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Existence results for fractional differential
inclusions with Erdélyi-Kober fractional

integral conditions

Bashir Ahmad and Sotiris K. Ntouyas

Abstract

In this paper, we discus the existence of solutions for Riemann-
Liouville fractional differential inclusions supplemented with Erdélyi-
Kober fractional integral conditions. We apply endpoint theory, Kras-
noselskii’s multi-valued fixed point theorem and Wegrzyk’s fixed point
theorem for generalized contractions. For the illustration of our results,
we include examples.

1 Introduction

Differential inclusions, regarded as generalization of differential equations and
inequalities, are found to be of great interest and value in optimal control the-
ory and stochastic processes [1]. Differential inclusions also help to understand
dynamical systems in which the velocities are not uniquely specified by the
state of the system, in spite of depending on it.

In recent years, the area of differential equations and inclusions of arbitrary
order has received considerable attention and several results of wide interest
can now be found in the literature on the topic, for instance, see [2]-[7] and
the references cited therein.
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It has been observed that much of the work dealing with fractional-order
boundary problems equipped with integral boundary conditions has addressed
either classical, Riemann-Liouville or Hadamard type integrals. Besides these
integrals, there is another kind of integral operator, introduced by Arthur
Erdélyi and Hermann Kober [8] in 1940, which is known as Erdélyi-Kober
fractional integral operator. Such operators are found to be quite useful in
obtaining the solutions for single, dual and triple integral equations possessing
special functions of mathematical physics in their kernels. For details and
applications of the Erdélyi-Kober fractional integrals, we refer the reader to a
series of papers and texts [8, 9, 10, 11, 12, 13].

In order to enrich the work on fractional-order boundary value problems
involving integral boundary conditions further, we consider a problem consist-
ing of fractional differential inclusions and Erdélyi-Kober fractional integral
boundary conditions. Precisely, we investigate the following problem:

Dqx(t) ∈ F (t, x(t)), 0 < t < T, 1 < q ≤ 2,

x(0) = 0,

αx(T ) =

m∑
i=1

βi
ηt−ηi(δi+γi)

Γ(δi)

∫ ξi

0

sηiγi+ηi−1x(s)

(tηi − sηi)1−δi
ds :=

m∑
i=1

βiI
γi,δi
ηi x(ξi),

(1)
where 1 < q ≤ 2, Dq is the standard Riemann-Liouville fractional derivative
of order q, Iγi,δiηi is the Erdélyi-Kober fractional integral of order δi > 0 with
ηi > 0 and γi ∈ R, i = 1, 2, . . . ,m, F : [0, T ]×R→ P(R) is a multivalued map,
P(R) is the family of all nonempty subsets of R, and α, βi ∈ R, ξi ∈ (0, T ),
i = 1, 2, . . . ,m are given constants.

In the rest of the paper, we describe some preliminary concepts related to
the proposed study in Section 2, while the main existence results are estab-
lished in Section 3 by applying endpoint theory, Krasnoselskii’s multi-valued
fixed point theorem and Wegrzyk’s fixed point theorem for generalized con-
tractions. Finally we present examples for illustration of our main results.

2 Preliminaries

2.1 Basic material for fractional calculus

In this section, we introduce some notations and definitions of fractional cal-
culus and present preliminary results needed in our proofs later [13, 14].

Definition 2.1. The Riemann-Liouville fractional derivative of order q > 0
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of a continuous function f : (0,∞)→ R is defined by

Dqf(t) =
1

Γ(n− q)

(
d

dt

)n ∫ t

0

(t− s)n−q−1f(s)ds, n− 1 < q < n,

where n = [q] + 1, [q] denotes the integer part of a real number q. Here Γ is the
Gamma function defined by Γ(q) =

∫∞
0
e−ssq−1ds.

Definition 2.2. The Riemann-Liouville fractional integral of order q > 0 of
a continuous function f : (0,∞)→ R is defined by

Jqf(t) =
1

Γ(q)

∫ t

0

(t− s)q−1f(s)ds,

provided the integral exists.

Definition 2.3. The Erdélyi-Kober fractional integral of order δ > 0 with
η > 0 and γ ∈ R of a continuous function f : (0,∞)→ R is defined by

Iγ,δη f(t) =
ηt−η(δ+γ)

Γ(δ)

∫ t

0

sηγ+η−1f(s)

(tη − sη)1−δ
ds

provided the right side is pointwise defined on R+.

Lemma 2.1. Let δ, η > 0 and γ, q ∈ R. Then we have

Iγ,δη tq =
tqΓ(γ + (q/η) + 1)

Γ(γ + (q/η) + δ + 1)
. (2)

Lemma 2.2. Let 1 < q ≤ 2, δi, ηi > 0, α, γi, βi ∈ R, ξi ∈ (0, T ), i =
1, 2, . . . ,m and h ∈ AC([0, T ],R). Then the linear Riemann-Liouville frac-
tional differential equation subject to the Erdélyi-Kober fractional integral bound-
ary conditions 

Dqx(t) = h(t), t ∈ (0, T ),

x(0) = 0, αx(T ) =

m∑
i=1

βiI
γi,δi
ηi x(ξi),

(3)

is equivalent to the following integral equation

x(t) = Jqh(t)− tq−1

Λ

(
αJqh(T )−

m∑
i=1

βiI
γi,δi
ηi Jqh(ξi)

