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An. Şt. Univ. Ovidius Constanţa Vol. 25(2),2017, 149–157

Notes on a semigroup related to the dicyclic
group Qn

M. R. Sorouhesh and C. M. Campbell

Abstract

We consider certain properties of the semigroup S defined by the
presentation

S = 〈a, b : a2n−1

= 1, b2 = a2n−2

, ba = ab2
n−1−1〉, (n ≥ 3).

1 Introduction and Preliminary Facts

The purpose of this paper is to investigate computationally some remarkable
properties of a certain finitely generated semigroup. For the terminology and
notation see [4, 5]. We know that if A is an alphabet and A+ denotes the
free semigroup on A, then a semigroup presentation is a pair 〈A : R〉 where
R ⊆ A+ × A+. The elements of A are called generators, and the elements
of R are relations. Some preliminaries and more information on semigroup
presentations may be found in [3, 10]. However, there are many semigroup
presentations that each of which has some specific properties [1, 10, 11].

The dicyclic group Qn is given by the presentation

〈a, b : a2
n−1

= 1, b2 = a2
n−2

, ba = ab2
n−1−1〉,

where n ≥ 3. We are interested here in the semigroup defined by the above
presentation and so consider the following semigroup modification of it:

S = 〈a, b : a2
n−1+1 = a, b2 = a2

n−2

, ba = ab2
n−1−1〉, (n ≥ 3)
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For the semigroup S, some auxiliary algebraic properties can be verified
inductively which we use throughout the paper. They show that the the
semigroup S, as a non-group and non-commutative semigroup, is a concrete
example of different kinds of semigroups.

Lemma 1.1. For every k ∈ {0} ∪ N with n ≥ 3 we have:

(a) if i = 4k + 1 then b(2
n−1−1)i = a2

n−2

b;

(b) if i = 4k + 2 then b(2
n−1−1)i = a2

n−2

;

(c) if i = 4k + 3 then b(2
n−1−1)i = a2

n−1

b;

(d) if i = 4k + 4 then b(2
n−1−1)i = a2

n−1

.

Proof. It is easy to see that modulo 2n−1 and for a positive integer t, the
following trivial identities are satisfied:

t2n−1 − 2n−2 ≡ 2n−2 (1), t2n−1 − 2n−1 ≡ 2n−1. (2)

We prove only the assertion concerning the part (a) and the remaining cases
can be proved similarly. For (a) use an inductive method on k. Let k = 0 so
we have:

b(2
n−1−1) = (b2)(2

n−2−1) · b = (a2
n−2

)
2n−2−1

· b
(
for b2 = a2

n−2

)

= a(2
2n−4−2n−2) · b (1)

= a2
n−2 · b.

Assume (a) is true for k, i.e.; b(2
n−1−1)(4k+1) = a2

n−2

b then

a2
n−2 · b = a(2

n−2+2n−1) · b (2)
= a2

n−2(
a2

n−2

)(2
n−2) · b = a2

n−2 · (b2)(2
n−2) · b

= (a2
n−2 · b) · b2n+1−4 = b(2

n−1−1)(4k+1) · b2n+1−4 = b(2
n−1−1)(4k+5).

Lemma 1.2. For 1 ≤ i ≤ 2n−1 we have ai = ba(i−1)2n−2+ib.

Proof. The result is true for i = 1. Indeed, bab = (ab2
n−1−1) · b = ab2

n−1

=

a(b2)2
n−2

= a(a2
n−2

)2
n−2

= a(a2
2n−4

) = a. If the claim is true for i then the
relations of S and the first part of Lemma 1.1 gives:

ba = ab2
n−1−1 = a(a2

n−2

b) = a2
n−2+1b, (3)
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and so ai+1 = ai · a = (ba(i−1)2n−2+ib) · a = (ba(i−1)2n−2+i) · (ba) which by (3)
is equal to

(ba(i−1)2n−2+i) · (a2
n−2+1b) = bai2

n−2+(i+1)b.

