

VERSITA Vol. 25(1),2017, 117–129

Modules which are self-p-injective relative to projection invariant submodules

Yeliz Kara and Adnan Tercan

Abstract

In this article, we focus on modules M such that every homomorphism from a projection invariant submodule of M to M can be lifted to M. Although such modules share some of the properties of PI-extending (i.e., every projection invariant submodule is essential in a direct summand) modules, it is shown that they form a substantially bigger class of modules.

1 Introduction

Throughout this paper, let R be a ring with identity and let all modules be unitary right R-modules. Let M be a module. The injective hull of M is denoted by E(M). A submodule K of M is projection invariant (denoted by $K \leq_p M$) provided K is invariant under every idempotent endomorphism of M (see [3], [5]). Note that the set of projection invariant submodules of a module M forms a sublattice of the lattice of all submodules of M.

A module M is called an *extending module*, or a *CS-module*, if every submodule of M is essential in a direct summand, or, equivalently, if every closed submodule of M is a direct summand. This condition has proven to be an important common generalization of the injective and semisimple module notions (see, [4], [11]). In [3], the extending condition relative to various sets of submodules have been investigated. Recall that a module M is called *PI-extending*

Key Words: injective module, projection invariant submodule, *PI*-extending module, extending module

²⁰¹⁰ Mathematics Subject Classification: Primary 16D10; Secondary: 16D40, 16D50 Received: 21.02.2016

Accepted: 20.04.2016

if every projection invariant submodule is essential in a direct summand of M. In the papers [14] and [16], the authors studied the following property, for a module M:

 (P_n) : For every submodule K of M such that K can be written as a finite direct sum $K_1 \oplus K_2 \oplus ... \oplus K_n$ of complements $K_1, K_2, ..., K_n$ of M, every homomorphism $\alpha: K \to M$ can be lifted to a homomorphism $\beta: M \to M$. Following an idea from [16], we are concerned with the study of *self-p-injective* modules, i.e., modules M that satisfy the condition that every homomorphism from a projection invariant submodule of M to M can be lifted to M. Observe that the aforementioned property is equivalent to that of every homomorphism from a finite direct sum of projection invariant submodules of M to M lifts to M. Extending and PI-extending modules are examples of self-p-injective modules. Our investigation focuses on the behavior of self-p-injective modules with respect to direct sums and direct summands. To this end, we provide algebraic geometrical examples which show that being self-p-injective is not inherited by direct summands. In contrast, we prove that any direct sum of self-p-injective modules enjoys with the property. Moreover we obtain useful characterizations and direct sum property on relatively p-injective modules. Finally, we give examples which show that there is no implication between self-p-injective and tight concepts. Recall that a module M is said to be right tight (resp., right M-tight) if every finitely generated (resp., cyclic) submodule of E(M) can be embedded in M (see [1], [6]).

Recall the following conditions for a module M.

 (C_2) : every submodule of M can be embedded in a direct summand of M.

(C₃): for all direct summands K and L of M with $K \cap L = 0$, the submodule $K \oplus L$ is also a direct summand of M.

Observe that C_2 implies C_3 by [11, Proposition 2.2]. Recall further that, a ring is called *Abelian* if every idempotent is central. Other terminology and notation can be found in [2], [4], [10], and [11].

2 Direct Summands and Direct Sums

In this section, we concern ourselves with direct summands and direct sums of self-p-injective modules. We provide examples which show that, in general, direct summands of a self-p-injective module need not to be self-p-injective. Amongst some affirmative answers for the former closure property we also prove that any direct sum of self-p-injective modules is again self-p-injective.

Lemma 2.1. Let M be an indecomposable module. Then the following statements are equivalent.

(i) M is quasi-injective.

(*ii*) *M* is extending.

(iii) M is PI-extending.

(iv) M is self-p-injective.

Proof. $(i) \Rightarrow (ii)$ Obvious.

 $(ii) \Rightarrow (iii)$ Clear from [3, Proposition 3.7].

 $(iii) \Rightarrow (iv)$ Let X be a projection invariant submodule of M and $\varphi : X \rightarrow M$ be a homomorphism. Then there exists a direct summand D of M such that X is essential in D where $M = D \oplus D'$. Let π be projection map on X in D. Then define $\alpha : M \to M$ such that $\alpha = \varphi \pi$. It can be easily seen that α lifts φ . Hence M is self-p-injective.