)
, (4)

where

Λ := αT q−1 −
m∑
i=1

βiξi
q−1Γ(γi + (q − 1)/ηi + 1)

Γ(γi + (q − 1)/ηi + δi + 1)
6= 0. (5)
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Proof. Solving the linear fractional differential equation in (3), we get an
integral equation given by

x(t) = Jqh(t)− c1tq−1 − c2tq−2, (6)

where c1, c2 ∈ R. The first condition (x(0) = 0) of (3) implies that c2 = 0.
Applying the Erdélyi-Kober fractional integral operator of order δi > 0 with
ηi > 0 and γi ∈ R on (6) and using Lemma 2.1, we obtain

Iγi,δiηi x(t) = Iγi,δiηi Jqh(t)− c1
tq−1Γ(γ + (q − 1)/η + 1)

Γ(γ + (q − 1)/η + δ + 1)
,

which, together with the second condition of (3), yields

αJqh(T )− c1αT q−1 =

m∑
i=1

βiI
γi,δi
ηi Jqh(ξi)− c1

m∑
i=1

βiξ
q−1
i Γ(γi + (q − 1)/ηi + 1)

Γ(γi + (q − 1)/ηi + δi + 1)
.

Thus

c1 =
1

Λ

(
αJqh(T )−

m∑
i=1

βiI
γi,δi
ηi Jqh(ξi)

)
,

where Λ is given by (5). Substituting the values of c1 and c2 in (6), we obtain
the desired solution (4). The converse follows by direct computation. �

2.2 Basic material for multivalued maps

Here we outline some basic concepts of multivalued analysis [15, 16].
Let U := C([0, T ],R) denote the Banach space of all continuous func-

tions from [0, T ] into R with the norm ‖x‖ = sup{|x(t)|, t ∈ [0, T ]}. Also
by L1([0, T ],R) we denote the space of functions x : [0, T ] → R such that

‖x‖L1 =
∫ T
0
|x(t)|dt.

For a normed space (X, ‖·‖), we define Pcl(X) = {Y ∈ P(X) : Y is closed},
Pbd(X) = {Y ∈ P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}
Pcl,bd(X) = {Y ∈ P(X) : Y is closed and bounded}, and Pcp,c(X) = {Y ∈
P(X) : Y is compact and convex}.

A multi-valued map G : X → P(X) is (i) convex (closed) valued if G(x)
is convex (closed) for all x ∈ X; (ii) bounded on bounded sets if G(Y ) =
∪x∈YG(x) is bounded in X for all Y ∈ Pb(X) (i.e. supx∈Y {sup{|y| : y ∈
G(x)}} < ∞);(iii) is called upper semi-continuous (u.s.c.) on X if for each
x0 ∈ X, the set G(x0) is a nonempty closed subset of X, and if for each
open set N of X containing G(x0), there exists an open neighborhood N0

of x0 such that G(N0) ⊆ N ; (iv) lower semi-continuous (l.s.c.) if the set
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{y ∈ X : G(y) ∩ Y 6= ∅} is open for any open set Y in X; (v) completely
continuous if G(B) is relatively compact for every B ∈ Pb(X).

If the multi-valued map G is completely continuous with nonempty com-
pact values, then G is u.s.c. if and only if G has a closed graph, that is,
xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗). The multi-valued map G
is said to be measurable if for every y ∈ X, the function t 7−→ d(y,G(t)) =
inf{|y−z| : z ∈ G(t)} is measurable. The multi-valued map G has a fixed point
if there is x ∈ X such that x ∈ G(x). The fixed point set of the multivalued
operator G will be denoted by FixG.

Let (X, d) be a metric space induced from the normed space (X; ‖ · ‖).
Consider Hd : P(X)× P(X)→ R ∪ {∞} given by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where d(A, b) = infa∈A d(a; b) and d(a,B) = infb∈B d(a; b). Then (Pcl,b(X), Hd)
is a metric space (see [17]).

Definition 2.4. A function x ∈ AC2(J,R) is called a solution of problem (1)
if there exists a function v ∈ L1(J,R) with v(t) ∈ F (t, x(t)), a.e. in J such

that x(0) = 0, αx(T ) =

m∑
i=1

βiI
γi,δi
ηi x(ξi) and

x(t) = Jqv(t)− tq−1

Λ

(
αJqv(T )−

m∑
i=1

βiI
γi,δi
ηi Jqv(ξi)

)
.

3 Existence result via endpoint theory

In this subsection we prove the existence of solutions for the problem (1) via
endpoint theory.

Definition 3.1. An element x ∈ X is called an endpoint of a multifunction
F : X → P(X) whenever Fx = {x} ([18]). Also, we say that F has an
approximate endpoint property whenever infx∈X supy∈Fx d(x, y) = 0 ([18]).

Definition 3.2. A function f : R→ R is called upper semi-continuous when-
ever lim supn→∞ f(λn) ≤ f(λ) for all sequence {λn}n≥1 with λn → λ.

For the proof of our first result, we need the following endpoint fixed point
theorem ([18]).
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Lemma 3.1. Let ψ : [0,∞) → [0,∞) be an upper semi-continuous function
such that ψ(t) < t and lim inft→∞(t− ψ(t)) > 0 for all t > 0. Let (X, d) be
a complete metric space and Pcl,bd(X) is the collection of all nonempty closed
and bounded subsets of X. Further S : X → Pcl,bd(X) is a multifunction such
that

Hd(Sx, Sy) ≤ ψ(d(x, y)) for all x, y ∈ X.