As a result of the above lemma we have:

Corollary 1.3. In semigroup S we have:

aib = bai(2
n−2+1), bai = ai(2

n−2+1)b (1 ≤ i ≤ 2n−1).

Lemma 1.4. The semigroup S may be partitioned as

S = {b} ∪ {ai, 1 ≤ i ≤ 2n−1} ∪ {baj , 1 ≤ j ≤ 2n−1}.

Proof. By the corollary above and the relations of S, we conclude that the
only words in S starting with a are exact powers of a.

Proposition 1.5. For elements a and b while 1 ≤ i, j ≤ 2n−1 the following
relations hold:

(a) (ai)(b) = (b)(ai) · (ba2n−2−i) · (b)(ai);

(b) (ai)(aj) = (aj)(ai) · (a2n−2−(i+j)) · (aj)(ai);

(c) (ai)(baj) = (baj)(ai) · (ba2n−2(1+j)−(i+j)) · (baj)(ai);

(d) (b)(ai) = (ai)(b) · (a2n−2−ib) · (ai)(b);

(e) (b)(bai) = (bai)(b) · (a2n−2−i) · (bai)(b);

(f) (b)(b) = (b)(b) · (b2) · (b)(b);

(g) (baj)(ai) = (ai)(baj) · (ba(2n−1)(i+j)+2n−2

) · (ai)(baj);

(h) (bai)(b) = (b)(bai) · (ba2n−1+i(2n−2−2))) · (b)(bai);

(k) (bai)(baj) = (baj)(bai) · (a2n−2(1+i)−(i+j)) · (baj)(bai);

(l) (ai)(a2
n−1−i) = [(ai)(a2

n−1−i)]2;

(m) (b)(b3) = [(b)(b3)]2;

(n) (bai)(bai(2
n−2−1+2n−2

) = [(bai)(bai(2
n−2−1+2n−2

)]2.
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Proof. We start from the right hand side of (a). Corollary 1.3 gives:

(b)(ai)(ba2
n−2−i)(b)(ai) = (ai(2

n−2+1)b) · (ba2
n−2−i) · (ai(2

n−2+1)b)

which is equal to ai×2n−2+i+2n−2+2n−2−i+i×2n−2+ib and by (2) we get aib
as desired. For (c) Corollary 1.3 and the relations of S yield (baj)(ai) =

a(1+2n−2)(i+j)b and so

(baj)(ai)(ba2
n−2(1+j)−(i+j))(baj)(ai) = ai · aj(2

n−2+1)b = (ai)(baj).

Rewriting the right hand side of (d) gives (b)(ai(2
n−2+1))(baib) which is equal

to b(ai(2
n−2+1))(ai(2

n−2+1)−i), which is the left part of (c). For (e) we have

(bai)(b)(a2
n−2−i)(bai)(b) = (ai(2

n−2+1)+2n−2

)(a2
n−2−i)(ai(2

n−2+1)+2n−2

)

= ai+2n−2

= (b)(bai).

Since by Corollary 1.3, ai(baj) = ai+j(2n−2+1), the right hand side of (g) can
be simplified as

(baj)(ai(2
n−2+1))

(
a2

n−2+1[(2n−2−1)(i+j)+2n−2])ai(baj),

which is equal to

(baj)(ai(2
n−2+1)+2n−2−(i+j))(a2

n−2+1b2aj) = (baj)(ai).

Similarly (baj)(bai) = aj×(2n−2+1)+2n−2+i by Corollary 1.3 and the right hand

side of (k) is reduced as a2
n−2+i×2n−2+i+j = (bai)(baj) which shows that (k)

is valid. By using (1), (2) and (3), the proofs for (b), (l) and (n) are routine
and considering the relations of S; (f), (h) and (m) can be easily verified.

Proposition 1.6. For every x, y ∈ S we have

xy = as, yx = ar, or xy = bas, yx = bar,

where 1 ≤ s, r ≤ 2n−1 and r ≡ s modulo 2n−2.