 $(iv) \Rightarrow (i)$ Since M is an indecomposable module, every submodule of M is projection invariant. Then it is clear that self-p-injectivity implies quasi-injectivity.

Observe that every quasi-injective module is self-p-injective. However there are self-p-injective modules which are not quasi-injective. For example let $M_{\mathbb{Z}} = (\mathbb{Z}/\mathbb{Z}p) \oplus \mathbb{Q}$ where p is any prime integer. Then $M_{\mathbb{Z}}$ is not quasi-injective but it is self-p-injective by Theorem 2.8. Note that every PI-extending module is self-p-injective. But the converse of this result is not true, in general. For instance, let M be the Specker group, $M_{\mathbb{Z}} = \prod_{i=1}^{\infty} A_i$ with $A_i = \mathbb{Z}$ for any positive integer i. Then it can be checked that $M_{\mathbb{Z}}$ is not PI-extending by [5], but it is self-p-injective by Theorem 2.14.

The next example shows that direct summands of self-p-injective modules need not to be self-p-injective, in general.

Example 2.2. (See, [3, Example 5.5] or [17, Example 4]) Let \mathbb{R} be the real field and n be any odd integer with $n \geq 3$. Let S be the polynomial ring $\mathbb{R}[x_1, ..., x_n]$ over \mathbb{R} in indeterminates $x_1, ..., x_n$. Let R be the ring S/Ss, where $s = x_1^2 + ... + x_n^2 - 1$. Then the free R- module, the countable direct sum $M = R^{(\mathbb{N})}$ of copies of R is self-p-injective which contains a direct summand K_R which is not self-p-injective.

Surprisingly, we may provide more examples in the next result which is based on certain hypersurfaces in projective spaces, $\mathbb{P}^{n+1}_{\mathbb{C}}$ over complex numbers.

Theorem 2.3. Let X be the hypersurface in $\mathbb{P}^{n+1}_{\mathbb{C}}$, $n \geq 2$, defined by the equation $x_0^m + x_1^m + \ldots + x_{n+1}^m = 0$. Let $R = \mathbb{C}[x_1, \ldots, x_{n+1}]/(\sum_{i=1}^{n+1} x_i^m + 1)$ be the coordinate ring of X. There exist self-p-injective R-modules but contain direct summands which are not self-p-injective for $m \geq n+2$.

Proof. By [12], there are indecomposable projective R-modules of rank n over R. It follows that $F_R = K \oplus W$ where F_R is a free module, K is indecomposable and projective R-module of rank n. From [3, Corollary 4.11], F_R is PI-extending and hence it is self-p-injective. Now K_R is not uniform. Thus K_R is not PI-extending so it is not self-p-injective by Lemma 2.1.

However, we deal with some special cases when the self-p-injectivity is inherited by direct summands in the following results.

Proposition 2.4. Let $M = M_1 \oplus M_2$ where M_1 and M_2 are projection invariant submodules of M. If M is self-p-injective then M_1 , M_2 are also self-p-injective.

Proof. Let N_1 be a projection invariant submodule of M_1 and $\varphi : N_1 \to M_1$ be a homomorphism. Since N_1 is projection invariant submodule of M_1 and M_1 is projection invariant submodule of M, then N_1 is projection invariant submodule of M. Observe that $\iota \varphi : N_1 \to M$ where ι is inclusion map. Then there exists $\theta : M \to M$ such that θ lifts to $\iota \varphi$. Define $\gamma : M_1 \to M_1$ by $\gamma(m_1) = \theta(m_1)$. It is clear that φ can be extended to γ . Then M_1 is self-pinjective. Similarly, it can be shown that M_2 is also self-p-injective. \Box

Corollary 2.5. Let $M = M_1 \oplus M_2$ for submodules M_1 and M_2 of M with $S = End(M_R)$ an Abelian ring. If M is self-p-injective then any direct summand of M is also self-p-injective.

Proof. Let $\pi : M \to M_2$ be projection map with $\ker(\pi) = M_1$. Let $e = e^2 \in S$. Since S is Abelian, $e(\ker(\pi)) \subseteq \ker(\pi)$. Hence M_1 is projection invariant in M. Now, apply Proposition 2.4 which yields the corollary. \Box

Proposition 2.6. Let $M = M_1 \oplus M_2$ where $M_1, M_2 \leq M$ such that M_2 is a projection invariant submodule of M. If M is self-p-injective then M_1 is self-p-injective.

