector of M restricted to α,
and Y is the unit vector given as Y = U × T. Since T is mutual in both
Darboux and Frenet-Serret frame, the other vectors of each frames lie in the
same plane except T. Therefore, the relation between this two frames could
be given in the matrix form by T

Y
U

 =

 1 0 0
0 cosφ − sinφ
0 sinφ cosφ

  T
N
B

 , (2)

where φ is the angle between the vectors Y and N or likewise U and B
[9, 10, 11]. Additionally, the derivative formulas of Darboux frame are given
as T′

Y′

U′

 =

 0 kg kn
−kg 0 τg
−kn −τg 0

 T
Y
U

 . (3)

Here, the functions kg, kn, and τg are called geodesic curvature, normal cur-
vature, and geodesic torsion of the curve α, respectively [2]. With the help of
(2) and (3), kg, kn, and τg satisfy the following equations:

kg(s) = κ(s) cosφ, κ2(s) = kg
2(s) + kn

2(s),
kn(s) = κ(s) sinφ, φ = arctan ( kn/kg),
τg(s) = τ(s)− φ′(s).

(4)

Let P be a particle whose mass is m and which moves on a regular surface M ,
and let an arbitrary fixed origin O be chosen in E3. Also let x be the position
vector of P at time t and C be the oriented curve traced out by P with the
arc length parameter s such that the arc length of C corresponds to time t.
Therefore, the unit tangent vector for the curve C is given as

T = x′ =
dx

ds
. (5)

With the aid of (1) and (5), the velocity vector v and acceleration vector a of
P at time t can be written as

v = ẋ = vT, v = ṡ, a = v̇ = v̇T + κ v2 N,

where d
dt a superposed dot denotes differential with respect to t. Since v can

be stated as a function of s along C, the acceleration vector can be expressed
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as

a = v
dv

ds
T + κ v2 N,

and so a always lies in the osculating plane of C at P , [4].
Now, considering (3) and (5), the velocity vector v and acceleration vector a
of P at time t with respect to Darboux basis are given as

v = ẋ = vT,
v = ṡ,
a = v̇ = v̇T + kg v

2 Y + kn v
2 U.

(6)

Likewise, this last equation can be written as

a = v
dv

ds
T + kg v

2 Y + kn v
2 U . (7)

From (4), we have the equations

kg =

√
kn

2 + kg
2 cosφ and kn =

√
kn

2 + kg
2 sinφ.

By applying these equations into (7), we obtain

a = v
dv

ds
T +

√
kn

2 + kg
2v2 ( cosφY + sinφU ) . (8)

Thus, the acceleration vector of P lies in the plane Sp {T, cosφY + sinφU}
of C at P , invariably.
By considering (6)1 and using the definition of angular momentum of P about
O, we obtain

HO = x ∧ mv = x ∧ mvT, (9)

and so it can be said that HO lies in the plane perpendicular to vectors T and
x.

3 Siacci’s Theorem for the Curves on Regular Surfaces

Since a particle, which moves along a curve, can be seen as a point of this
curve, the aforesaid particle P has a position vector in terms of the Darboux
basis of the curve C. Let the position vector of P on the Darboux basis be
resolved as

x = q T− p ( cosφ Y + sinφ U) + b (− sinφ Y + cosφ U) , (10)
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where
q = 〈x,T〉 ,
p = −〈x, cosφY + sinφU〉 ,
b = 〈x,− sinφY + cosφU〉 .

(11)

Let us denote a vector r in the plane Sp {T , cosφY + sinφU} as follows:

r = q T− p ( cosφY + sinφU ) . (12)

Then we get
r2 = 〈 r , r〉 = p2 + q2, (13)

where r is the length of the vector r (Fig. 1).

Figure 1: A particle P moves along C, which is a curve on a regular surface in
3-dimensional Euclidean space. The normal of plane Π is (− sinφY+cosφU).
The tangent line to C at P is the line d. Also B is the foot of the perpendicular
from origin O to the plane Π, and BP is perpendicular to the tangent line.
The vector BP is shown with r, and er is the unit vector in direction of BP .
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By differentiating the equation (10) with respect to arc length parameter, we
get

T = (q′ + kg b sinφ+ kg p cosφ− kn b cosφ+ kn p sinφ)T
+(kg q−b′ sinφ− φ′ cosφ b−p′ cosφ+ φ′ sinφ p−τg b cosφ+ τg p sinφ)Y
+(kn q+b′ cosφ− φ′ sinφ b−p′ sinφ− φ′ cosφ p−τg b sinφ− τg p cosφ)U.

(14)

Since the vectors T , Y, and U are linearly independent, the following equa-
tions hold:

q′ + kg b sinφ + kg p cosφ − kn b cosφ + kn p sinφ = 1
kg q − b′ sinφ − φ′ cosφ b −p′ cosφ + φ′ sinφ p −τg b cosφ+ τg p sinφ = 0
kn q + b′ cosφ − φ′ sinφ b − p′ sinφ − φ′ cosφ p −τg b sinφ− τg p cosφ = 0.

(15)

Using the equations kg =
√
kn

2 + kg
2 cosφ and kn =

√
kn

2 + kg
2 sinφ in (15),

we obtain

q′ = 1−
√
kn

2 + kg
2 p,

p′ =
√
kn

2 + kg
2 q−(τg + φ′) b,

b′ = (τg + φ′) p .

(16)

If we differentiate (13) and use the formulas (16), we have

r r′ = q − b ( τg + φ′ ) p,
r r′ = q − b b′ .