Proof. The proof is similar to the proof of Proposition 1.5 by taking possible
forms of x and y of S. Firstly we note that, if r ≡ s modulo 2n−2 then
s = r − k × 2n−2 where k ∈ Z+ and so for an element a ∈ S we have:

as = ar−k×2n−2

= ar−k×2n−2+k×2n−1

= ar+k×2n−2

.

And then, by the relations of S, all xy have forms as or bas where 1 ≤ s ≤ 2n−1

and none of them ends in b. When xy = as, we have the following possible
cases:
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(a) x = ai, y = aj ;

(b) x = bai, y = baj ;

(c) x = b, y = b;

(d) x = b, y = bai;

(e) x = bai, y = b.

In parts (a) and (c) we have xy = ai+j = yx and xy = a2
n−2

= yx respectively
so they are obviously satisfied. If x = bai, y = baj where 1 ≤ i, j ≤ 2n−1 so by
using Corollary 1.3 we have:

yx = as = aj(1+2n−2)+i+2n−2+i×2n−1

= ar = xy · a(i+j)2n−2

,

where s = j(1 + 2n−2) + i+ 2n−2 and r = i(1 + 2n−2) + j+ 2n−2 + (i+ j)2n−2

respectively. Hence, r ≡ s modulo 2n−2 and so (b) is true. The proof for parts
(d) and (e) is similar and we check just part (d). Let x = b and y = bai for

some 1 ≤ i ≤ 2n−1. Then we get yx = ai(1+2n−2)+2n−2

= ai+2n−2 × ai×2n−2

=
xy × ai×2n−2

which shows that the claim is valid for (d). Now, for elements
x, y ∈ S, xy = bas(1 ≤ s ≤ 2n−1). So we have the cases below:

(f) x = ai, y = baj ;

(g) x = ai, y = b;

(h) x = baj , y = ai;

(m) x = b, y = ai.

The claims in parts (f) and (h) are proved similarly. The same is true when
considering (g) and (m) so we need to check the validity of the proposition just

in parts (f) and (g). For (f) we have yx = bai+j = bar and xy = bar+i×2n−2

=
bas where r ≡ s modulo 2n−2. In (g) :

xy = aib = bai(1+2n−2) = bas, yx = bai = bar,

which shows that r ≡ s modulo 2n−2. This completes the proof.

Proposition 1.7. In the semigroup S and for every elements x, y and z we
have xyzyx = yxzxy.
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Proof. Let x, y ∈ S. According to the previous proposition, we can consider
two cases for xy, i.e.; xy = as (yx = ar) or xy = bas (yx = bar) where
1 ≤ s ≤ 2n−1 and r ≡ s modulo 2n−2 . Suppose z ∈ S and xy = as. If for some
1 ≤ i ≤ 2n−1, z = ai then xyzyx = as+i+r = yxzxy. If for some 1 ≤ i ≤ 2n−1,
z = bai then xyzyx = as ·bai ·ar = ar+k×2n−2 ·bai ·ar = ar ·bai+k×2n−2(1+2n−2) ·
ar = ar · bai · as = yxzxy for some k ∈ Z+. If z = b then for some k ∈ Z+

we get xyzyx = asbar = ar+k×2n−2

bar = arbak×2n−2(1+2n−2)ar = arbas. For
z ∈ S and xy = bas, the proof is similar.

2 Main results

A semigroup S is called commuting regular if for any x, y ∈ S there exists
z ∈ S such that xy = yxzyx. If for any x ∈ S there exists y ∈ S such that
xy = (xy)2, then S is called E-inversive [2]. Whenever for all x, y and z of S
we have xyzyx = yxzxy then S is known as a C2 − semigroup [9].

Theorem 2.1. Let n ≥ 3. The semigroup

S = 〈a, b : a2
n−1+1 = a, b2 = a2

n−2

, ba = ab2
n−1−1〉,

is a finite non-abelian commuting regular and E-inversible semigroup of order
2n + 1. Moreover S is a C2 − semigroup.