Proof. Let N be projection invariant submodule of M_1 and $\varphi : N \to M_1$ be a homomorphism. Then $N \oplus M_2$ is projection invariant in M by [3, Lemma 4.13]. Now consider $\theta = \iota \varphi \pi_1$ where $\pi_1 : N \oplus M_2 \to N$ is projection and $\iota : M_1 \to M$ is inclusion. Thus there exists $\gamma : M \to M$ such that γ lifts to θ . Hence

$$\gamma(n+m_2) = \theta(n+m_2) = \iota \varphi \pi_1(n+m_1) = \varphi(n).$$

Define $\tau : M_1 \to M_1$ by $\tau = \pi\beta$ where β is a restriction of θ to M_1 and $\pi : M \to M_1$. Then let $n \in N$. $\tau(n) = \pi\beta(n) = \pi\theta(n) = \varphi(n)$. Thus φ can be extended to τ so M_1 is self-p-injective.

Proposition 2.7. Let $M = M_1 \oplus M_2$ for submodules M_1 , M_2 of M. If M_1 is self-p-injective then $\varphi : N \to M$ can be lifted to $\theta : M \to M$ for all projection invariant submodule N of M_1 .

Proof. Let N be projection invariant submodule of M_1 and $\varphi : N \to M$ be a homomorphism. Then $\pi_1 \varphi \in Hom(N, M_1)$ where $\pi_1 : M \to M_1$. Then there exists $\theta : M_1 \to M_1$ such that $\pi_1 \varphi$ can be lifted to θ . Define $\gamma : M \to M$ by $\gamma = \iota \theta \pi_1$. It is easy to check that γ lifts to φ .

Theorem 2.8. Any direct sum of self-p-injective modules is self-p-injective.

Proof. Let M_{λ} ($\lambda \in \Lambda$) be a nonempty collection of self-p-injective modules. Let $M = \bigoplus_{\lambda \in \Lambda} M_{\lambda}$ and $\varphi : N \longrightarrow M$ be homomorphism where N is a projection invariant submodule of M. Let Λ' be a nonempty subset of Λ . Consider the set

$$\mathcal{H} = \{ (\Lambda', K', \alpha', \theta') \mid \Lambda' \subseteq \Lambda, K' \trianglelefteq_p M' = \bigoplus_{\lambda \in \Lambda'} M_\lambda \text{ and } \alpha' : K' \to M' \text{ homomorphism with } \theta' : M' \to M' \text{ such that } \theta' \text{ lifts to } \alpha' \}$$

which becomes a partially ordered set by the componentwise order \leq defined by

$$(\Lambda_1, K_1, \alpha_1, \theta_1) \leq (\Lambda_2, K_2 \ \alpha_2, \theta_2) \Leftrightarrow \Lambda_1 \subseteq \Lambda_2, \ K_1 \subseteq K_2, \\ \alpha_2 \mid_{K_1} = \alpha_1 \text{ and } \theta_1 = \pi \theta_2 \iota$$

where π is canonical projection from $\bigoplus_{\lambda \in \Lambda_2} M_{\lambda}$ to $\bigoplus_{\lambda \in \Lambda_1} M_{\lambda}$ and ι is natural inclusion from $\bigoplus_{\lambda \in \Lambda_1} M_{\lambda}$ to $\bigoplus_{\lambda \in \Lambda_2} M_{\lambda}$.

Since M_{λ} is self-p-injective for all $\lambda \in \Lambda$, the identity map ι can extend to $\theta: M_{\lambda} \to M_{\lambda}$. Hence $(\{\lambda\}, M_{\lambda}, \iota, \theta) \in \mathcal{H}$ so $\mathcal{H} \neq \emptyset$. Applying Zorn's Lemma, we can find a maximal element $(\Lambda_1, K_1, \alpha_1, \theta_1)$ in \mathcal{H} .