Then S has a unique endpoint if and only if S has approximate endpoint
property.

Based on Lemma 2.2, we introduce an operator G : U→ P(U) as follows:

G(u) =


h ∈ U :

h(t) =


Jqv(s)(t)

− t
q−1

Λ

(
αJqv(s)(T )−

m∑
i=1

βiI
γi,δi
ηi Jqv(s)(ξi)

)
,


(7)

for v ∈ SF,u, where SF,u denote the set of selections of F defined by

SF,u := {v ∈ L1(J,R) : v(t) ∈ F (t, u(t)) for a.e. t ∈ J}.

Now we are in a position to present our main existence result.

Theorem 3.1. Suppose that ψ : [0,∞) → [0,∞) is a nondecreasing upper
semi-continuous mapping such that lim inft→∞(t− ψ(t)) > 0 and ψ(t) < t for
all t > 0. Also, let F : J ×R→ Pcp(R) be an integrable bounded multifunction
such that F (·, u) : J → Pcp(R) is measurable for all u ∈ R, where Pcp(R) is
the collection of all nonempty compact subsets of R. Assume that there exists
a function ` ∈ C(J, [0,∞)) such that

Hd(F (t, u(t))− F (t, v(t))) ≤
(
‖`‖θ

)−1
`(t)ψ(|u(t)− v(t)|),

where

θ =
T q

Γ(q + 1)
+
|α|T 2q−1

|Λ|Γ(q + 1)
+

T q−1

|Λ|Γ(q + 1)

m∑
i=1

|βi|ξqi Γ(γi + (q/ηi) + 1)

Γ(γi + (q/ηi) + δi + 1)
. (8)

If the multifunction G has the approximate endpoint property, then the inclu-
sion problem (1) has a solution.

Proof. Our proof will be complete when we establish that the multifunction
G : U → P(U) defined by (7) has an endpoint. To do this, we show that the
operator G(u) is a closed subset of P(U) for all u ∈ U. Since the multivalued
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map t 7→ F (t, u(t)) is measurable and has closed values for all u ∈ U, so it
has measurable selection. This implies that SF,u is nonempty for all u ∈ U.
Let {zn}n≥1 be a sequence in G(u) with zn → z for u ∈ U. For every n ∈ N,
choose vn ∈ SF,un

such that

zn(t) = Jqvn(s)(t)− tq−1

Λ

(
αJqvn(s)(T )−

m∑
i=1

βiI
γi,δi
ηi Jqvn(s)(ξi)

)
.

By compactness of F , the sequence {vn}n≥1 has a subsequence which converges
to some v ∈ L1(J). We denote this subsequence again by {vn}n≥1. It is clear
that v ∈ SF,u and for all t ∈ J,

zn(t)→ z(t) = Jqv(s)(t)− tq−1

Λ

(
αJqv(s)(T )−

m∑
i=1

βiI
γi,δi
ηi Jqv(s)(ξi)

)
.

This shows that z ∈ G(u) and so G is closed-valued. On the other hand, G(u)
is a bounded set for all u ∈ U, because F is a compact multivalued map.

Finally, we show that Hd(G(u),G(w)) ≤ ψ(‖u − w‖). Let u,w ∈ U and
h1 ∈ G(w). Choose v1 ∈ SF,w such that

h1(t) = Jqv1(s)(t)− tq−1

Λ

(
αJqv1(s)(T )−

m∑
i=1

βiI
γi,δi
ηi Jqv1(s)(ξi)

)
,

for almost all t ∈ J . Since

Hd(F (t, u(t))− F (t, w(t))) ≤
(
‖`‖θ

)−1
`(t)ψ(|u(t)− w(t)|), for all t ∈ J,

there exist z ∈ F (t, u(t)) provided that

|v1(t)− z| ≤
(
‖`‖θ

)−1
`(t)ψ(|u(t)− w(t)|), for all t ∈ J.

Now, we consider the multivalued map V : J → P(R) given by

V(t) =

{
z ∈ R : |v1(t)− z| ≤

(
‖`‖θ

)−1
`(t)ψ(|u(t)− w(t)|)

}
.

Since v1 and ϕ =
(
‖`‖θ

)−1
`ψ(|u − w|) are measurable, the multifunction

V(·) ∩ F (·, u(·)) is measurable. Choose v2(t) ∈ F (t, u(t)) such that

|v1(t)− v2(t)| ≤
(
‖`‖θ

)−1
`(t)ψ(|u(t)− w(t)|), for all t ∈ J.
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We define the element h2 ∈ G(u) as follows:

h2(t) = Jqv2(s)(t)− t
q−1

Λ

(
αJqv2(s)(T )−

m∑
i=1

βiI
γi,δi
ηi Jqv2(s)(ξi)

)
, for all t ∈ J.

Let supt∈J |`(t)| = ‖`‖. Then, one can get

|h1(t)− h2(t)|
≤ Jq|v1(s)− v2(s)|(t)

+
tq−1

|Λ|

(
αJq|v1(s)− v2(s)|(T ) +

m∑
i=1

βiI
γi,δi
ηi Jq|v1(s)− v2(s)|(ξi)

)
≤

(
‖`‖θ

)−1(‖`‖θ)ψ(‖u− w‖)
= ψ(‖u− w‖).