(17)

If the angular momentum vector, given in (9), is reconstructed by taking into
account the position vector x aforementioned in (10), the angular momentum
vector takes the form of

HO = mv b ( cosφY + sinφU) + mv p (− sinφY + cosφU ) . (18)

Assume that
h = p v,
w = b v.

(19)

By using the equation (12), let us express the vector (cosφY + sinφU) in
terms of r and T to determine the acceleration vector a in (8) along the tangent
line d and radial direction BP in the plane Π. However, this is possible if and
only if p 6= 0. Since the component of the angular momentum along the
normal of the plane Π never vanishes according to the physical assumption, it
can be immediately seen that h 6= 0 or p 6= 0. Then we can write

cosφY + sinφU =
1

p
(−r + qT) . (20)
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Also, when p 6= 0, it is easy to get r 6= 0 from (13). Hence, a unit vector er

can be defined as

er =
1

r
r. (21)

With the aid of (20) and (21), we have

cosφY + sinφU =
1

p
(− r er + qT) . (22)

If we substitute (22) in (8), we obtain the acceleration vector a as follows,

a = −
√
kn2+kg2v2 r

p er +

(
v dvds +

√
kn2+kg2v2 q

p

)
T

= Srer + StT.
(23)

Here, St and Sr are the tangential and radial Siacci components of the accel-
eration, respectively. Using the equation (19)1 with p 6= 0, we get

Sr = −

√
kn

2 + kg
2 r h2

p3
. (24)

Now, let us investigate the different forms of the tangential component of
acceleration, St can be written in different forms. At first, if we consider the
equations (16)2,3 and (19)1, we obtain

St = 1
2 (v2)

′
+

√
kn2+kg2 v2 q

p = (h2)′

2p2 +
( τg+φ

′ ) b h2

p3

= 1
2p2

(
(h2)

′
+ h2

p2 (b2)
′
)
.

(25)

Similarly, using the equation (17)1, we get

St =
1

2
(v2)

′
+

√
kn

2 + kg
2 v2

(
(r2)

′

2 p
+ ( τg + φ′ ) b

)
. (26)

Finally, if we consider (17)2 and also utilize (10) and (13), we obtain

St = 1
2 (v2)

′
+

√
kn2+kg2 v2

2 p ( r2 + b2)
′

= 1
2 (v2)

′
+

√
kn2+kg2 v2

2 p 〈x , x〉′.
(27)

By considering the above derivation, we can express the following theorem:

Theorem 1 (Siacci’s Theorem According to Darboux Frame). Let P be a par-
ticle whose mass is m and which moves on a regular surface M in E3 where the
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component of angular momentum along the unit vector (− sinφY + cosφU)
never vanishes. Then the acceleration vector a of P can be stated as

a = −

√
kn

2 + kg
2v2 r

p
er +

v dv
ds

+

√
kn

2 + kg
2v2 q

p

T = Srer + StT.

St lies along the tangent line of C, while Sr is directed from P towards the
foot of the perpendicular that is from the origin of the space to the plane Π to
C at P .

Example 1. Suppose that a particle P moves on a right-handed circular helix
lying on a cylinder which has a radius A. Let (R, θ, z) be a cylindrical coordi-
nate system and according to this coordinate system, let the position vector
of the particle P be given as

x = A eR + z k, z = B θ. (28)

Here, eR = cos θ i + sin θ j, eθ = − sin θ i + cos θ j, where i, j, and k
compose a right-handed orthonormal frame and A,B are positive constants
(Fig.2). Also, let k be the axis of the helix and α be the helix angle where
tanα = A/B . Let θ̇ be denoted by ω. Then the velocity vector and the
acceleration vector of P can be obtained as

v = ω (A eθ +B k) , a = − Aω2 eR + ω̇ (A eθ +B k ). (29)

Let C =
√
A2 + B2. Thus, the speed of P and its time derivative can be

obtained as

v = ṡ = Cω , v
dv

ds
= C ω̇. (30)

From (30)1, it can be easily seen that the arc length increases linearly with θ.
Considering tanα = A/B, where A > 0 and B > 0, one can easily find the
Frenet-Serret vectors as

T = sinα eθ + cosαk,N = −eR,B = − cosα eθ + sinαk. (31)

If we use the relation matrix between the Frenet frame and the Darboux frame,
the Darboux basis of the helix is given by

T = sinα eθ + cosαk,
Y = − cosφ eR + sinφ cosα eθ − sinφ sinαk,
U = − sinφ eR − cosφ cosα eθ + cosφ sinαk.

(32)
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Figure 2: A particle P moves on a right-handed circular helix lying on a
cylinder which has a radius A. The position vector of P at time t is x =
A eR + B θ k. Also, k is the axis of the helix and α is the helix angle.
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The curvature κ and the torsion τ are constants: κ = A
C2 , τ = B

C2 . Thus,
from (4), the geodesic torsion, geodesic curvature, and normal curvature can
be found as follows,

τg = B
C2 − φ′,

kg = A
C2 cosφ ,

kn = A
C2 sinφ .

(33)

From (11), (28)1, and (32), we obtain

q = z cosα ,
p = A ,
b = z sinα.

(34)

If we substitute (34) in (10), after some calculations, we have

x = z cosαT− (z sinα sinφ+A cosφ)Y + (z sinα cosφ−A sinφ)U. (35)

From (35), it is possible to see the Darboux components of x.
Using (19)1,2 and (34)2,3, the components for the angular momentum per unit
mass can be obtained as

h = ACω , w = Az ω. (36)

If we give the Siacci’s theorem according to Darboux frame, we find that

Sr = − r ω2 = −ω2
√
A2 + z2cos2α , St = C ω̇ + ω2 z cosα. (37)
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