We claim that $\Lambda = \Lambda_1$. Suppose not, then there exists $\mu \in \Lambda$, $\mu \notin \Lambda_1$. Let $\Lambda_2 = \Lambda_1 \cup \{\mu\}$ and $M'' = \underset{\lambda \in \Lambda_2}{\oplus} M_{\lambda} = \underset{\lambda \in \Lambda_1}{\oplus} M_{\lambda} \oplus M_{\mu} = M' \oplus M_{\mu}$. Since M_{μ} is self-p-injective, then for any projection invariant submodule N_{μ} of M_{μ} and $\alpha_{\mu} : K_{\mu} \to M_{\mu}$ homomorphism, there exists $\theta_{\mu} : M_{\mu} \to M_{\mu}$ such that θ_{μ} extends to φ_{μ} . Observe that $K_1 \oplus K_{\mu}$ is projection invariant in M''. Consider the homomorphism $\gamma : K_1 \oplus K_{\mu} \to M''$ such that $\gamma(k_1 + k_{\mu}) = \alpha_1(k_1) + \alpha_{\mu}(k_{\mu})$. It is clear that γ extends to α_1 . Define $\theta : M'' \to M''$ by $\theta = \theta_1 \pi_1 + \theta_{\mu} \pi_2$ where $\pi_1 : M'' \to M'$ and $\pi_2 : M'' \to M_{\mu}$. Let $m' \in M'$. Then $\pi \theta_{\ell}(m') = \pi(\theta_1 \pi_1(m') + \theta_{\mu} \pi_2(m')) = \pi \theta_1(m') = \theta_1(m')$. Hence $\theta_1 = \pi \theta_{\ell}$. Now $(\Lambda_2, K_1 \oplus K_{\mu}, \gamma, \theta) \in \mathcal{H}$. Note that $(\Lambda_1, K_1, \alpha_1, \theta_1) \leq (\Lambda_2, K_1 \oplus K_{\mu}, \gamma, \theta)$ which contradicts the maximality of $(\Lambda_1, K_1, \alpha_1, \theta_1)$ in \mathcal{H} . Therefore $\Lambda = \Lambda_1$, so $M = \bigoplus_{\lambda \in \Lambda} M_{\lambda}$ is self-p-injective. \Box

Corollary 2.9. Any direct sum of modules which are PI-extending (resp., quasi-injective, extending or uniform) is self-p-injective.

Proof. Immediate by Theorem 2.8.

Corollary 2.10. Let M be a right R-module and $M = U \oplus V$ where U and V are uniform submodules of M. Then every direct summand of M is self-p-injective.

Proof. Let $0 \neq K$ be a direct summand of M. If K = M then K is selfp-injective from Corollary 2.9. If $K \neq M$ then K is uniform. Hence K is self-p-injective.

Theorem 2.11. Let M be a \mathbb{Z} -module such that M is a direct sum of uniform modules. Then every direct summand of M is self-p-injective.

Proof. Let N be a direct summand of M. Then N is also a direct sum of uniform modules by [15, Theorem 5.5]. Now Corollary 2.9 yields that N is also self-p-injective. \Box

One might expect that an essential extension of a self-p-injective module is self-p-injective. However, the next example eliminates this situation.

Example 2.12. Let R be a principial ideal domain. If R is not a complete discrete valuation ring then there exists an indecomposable torsion-free R-module M of rank 2 by [8, Theorem 19]. Hence there exist uniform U_1, U_2 submodules of M such that $U_1 \oplus U_2$ is essential in M. Then $U_1 \oplus U_2$ is self-p-injective by Corollary 2.9. However M is not self-p-injective by Lemma 2.1.

Lemma 2.13. Let $X = \prod_{i \in I} X_i$ be a direct product of modules of X_i for each $i \in I$. If N is a projection invariant submodule of X then $N = \prod_{i \in I} (N \cap X_i)$.

Proof. It is straightforward to check.

Theorem 2.14. Let $X = \prod_{i \in I} X_i$. Then X is self-p-injective if and only if X_i is self-p-injective for all $i \in I$.

Proof. Let N_i be projection invariant in X_i and $\varphi : N_i \to X_i$ be a homomorphism. Then $T = \prod_{i \in I} N_i$ is projection invariant in X. Let $\alpha_i : T \to N_i$ be a projection map. Consider $\iota \varphi \alpha_i : T \to X$ where ι is inclusion. Then there

exists $\theta : X \to X$ such that θ lifts $\iota \varphi \alpha_i$. Define $\gamma : X_i \to X_i$ by $\gamma = \pi_i \theta \iota$ where π_i is projection map from X to X_i . It is clear that γ lifts to φ , so X_i is self-p-injective.