Hence, ‖h1 − h2‖ ≤ ψ(‖u − w‖). Therefore Hd(G(u),G(w)) ≤ ψ(‖u − w‖)
for all u,w ∈ U. By hypothesis, since the multifunction G has approximate
endpoint property, by Lemma 3.1, there exists u∗ ∈ U such that G(u∗) =
{u∗}. Consequently, the problem (1) has the solution u∗.This completes the
proof.

Example 3.1. Consider the following boundary value problem for fractional
differential inclusion with Erdélyi-Kober fractional integral conditions

D3/2x(t) ∈ F (t, x(t)), t ∈ [0, 5],

x(0) = 0,
2

3
x(5) =

e

2
I

5
3 ,

3
7√

3
5

x

(
4

3

)
+
π

3
I

2
9 ,
√

3
8√

2
5

x

(
3

2

)
+

√
π

6
I

√
e

2 , e
2

4
e
3

x

(
2

7

)
.

(9)

Here q = 3/2, m = 3, T = 5, α = 2/3, β1 = e/2, β2 = π/3, β3 =
√
π/6,

η1 =
√

3/5, η2 =
√

2/5, η3 = e/3, γ1 = 5/3, γ2 = 2/9, γ3 =
√
e/2, δ1 = 3/7,

δ2 =
√

3/8, δ3 = e2/4, ξ1 = 4/3, ξ2 = 3/2, ξ3 = 2/7. Using the given data, we
find that

θ =
T q

Γ(q + 1)
+
|α|T 2q−1

|Λ|Γ(q + 1)
+

T q−1

|Λ|Γ(q + 1)

m∑
i=1

|βi|ξqi Γ(γi + (q/ηi) + 1)

Γ(γi + (q/ηi) + δi + 1)
≈ 44.000.

Let F : [0, 5]× R→ P(R) be a multi-valued map given by

x→ F (t, x) =

[
0,

3t

10

|x|
1 + |x|

+
2

3

]
. (10)
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Setting `(t) = (3t)/10, t ∈ [0, 5], we have ‖`‖ = 3/2. Choosing ψ(y) = y/2, it
is clear the function ψ is nondecreasing upper semi-continuous on [0, 5] such
that lim infy→∞(y − ψ(y)) > 0 and ψ(y) < y for all y > 0. Also

Hd(F (t, x)− F (t, x̄)) ≤ 3t

10
|x− x̄| <

(
‖`‖θ

)−1 3t

10
ψ(|x− x̄|),

for x, x̄ ∈ R. Let U = C([0, 5],R). We define an operator G : U→ P(U) by

G(u) = {z ∈ U : there exists v ∈ SF,u such that z(t) = w(t) for all t ∈ [0, 5]},

where

w(t) = Jqv(s)(t)− tq−1

Λ

(
αJqv(s)(T )−

m∑
i=1

βiI
γi,δi
ηi Jqv(s)(ξi)

)
, t ∈ [0, 5].

Since supu∈G(0) ‖u‖ = 0, thus infu∈U sups∈G(u) ‖u− s‖ = 0. Consequently, the
operator G has the approximate endpoint property. Thus all the conditions of
Theorem 3.1 are satisfied. Therefore, by the conclusion of Theorem 3.1, the
problem (9) with F (t, x) given by (10) has at least one solution on [0, 5].

4 Existence result via Krasnoselskii’s multi-valued fixed
point theorem

In this subsection we prove the existence of solutions for the problem (1) with
a convex valued right hand side, by applying Krasnoselskii’s multi-valued fixed
point theorem [19] and assuming that F is L1−Carathéodory.

Definition 4.1. A multivalued map F : [0, T ] × R → P(R) is said to be
Carathéodory if (i) t 7−→ F (t, x) is measurable for each x ∈ R and (ii)
x 7−→ F (t, x) is upper semicontinuous for almost all t ∈ [0, T ]. Further a
Carathéodory function F is called L1−Carathéodory if (iii) for each ρ > 0,
there exists ϕρ ∈ L1([0, T ],R+) such that ‖F (t, x)‖ = sup{|v| : v ∈ F (t, x)} ≤
ϕρ(t) for all ‖x‖ ≤ ρ and for a.e. t ∈ [0, T ].

Lemma 4.1. ([15, Proposition 1.2]) If G : X → Pcl(Y ) is u.s.c., then Gr(G)
is a closed subset of X × Y ; i.e., for every sequence {xn}n∈N ⊂ X and
{yn}n∈N ⊂ Y , if when n → ∞, xn → x∗, yn → y∗ and yn ∈ G(xn), then
y∗ ∈ G(x∗). Conversely, if G is completely continuous and has a closed graph,
then it is upper semi-continuous.

Lemma 4.2. ([20]) Let X be a Banach space. Let F : [0, T ]× R→ Pcp,c(X)
be an L1− Carathéodory multivalued map and let Θ be a linear continuous
mapping from L1([0, T ], X) to C([0, T ], X). Then the operator

Θ ◦ SF : C([0, T ], X)→ Pcp,c(C([0, T ], X)), x 7→ (Θ ◦ SF )(x) = Θ(SF,x,y)
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is a closed graph operator in C([0, T ], X)× C([0, T ], X).