Proof. It is enough to consider different cases for x, y ∈ S as in Lemma 1.4.
Then, considering the results of Proposition 1.5 yields the proofs of commut-
ing regularity and E-inversibility respectively. Obviously, S is a non-abelian
semigroup of order 2n + 1. For the rest we consider Proposition 1.7.

Remark 1.
When n = 3, by Lemma 2.3. of [11], we showed that the semigroup:

S = 〈a, b : a5 = a, b2 = a2, ba = ab3〉 = {a, b, a2, a3, a4, ab, a2b, a3b, a4b}

is also a quasi-commutative semigroup of order 9.

Lemma 2.2. For n ≥ 3 all elements of S except for b are regular. Moreover
S is a π-regular semigroup.

Proof. The relations of S show b is an indecomposable element so it cannot
be regular. For the other cases, we may consider the following points which
can be verified easily:

ai = ai · (a2
n−1−i) · ai, bai = bai · (ba2

n−2(i+1)−i) · bai (1 ≤ i ≤ 2n−1)
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Also, part (f) of Proposition 1.5 and the later equalities yield

b2 ∈ b2Sb2, x ∈ xSx,

for all x(6= b) ∈ S. Therefore the semigroup S is π-regular.

An idempotent e ∈ S is called primitive whenever f ∈ E(S) and f = ef =
fe then we have f = e. If in a semigroup S all idempotents are primitive then
the semigroup is named primitive.

Theorem 2.3. For n ≥ 3, the only idempotent of S is e = b4 and so S is
primitive.

Proof. As (a2
n−1

)2 = a2
n

= a2
n−1(2n−1+1) = a2

n−1

where n ≥ 3 so a2
n−1

= b4

is an idempotent. Since b is not regular it cannot be an idempotent. This
shows that:

(bai)2 = ai(2
n−1+1)+2n−2+i 6= bai.

Indeed, b /∈ 〈a〉. Therefore E(S) is a singleton and so S is primitive.

Corollary 2.4. For n ≥ 3, eSe is a unipotent monoid. In fact S is a unipotent
semigroup and so it is a power joined semigroup.

Proof. As a consequence of the previous theorem and Corollary 1 [2] eSe is a
unipotent monoid. For the rest we may consider [7].

Lemma 2.5. For n ≥ 3, S2 = S−{b} is a unique proper maximal ideal of S.
Moreover S2 = [a] in which [a] is the principle ideal of S generated by a.

Proof. Regarding Lemma 2.2 and that S2  S, we have S2 = S − {b} so it is
a maximal ideal of S. Obviously for any other proper maximal ideal N of S ,
b /∈ N and so N ⊆ S2 and so N = S2. By the identities 1.3 and Lemma 2.2,
S2 ⊆ [a] and so the proof is complete.

Remark 2. Since b2 ∈ S2 so, element b would be a nilpotent with respect to
[a] [6].

A regular semigroup S is called a Clifford semigroup if all idempotent
elements of S are central [8].

Corollary 2.6. For n ≥ 3, S2 is a Clifford semigroup.

Proof. Obviously, e = b4 ∈ S2 is central.

A semigroup S is abundant if every minimal ideal of S contains an idem-
potent element.
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Corollary 2.7. For n ≥ 3, S is an abundant semigroup.

Proof. Since every minimal ideal of S necessarily contains the only idempotent
b4 ∈ S so the semigroup is abundant.

Lemma 2.8. For n ≥ 3, S = [b] where [b] is the principle ideal of S generated
by b.

Proof. Using Lemma 1.2 and identities 1.3 the proof is clear.

Corollary 2.9. For n ≥ 3, S has exactly two J classes.

Proof. Since S2 = S − {b} is a regular proper subsemigroup of S so

[b]J ∩ S = {b}, [a]J ∩ S = S2 = [a].
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