Conversely, let N be a projection invariant submodule of X and $\varphi : N \to X$ be a homomorphism. Then $N \cap X_i$ is projection invariant submodule of X_i . Let θ be the restriction of φ to $N \cap X_i$. Then $\pi_i \theta : N \cap X_i \to X_i$ for all $i \in I$. Hence there exists $\gamma : X_i \to X_i$ such that γ lifts to $\pi_i \theta$ for all $i \in I$. Define $\alpha : X \to X$ by $\alpha = \iota \gamma \pi_i$. Let $n \in N$. By Lemma 2.13, $n = (\pi_i(n))_{i \in I}$. Thus $\alpha(n) = \alpha((\pi_i(n))_{i \in I}) = \iota \gamma \pi_i((\pi_i(n))_{i \in I}) = \iota \gamma((\pi_i(n))_{i \in I}) = \theta((\pi_i(n))_{i \in I}) = \varphi((\pi_i(n))_{i \in I}) = \varphi(n)$. Hence α lifts to φ so X is self-p-injective.

The conditions C_2 and C_3 can be characterized by the lifting homomorphisms from certain submodules to the module itself, as was shown in [16]. We obtain relations between the class of modules which is self-p-injective and the class of modules which has C_3 condition. From [16, Lemma 1], we have the following implication for a module M.

$C_3 \Rightarrow$ self-p-injective

Note that this implication is not reversible. For example, let $M_{\mathbb{Z}} = \bigoplus_{i=1}^{\infty} \mathbb{Z}$. Then $M_{\mathbb{Z}}$ is self-p-injective by Theorem 2.8, but $M_{\mathbb{Z}}$ does not satisfy C_3 by [16, Example 9].

The next few results, which generalize [9, Theorem 2.12], concern the endomorphism ring of self-p-injective π -duo modules. We call a module M is π -duo if every submodule is projection invariant in M. We will use S and J(S) to denote the endomorphism ring of a module M and the Jacobson radical of S, respectively. Further Δ will stand for the ideal { $\alpha \in S \mid \ker(\alpha)$ is essential in M}.

Theorem 2.15. Let M_R be a self-p-injective module and S an Abelian ring. Then S/Δ is a (von Neumann) regular ring and $\Delta = J(S)$.

Proof. Let $f \in S$ and $K = \ker f$. Since $\ker(f) \cap \ker(1-f) = 0$, there exists an isomorphism $\alpha : K \to (1-f)K$. Consider the inverse map of α . Since M is π -duo module, (1-f)K is projection invariant in M. By hypothesis, there exists $g \in S$ such that g lifts inverse map of α . Then g(1-f)(k) = kfor all $k \in K$. Let B be a complement of $\ker(f)$ in M. Note that f restricts to an isomorphism of B onto f(B), since $B \cap \ker(f) = 0$. Observe that f(B) is also projection invariant submodule of M as S is Abelian. By selfpinjectivity of M, extend the inverse isomorphism $f(B) \to B$ to some $\gamma \in S$. Now, $\gamma(f(b)) = b$ for all $b \in B$ and hence $(f\gamma f - f)(B) = 0$. Moreover, $B \oplus \ker(f) \le \ker(f\gamma f - f) \le M$ which gives that $(f\gamma f - f) \in \Delta$. Hence S/Δ is a (von Neumann) regular ring. It is well known that, regular rings have zero radical, hence $J(S/\Delta) = 0$. Since $J(S)/\Delta \subseteq J(S/\Delta)$, then $J(S) = \Delta$. **Corollary 2.16.** Let M be a nonsingular π -duo right R-module. If M is a self-p-injective module, then S is a regular ring.

Proof. Let $g \in \Delta$ and $N = \ker(g)$. Then for any $x \in M$, build up the following set

$$L = \{r \in R \mid xr \in N\}$$

Then clearly L is a right ideal of R and also L is essential in R. Now, g(x)L = 0. Since M is nonsingular then g(x) = 0, and since x is arbitrary g = 0. Therefore $\Delta = 0$ ([13, Lemma 2.3]). Hence the result follows from Theorem 2.16.

The following example shows that the converse of Corollary 2.16 does not hold. Moreover this example explains that endomorphism ring of a PIextending (and hence self-p-injective) module need not to be Abelian.

Example 2.17.

(i) Let $T = M_2(R)$ be the ring in [19, Example 4.77]. Note that T_T is nonsingular self-p-injective which is not CS-module. Since T is regular, so does $S = End(T_T)$. However T is not π -duo. Because if it were π -duo, then it would be a CS-module, a contradiction.