Lemma 4.3. (Krasnoselskii’s fixed point theorem [19]) Let X be a Banach
space, Y ∈ Pb,cl,c(X) and A,B : Y → Pcp,c(X) are two multivalued operators.
Then there exists y ∈ Y such that y ∈ Ay +By provided the operators A and
B satisfy the conditions: (i) Ay+By ⊂ Y for all y ∈ Y ; (ii) A is contraction;
and (iii) B is u.s.c and compact.

Theorem 4.1. Assume that:

(H1) F : [0, T ]× R→ Pcp,c(R) is L1−Carathéodory multivalued map;

(H2) there exists a continuous function p ∈ C([0, T ],R+) such that

‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ p(t), for each (t, x) ∈ [0, T ]× R;

(H3) there exists a function k ∈ U such that

Hd(F (t, x), F (t, y)) ≤ ‖k‖‖x− y‖,

for a.e t ∈ [0, T ] and all x, y ∈ U, with

‖k‖ T q−1

|Λ|Γ(q + 1)

m∑
i=1

|βi|ξqi Γ(γi + (q/ηi) + 1)

Γ(γi + (q/ηi) + δi + 1)
< 1.

Then the boundary value problem (1) has at least one solution on [0, T ].

Proof. Let us introduce the multi-valued operators A : U −→ P(U) by

A(x) =

{
h ∈ U : h(t) =

tq−1

Λ

m∑
i=1

βiI
γi,δi
ηi Jqf(s)(ξi)

}
, (11)

and B : U −→ P(U) by

B(x) =

{
h ∈ U : h(t) = Jαf(s)(t)− αt

q−1

Λ
Jqf(s)(T )

}
. (12)

Observe that G = A+B, where the operator G : U −→ P(U) is given by (7). We
shall show that the operators A and B satisfy the conditions of Lemma 4.3 on
[0, T ] in several steps. We begin by showing that the operators A and B define
the multivalued operators A,B : Br → Pcp,c(U) where Br = {x ∈ U : ‖x‖ ≤ r}
is a bounded set in U. We will only prove that the operator B is compact-
valued on Br and convex for all x ∈ U as the similar steps work for the operator
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A. Note that the operator B is equivalent to the composition L ◦SF , where L

is the continuous linear operator on L1([0, T ],R) into U, defined by

L(v)(t) = Jαv(s)(t)− αt
q−1

Λ
Jqv(s)(T ).

Suppose that x ∈ Br is arbitrary and let {vn} be a sequence in SF,x. Then,
by definition of SF,x, we have vn(t) ∈ F (t, x(t)) for almost all t ∈ [0, T ]. Since
F (t, x(t)) is compact for all t ∈ J , there is a convergent subsequence of {vn(t)}
(we denote it by {vn(t)} again) that converges in measure to some v(t) ∈ SF,x
for almost all t ∈ J . On the other hand, L is continuous, so L(vn)(t)→ L(v)(t)
pointwise on [0, T ].

In order to show that the convergence is uniform, we have to show that
{L(vn)} is an equi-continuous sequence. Let t1, t2 ∈ [0, T ] with t1 < t2. Then,
we have

|L(vn)(t2)− L(vn)(t1)|

≤ |Jαvn(s)(t2)− Jαvn(s)(t1)|+ |α| |t
q−1
2 − tq−11 |
|Λ|

Jq|vn(s)|(T )

≤ 1

Γ(q)

∣∣∣∣∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]p(s)ds+

∫ t2

t1

(t2 − s)q−1p(s)ds
∣∣∣∣

+|α| |t
q−1
2 − tq−11 |
|Λ|

Jq|vn(s)|(T )

≤ ‖p‖
Γ(q + 1)

[tq2 − t
q
1] + |α|‖p‖ |t

q−1
2 − tq−11 |
|Λ|

T q

Γ(q + 1)
.

We see that the right hand of the above inequality tends to zero as t2 → t1.
Thus, the sequence {L(vn)} is equi-continuous and hence it follows by the
Arzelá-Ascoli theorem that there exists a uniformly convergent subsequence
{vn} (we denote it again by {vn}) such that L(vn)→ L(v). Note that L(v) ∈
L(SF,x). Hence, B(x) = L(SF,x) is compact for all x ∈ Br. So B(x) is
compact.

To establish that B(x) is convex for all x ∈ U. Let z1, z2 ∈ B(x). We select
f1, f2 ∈ SF,x such that

zi(t) = Jαfi(s)(t)− α
tq−1

Λ
Jqfi(s)(T ), i = 1, 2,

for almost all t ∈ [0, T ]. Let 0 ≤ λ ≤ 1. Then, we have

[λz1 + (1− λ)z2](t) = Jα[λf1(s) + (1− λ)f2(s)](t)
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−αt
q−1

Λ
Jq[λf1(s) + (1− λ)f2(s)](T ).

Since F has convex values, so SF,u is convex and λf1(s) + (1−λ)f2(s) ∈ SF,x.
Thus λz1 + (1− λ)z2 ∈ B(x). Consequently, B is convex-valued.

The rest of the proof consists of the following steps and claims.

Step 1: We show that A is a multi-valued contraction on U. Let x, y ∈ U and
h1 ∈ Ax. Then there exists v1(t) ∈ F (t, x(t)) such that, for each t ∈ [0, T ],

h1(t) =
tq−1

Λ

m∑
i=1

βiI
γi,δi
ηi Jqv1(s)(ξi).

Since Hd(F (t, x), F (t, y)) ≤ k(t)‖x− y‖, there exists w ∈ F (t, y) such that

|v1(t)− w| ≤ k(t)‖x− y‖.

Thus the multi-valued operator U defined by U(t) = SF,y ∩K(t), where

K(t) = {w ∈ R : |v1(t)− w| ≤ k(t)‖x− y‖},

is nonempty and measurable. Let v2 be a measurable selection for U (which
exists by Kuratowski-Ryll-Nardzewski’s selection theorem [16]). Then v2(t) ∈
F (t, y(t)) and for each t ∈ [0, T ], we have |v1(t)− v2(t)| ≤ k(t)‖x− y‖ a.e. on
[0, T ].

For each t ∈ [0, T ], let us define

h2(t) =
tq−1

Λ

m∑
i=1

βiI
γi,δi
ηi Jqv2(s)(ξi).

It follows that h2 ∈ Ay and

|h1(t)− h2(t)| ≤ tq−1

|Λ|

m∑
i=1

βiI
γi,δi
ηi Jq|v1(s)− v2(s)|(ξi)

≤ ‖k‖ T q−1

|Λ|Γ(q + 1)

m∑
i=1

|βi|ξqi Γ(γi + (q/ηi) + 1)

Γ(γi + (q/ηi) + δi + 1)
‖x− y‖.

Taking supremum over t ∈ [0, T ], we obtain

‖h1 − h2‖ ≤ ‖k‖
T q−1

|Λ|Γ(q + 1)

m∑
i=1

|βi|ξqi Γ(γi + (q/ηi) + 1)

Γ(γi + (q/ηi) + δi + 1)
‖x− y‖,
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which together with the analogous inequality obtained by interchanging the
roles of x and y yields

Hd(Ax,Ay) ≤ ‖k‖ T q−1

|Λ|Γ(q + 1)

m∑
i=1

|βi|ξqi Γ(γi + (q/ηi) + 1)

Γ(γi + (q/ηi) + δi + 1)
‖x− y‖,

for each x, y ∈ U. This shows that A is a multi-valued contraction, since

‖k‖ T q−1

|Λ|Γ(q + 1)

m∑
i=1

|βi|ξqi Γ(γi + (q/ηi) + 1)

Γ(γi + (q/ηi) + δi + 1)
< 1.

Step 2: B is compact and upper semicontinuous. This will be established in
several claims.

Claim I: B maps bounded sets into bounded sets in U.

For a positive number ρ, let Bρ = {x ∈ U : ‖x‖ ≤ ρ} be a bounded ball in
U. Then, for each h ∈ G(x), x ∈ Bρ, there exists v ∈ SF,x such that

h(t) = Jqv(s)(t)− tq−1

Λ
αJqv(s)(T ).

Then we have

|h(x)| ≤ Jq|v(s)|(T ) +
|α|T q−1

|Λ|
Jq|v(s)|(T )

≤ Jqp(s)(T ) +
|α|T q−1

|Λ|
Jqp(s)(T )

≤ ‖p‖

(
T q

Γ(q + 1)
+
|α|T 2q−1

|Λ|Γ(q + 1)

)
.

and consequently,

‖h‖ ≤ ||p||

(
T q

Γ(q + 1)
+
|α|T 2q−1

|Λ|Γ(q + 1)

)
.

Claim II: B maps bounded sets into equi-continuous sets.

Let τ1, τ2 ∈ [0, T ] with τ1 < τ2 and x ∈ Bρ. For each h ∈ G(x), we obtain

|h(τ2)− h(τ1)|

≤ |Jqv(s)(τ2)− Jqv(s)(τ1)|+ |α||τ
q−1
2 − τ q−11 |
|Λ|

Jq|v(s)|(T )
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≤ 1

Γ(q)

∣∣∣∣∫ τ1

0

[(τ2 − s)q−1 − (τ1 − s)q−1]p(s)ds+

∫ τ2

τ1

(τ2 − s)q−1p(s)ds
∣∣∣∣

+
|τ q−12 − τ q−11 |

|Λ|
|α|Jqp(s)(T )

≤ ‖p‖
Γ(q + 1)

[tq2 − t
q
1] + |α|‖p‖ |t

q−1
2 − tq−11 |
|Λ|

T q

Γ(q + 1)
.

Obviously the right hand side of the above inequality tends to zero indepen-
dently of x ∈ Br as τ2 − τ1 → 0. Therefore we deduce by the Ascoli-Arzelá
theorem that B : U→ P(U) is completely continuous.

By Claims I and II, B is completely continuous. By Lemma 4.1, B will
be upper semicontinuous (since it is completely continuous) if we show that it
has a closed graph. Thus, in the next claim, we prove it.

Claim III: B has a closed graph.

Let xn → x∗, hn ∈ B(xn) and hn → h∗. Then we need to show that
h∗ ∈ B(x∗). Associated with hn ∈ B(xn), there exists fn ∈ SF,xn

such that
for each t ∈ [0, T ],

h(t) = Jαfn(s)(t)− αt
q−1

Λ
Jqfn(s)(T ).

Thus it suffices to show that there exists f∗ ∈ SF,x∗ such that for each t ∈ [0, T ],

h∗(t) = Jαf∗(s)(t)− α
tq−1

Λ
Jαf∗(s)(T ).