(ii) Let V be a countably infinite dimensional vector space over a division ring D and let $S = End(V_D)$. Let $\{x_1, x_2, ...\}$ be a basis of V. It is clear that V_D is PI-extending so it is self-p-injective. Since $\Delta = 0$, S is regular ring. However S is not an Abelian ring. In fact, define $\sigma : V \to V$ by $\sigma(x_i) = x_{i+1}$ for all $i \ge 1$ and $\pi : V \to x_i D$ by $\pi(x_i) = x_i$ and $\pi(x_j) = 0$ for $i \ne j$. Now $\sigma\pi(x_i) = \sigma(x_i) = x_{i+1}$ but $\pi\sigma(x_i) = \pi(x_{i+1}) = 0$.

3 Relatively p-injective Modules

In this section we introduce the concept of a relative p-injective module and investigate some properties of these modules. Let us begin with the definition.

Definition 3.1. Let M_1 and M_2 be modules. The module M_2 is M_1 -p-injective if every homomorphism $\alpha : N \to M_2$, where N is a projection invariant submodule of M_1 , can be extended to a homomorphism $\beta : M_1 \to M_2$.

It is clear that relative p-injectivity is more general than relative injectivity. Next result provides equivalent conditions to be *PI*-extending in terms of relative p-injectivity.

Proposition 3.2. The following statements are equivalent for a module M.

- (i) M is PI-extending.
- (ii) Every module is M-p-injective.
- (iii) Every projection invariant submodule of M is M-p-injective.

Proof. $(i) \Rightarrow (ii)$ Let X be a module and N be a projection invariant submodule of M with $\varphi : N \to X$ homomorphism. Since M is PI-extending, there exists a direct summand D of M such that N is essential in D. Then $M = D \oplus D'$ for some D' submodule of M. Let π be the projection map on N in D. Define $\alpha : M \to X$ by $\alpha = \varphi \pi$. Clearly, α lifts to $\varphi \pi$ so X is M-p-injective.

 $(ii) \Rightarrow (iii)$ It is obvious.

 $(iii) \Rightarrow (i)$ Let N be a projection invariant submodule of M. By hypothesis, N is M-p-injective so the identity map $\iota : N \to N$ can be extended to $\alpha : M \to N$. It is easy to check that $M = N \oplus \ker \alpha$. Thus M is PI-extending. \Box

Next result, which generalizes [4, 7.5], concerns relative p-injective direct summands of a module.

Theorem 3.3. Let M_1 , M_2 be modules and $M = M_1 \oplus M_2$. Then M_2 is M_1 -p-injective if and only if every submodule N of M such that $N \cap M_2 = 0$; and $\pi_1(N)$ is a projection invariant submodule of M_1 , there exists a submodule N' of M such that $N \leq N'$ and $M = N' \oplus M_2$.

Proof. Let $N \leq M$ such that $N \cap M_2 = 0$ and $\pi_1(N)$ is projection invariant submodule of M_1 . Let $\pi_1 : M \to M_1$ be the projection and consider the restriction of π_1 to N. Then $\pi_1|_N$ is an isomorphism between N to $\pi_1(N)$, since $N \cap M_2 = 0$. Consider the homomorphism $\alpha : \pi_1(N) \to M_2$ by $\alpha(x) = \pi_2(\pi_1|_N)^{-1}(x)$. Since $\pi_1(N)$ is projection invariant submodule of M_1 and M_2 is M_1 -p-injective, the map α can be extended to a homomorphism β : $M_1 \to M_2$. Define $N' = \{x + \beta(x) \mid x \in M_1\}$. Clearly, N' is a submodule of M and $M = N' \oplus M_2$. Let $n \in N$. $\beta \pi_1(x) = \alpha \pi_1(x) = \pi_2(x)$ and hence $x = \pi_1(x) + \pi_2(x) = \pi_1(x) + \beta \pi_1(x) \in N'$. Then $N \leq N'$.

Conversely, let K be a projection invariant submodule of M_1 and $\alpha: K \to M_2$ be a homomorphism. Define $N = \{x - \alpha(x) \mid x \in K\}$. N is a submodule of M and $N \cap M_2 = 0$. Moreover, it can be easily seen that $\pi_1(N) = K$. Hence $\pi_1(N)$ is projection invariant submodule of M_1 . By hypothesis, there exists a submodule N' of M such that $N \leq N'$ and $M = N' \oplus M_2$. Let $\pi: M \to M_2$ be projection with kernel N' and let $\beta: M_1 \to M_2$ be the restriction of π to M_1 . Let $x \in K$. $\beta(x) = \pi(x) = \pi(x - \alpha(x) + \alpha(x)) = \alpha(x)$. It follows that M_2 is M_1 -p-injective.