Let us consider the linear operator Θ : L1([0, T ],R)→ U given by

f 7→ Θ(f)(t) = Jαf(s)(t)− αt
q−1

Λ
Jαf(s)(T ).

Observe that

‖hn(t)− h∗(t)‖ =
∥∥∥Jα(fn(s)− f∗(s))(t)

−αt
q−1

Λ
f∗(s))(ξ)− Jα(fn(s)− f∗(s))(T )

∥∥∥→ 0,

as n→∞.
Thus, it follows by Lemma 4.2 that Θ ◦ SF is a closed graph operator.

Further, we have hn(t) ∈ Θ(SF,xn). Since xn → x∗, we have that

h∗(t) = Jαf∗(s)(t)− α
tq−1

Λ
Jαf∗(s)(T ),
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for some f∗ ∈ SF,x∗ . Hence B has a closed graph (and therefore has closed
values). In consequence, the operator B is compact and upper semicontinuous.

Step 3: Here, we show that A(x) + B(x) ⊂ Br for all x ∈ Br. Suppose
x ∈ Br, with r > ‖p‖θ (θ defined by (8)) and h ∈ B are arbitrary elements.
Choose f ∈ SF,x such that

h(t) = Jαf(s)(t)− tq−1

Λ

(
αJqf(s)(T )−

m∑
i=1

βiI
γi,δi
ηi Jqf(s)(ξi)

)
, t ∈ [0, T ].

Then we have

|h(x)| ≤ Jq|f(s)|(T ) +
|α|T q−1

|Λ|
Jq|f(s)|(T ) +

T q−1

|Λ|

m∑
i=1

|βi|Iγi,δiηi Jq|f(s)|(ξi)

≤ Jqp(s)(T ) +
|α|T q−1

|Λ|
Jqp(s)(T ) +

T q−1

|Λ|

m∑
i=1

|βi|Iγi,δiηi Jqp(s)(ξi)

≤ ‖p‖

(
T q

Γ(q + 1)
+
|α|T 2q−1

|Λ|Γ(q + 1)
+

T q−1

|Λ|Γ(q + 1)

m∑
i=1

|βi|ξqi Γ(γi + (q/ηi) + 1)

Γ(γi + (q/ηi) + δi + 1)

)
.

Thus
‖h‖ ≤ ‖p‖θ < r. (13)

Hence ‖h‖ ≤ r, which means that A(x) + B(x) ⊂ Br for all x ∈ Br.
Thus, the operators A and B satisfy all the conditions of Lemma 4.3 and

hence we conclude that x ∈ A(x) + B(x) has a solution in Br. Therefore
problem (1) has a solution in Br and the proof is completed. �

Example 4.1. Let us consider problem (9) with the multi-valued map F :
[0, 5]× R→ P(R) given by

x→ F (t, x) =

[
cos t√
t+ 25

,
1

10
√

(1 + t2)
tan−1 x+

cos t√
t+ 25

]
. (14)

Clearly

‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ π

20
√

(1 + t2)
+

cos t√
t+ 25

= p(t),

and Hd(F (t, x), F (t, y)) ≤ 1
10 |x − y|, for x, y ∈ R. With ‖k‖ = 1/10, we find

that

‖k‖ T q−1

|Λ|Γ(q + 1)

m∑
i=1

Γ(γi + (q/ηi) + 1)

Γ(γi + (q/ηi) + δi + 1)
≈ 0.818538 < 1.

Thus the hypotheses of Theorem 4.1 hold and consequently, problem (9) with
F (t, x) given by 14 has a solution by Theorem 4.1.
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4.1 Existence result via Wegrzyk’s fixed point theorem

In this subsection we prove the existence of solutions for problem (1) with a
not necessary nonconvex valued right hand side, by applying Wegrzyk’s fixed
point theorem [21].

Definition 4.2. A function δ : R+ → R+ is said to be a strict comparison
function (see [22]) if it is continuous, strictly increasing and

∑∞
n=1 δ

n(t) <∞,
for each t > 0.

Definition 4.3. A multivalued operator N : X → Pcl(X) is called
(a) γ−Lipschitz if and only if there exists γ > 0 such that Hd(N(x), N(y)) ≤
γd(x, y) for each x, y ∈ X; (b) a contraction if and only if it is γ−Lipschitz with
γ < 1; (c) a generalized contraction if and only if there is a strict comparison
function δ : R+ → R+ such that Hd(N(x), N(y)) ≤ δ(d(x, y)) for each x, y ∈
X.

Lemma 4.4. (Wegrzyk’s fixed point theorem [21]). Let (X, d) be a complete
metric space. If Q : X → Pcl(X) is a generalized contraction, then FixQ 6= ∅.

Theorem 4.2. Assume that

(A1) F : [0, T ]×R→ Pcp(R) is such that F (·, x) : [0, T ]→ Pcp(R) is measur-
able for each x ∈ R.

(A2) Hd(F (t, x), F (t, x̄)) ≤ m(t)δ(|x−x̄|) for almost all t ∈ [0, T ] and x, x̄ ∈ R
with m ∈ C([0, T ],R+) and d(0, F (t, 0)) ≤ m(t) for almost all t ∈ [0, T ],
where δ : R+ → R+ is strictly increasing.

Then the boundary value problem (1) has at least one solution on [0, T ] if
εδ : R+ → R+ is a strict comparison function, where ε = ‖m‖θ, i.e.