Proposition 3.4. Let $\{M_{\lambda}\}_{\lambda \in \Lambda}$ be a family of *R*-modules. Then *X* is M_{λ} -p-injective for all $\lambda \in \Lambda$ if and only if *X* is $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ -p-injective.

Proof. Let $M = \bigoplus_{\lambda \in \Lambda} M_{\lambda}$ and $\alpha : N \to A$ be homomorphism with a projection invariant submodule N of M. Then $N = \bigoplus_{\lambda \in \Lambda} (N \cap M_{\lambda})$ where $N \cap M_{\lambda}$ is projection invariant in M_{λ} . Consider the restriction of α on $N \cap M_{\lambda}$. Then there exists a homomorphism $\theta: M_{\lambda} \to X$ such that θ lifts to $\alpha|_{N \cap M_{\lambda}}$. Define $\gamma: M \to X$ by $\gamma = \theta \pi_{\lambda}$ where $\pi_{\lambda}: M \to M_{\lambda}$ canonical projection. Then it can be easily seen that γ lifts to α , hence X is M-p-injective.

Conversely, let K_{λ} be projection invariant in M_{λ} for any $\lambda \in \Lambda$ and α : $K_{\lambda} \to X$ be homomorphism. Then $K = \bigoplus_{\lambda \in \Lambda} K_{\lambda}$ is projection invariant in $M = \bigoplus_{\lambda \in \Lambda} M_{\lambda}$. Now, there exists a homomorphism $\theta : M \to X$ such that θ lifts to $\alpha \pi_{\lambda}$ where π_{λ} is a projection map from K onto K_{λ} . Define $\gamma : M_{\lambda} \to X$ by $\gamma = \theta \iota$ where ι is inclusion map. Then, it is clear that γ lifts to α . Therefore X is M_{λ} -p-injective.

Our next two results give conditions for a module X and its quotient being relative p-injective. To this end, we refer to [2, 16.8] for the corresponding relative injectivity results.

Theorem 3.5. Let K be any projection invariant submodule of an R-module M. Then an R-module X is M-p-injective if and only if

(i) X is K-p-injective.

(ii) X is (M/K)-p-injective.

(iii) any homomorphism $\varphi : K \to X$ can be lifted to a homomorphism $\theta : M \to X$.

Proof. Suppose that X is M-p-injective. Then (i) and (iii) clearly hold. Now suppose that N/K is projection invariant in M/K for $K \subseteq N \leq M$ and α : $N/K \to X$ is a homomorphism. Since N/K is projection invariant in M/K, then N is projection invariant in M. Let $\pi_1 : M \to M/K$ and $\pi_2 : N \to N/K$ be the canonical epimorphisms. Since X is M-p-injective, the homomorphism $\alpha \pi_2 : N \to X$ can be extended to the homomorphism $\gamma : M \to X$. Since $N \leq \ker \gamma$, there exists a homomorphism $\beta : M/K \to X$ such that $\beta \pi_1 = \gamma$. Let $n \in N$. $\beta(n+K) = \beta(\pi_1(n)) = \gamma(n) = \alpha \pi_2(n) = \alpha(n+K)$. Hence β lifts to α so X is (M/K)-p-injective.

Conversely, suppose that X satisfies (i), (ii) and (iii). Let N be projection invariant submodule of M and $\varphi : N \to X$ be homomorphism. It is clear that $N \cap K$ is also projection invariant in K. Let φ' be the restriction of φ to $N \cap K$. By (i), there exists $\alpha : K \to X$ such that φ' can be lifted to α . By (iii), there exists $\beta : M \to X$ such that β lifts to α . Thus

 $\beta(k) = \alpha(k) = \varphi'(k) = \varphi(k)$ for all $k \in N \cap K$.

Let $\gamma = \varphi - \beta$. It is clear that $\gamma : N \to X$ and $\gamma(N \cap K) = 0$. Define $\varphi'' : N + K/K \to X$ by $\varphi''(n+K) = \gamma(n+K)$ for all $n \in N$. φ'' is well defined, since $\gamma(N \cap K) = 0$. Note that N + K and N + K/K are both

projection invariant in M. Thus by (ii), there exists $\theta' : M/K \to X$ such that θ' lifts to φ'' . Define $\theta'' : M \to X$ by $\theta''(m) = \theta'(m+K)$ for all $m \in M$. Let $\theta = \beta + \theta''$ where $\theta : M \to X$. Let $n \in N$. Then

$$\theta(n) = \beta(n) + \theta''(n) = \varphi(n) - \varphi''(n+K) + \theta'(n+K) = \varphi(n).$$

Thus θ lifts φ so X is M-p-injective.