ε = ‖m‖

{
T q

Γ(q + 1)
+
|α|T 2q−1

|Λ|Γ(q + 1)
+

T q−1

|Λ|Γ(q + 1)

m∑
i=1

|βi|ξqi Γ(γi + (q/ηi) + 1)

Γ(γi + (q/ηi) + δi + 1)

}
.

Proof. Let εδ : R+ → R+ be a strict comparison function. It follows
by the assumptions (A1) and (A2) that F (·, x(·)) is measurable and has a
measurable selection v(·) (see Theorem III.6 [23]). Also m ∈ C([0, 1],R) and

|v(t)| ≤ d(0, F (t, 0)) +Hd(F (t, 0), F (t, x(t)))

≤ m(t) +m(t)δ(|x(t)|)
≤ (1 + δ(||x||)m(t).

Thus the set SF,x is nonempty for each x ∈ U. Now we show that the operator
G satisfies the assumptions of Lemma 4.4. We show that G(x) ∈ Pcl((U) for
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each x ∈ U. Let {un}n≥0 ∈ G(x) be such that un → u in U as n → ∞. Then
u ∈ U and there exists vn ∈ SF,xn such that, for each t ∈ [0, T ],

un(t) = Jqvn(s)(t)− tq−1

Λ

(
αJqvn(s)(T )−

m∑
i=1

βiI
γi,δi
ηi Jqvn(s)(ξi)

)
.

As F has compact values, we pass onto a subsequence (if necessary) to
obtain that vn converges to v in L1([0, T ],R). Thus, v ∈ SF,x and for each
t ∈ [0, T ], we have

un(t)→ v(t) = Jqv(s)(t)− tq−1

Λ

(
αJqv(s)(T )−

m∑
i=1

βiI
γi,δi
ηi Jqv(s)(ξi)

)
.

Hence, u ∈ G(x).
Next we show that

Hd(G(x),G(x̄)) ≤ εδ(‖x− x̄‖) for each x, x̄ ∈ U.

Let x, x̄ ∈ U and h1 ∈ G(x). Then there exists v1(t) ∈ F (t, x(t)) such that, for
each t ∈ [0, T ],

h1(t) = Jqv1(s)(t)− tq−1

Λ

(
αJqv1(s)(T )−

m∑
i=1

βiI
γi,δi
ηi Jqv1(s)(ξi)

)
.

By (A2), we have

Hd(F (t, x), F (t, x̄)) ≤ m(t)δ(|x(t)− x̄(t)|).

So, there exists w ∈ F (t, x̄(t)) such that

|v1(t)− w(t)| ≤ m(t)δ(|x(t)− x̄(t)|), t ∈ [0, T ].

Define U : [0, T ]→ P(R) by

U(t) = {w ∈ R : |v1(t)− w| ≤ m(t)δ(|x(t)− x̄(t)|)}.

Since the multivalued operator U(t) ∩ F (t, x̄(t)) is measurable (Proposition
III.4 [23]), there exists a function v2(t) which is a measurable selection for
U . So v2(t) ∈ F (t, x̄(t)) and for each t ∈ [0, T ], we have |v1(t) − v2(t)| ≤
m(t)δ(|x(t)− x̄(t)|).

For each t ∈ [0, T ], let us define

h2(t) = Jqv2(s)(t)− tq−1

Λ

(
αJqv2(s)(T )−

m∑
i=1

βiI
γi,δi
ηi Jqv2(s)(ξi)

)
.
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Thus,

|h1(t)− h2(t)|
≤ Jq|v1(s)− v2(s)|(t)

+
tq−1

|Λ|

(
αJq|v1(s)− v2(s)|(T ) +

m∑
i=1

βiI
γi,δi
ηi Jq|v1(s)− v2(s)|(ξi)

)

≤ ‖m‖

(
T q

Γ(q + 1)
+
|α|T 2q−1

|Λ|Γ(q + 1)

+
T q−1

|Λ|Γ(q + 1)

m∑
i=1

|βi|ξqi Γ(γi + (q/ηi) + 1)

Γ(γi + (q/ηi) + δi + 1)

)
δ(‖x− x̄‖).

Hence,

‖h1 − h2‖ ≤ ‖m‖

(
T q

Γ(q + 1)
+
|α|T 2q−1

|Λ|Γ(q + 1)

+
T q−1

|Λ|Γ(q + 1)

m∑
i=1

|βi|ξqi Γ(γi + (q/ηi) + 1)

Γ(γi + (q/ηi) + δi + 1)

)
δ(‖x− x̄‖).

Analogously, interchanging the roles of x and x, we obtain

Hd(G(x),G(x̄)) ≤ εδ(‖x− x̄‖)

= ‖m‖

(
T q

Γ(q + 1)
+
|α|T 2q−1

|Λ|Γ(q + 1)
+

T q−1

|Λ|Γ(q + 1)

m∑
i=1

|βi|ξqi Γ(γi + (q/ηi) + 1)

Γ(γi + (q/ηi) + δi + 1)

)
.

for each x, x̄ ∈ U. Therefore, G is a generalized contraction. Thus it follows
by Lemma 4.4 that G has a fixed point x which is a solution of (1). This
completes the proof.

�

Remark 4.1. Theorem 4.2 holds for several values of the function δ, for
example, δ(t) = ln(1 + t)3, δ(t) = t, etc.
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