Proposition 3.6. Let $K \subseteq N$ be submodules of an *R*-module *M*. Then the following statements are equivalent.

(i) N/K is M-p-injective.

(ii) For all $K \leq N \leq M$ with projection invariant submodule N/K of M/K, N/K is a direct summand of M/K.

Proof. $(i) \Rightarrow (ii) N/K$ is M/K-p-injective by Theorem 3.5. Thus the identity map $\iota : N/K \to N/K$ can be lifted to a homorphism $\theta : M/K \to N/K$. It is easy to check that $M/K = \ker \theta \oplus (N/K)$.

 $(ii) \Rightarrow (i)$ Let X be a projection invariant submodule of M and $\varphi : X \rightarrow N/K$ be a homomorphism with $K = \ker \varphi$. Since X/K is projection invariant in M/K and $K = \ker \varphi \leq X \leq A$, then X/K is a direct summand of M/K by (ii). Thus there exists $L \leq M$ such that $K \subseteq L$, $M/K = X/K \oplus L/K$. Define $\theta : M \rightarrow N/K$ by $\theta(x+l) = \varphi(x)$ where $x \in X$ and $l \in L$. Note that if $x \in X$, $l \in L$ and x+l=0, then $x = -l \in X \cap L = K$. Thus θ is well defined. Clearly θ is an R-homomorphism and θ lifts φ . Thus N/K is M-p-injective.

4 Examples

We provide examples which show that self-p-injective and tight are different notions. Recall that 2-by-2 upper triangular matrix ring over a field is a right CS ring by [18, Theorem 3.4]. To this end, the following example corrects [6, Example 2.11].

Example 4.1. Let $S = \mathbb{Z}[x]$ and let R be the 2-by-2 full matrix ring over S. Then R is not right CS by [4, Lemma 12.8]. By [10, Corollary 11.18 and Corollary 11.19], R is a semiprime right Goldie ring. Then R is R-tight by [7].

There is a self-p-injective module which is not tight (see, [1, Example 3.1]). However the following example (see, [6, Example 2.13]) is *R*-tight but it is not self-p-injective.

Example 4.2. Let $R = \{(m, n) \mid m \equiv n \pmod{2}\} \subseteq \mathbb{Z} \times \mathbb{Z}$. Then R_R is tight by [6, Example 2.13]. Since R is indecomposable, Lemma 2.1 yields that R is not self-p-injective.

Acknowledgment. The authors would like to express their appreciation to the referee for his/her careful reading to the paper and useful suggestions.

References

- Al-Huzali, A., Jain, S. K., Lopez-Permouth, S. R., On the weak relativeinjectivity of rings and modules, Noncommutative ring theory, Lecture Notes in Math., 1448, Springer, Berlin, 1990.
- [2] Anderson, F. W., Fuller, K. R., Rings and Categories of Modules, New York, Springer-Verlag, 1974.
- [3] Birkenmeier, G. F., Tercan, A., Yücel, C. C., The extending condition relative to sets of submodules, *Comm. Algebra* 42 (2014) 764-778.
- [4] Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R., Extending Modules, Pitman, London, 1994.
- [5] Fuchs, L., Infinite Abelian Groups I, New York, Academic Press, 1970.
- [6] Guil Asensio, P. A., Sahinkaya, S., Srivastava, A. K., New characterizations of pseudo-Frobenius rings and a generalization of the FGF conjecture, *Isr. J. Math.*, 214 (2016), 121-148.
- [7] Jain, S. K., Lopez-Permouth, S. R., A survey on the theory of weakly injective modules, in Computational Algebra, Lecture Notes Pure Appl. Math. 151, Marcel Dekker, New York, (1993) 205-232.
- [8] Kaplansky, I. Infinite Abelian Groups, University of Michigan Press, 1969.
- [9] Kara, Y., Tercan, A., Modules whose certain submodules are essentially embedded in direct summands, *Rocky Mt. J. Math.*, 46(2) (2016) 519-532.
- [10] Lam, T. Y., Lectures on Modules and Rings, Springer-Verlag, 1999.
- [11] Mohamed, S. H., Müller, B. J., Continuous and Discrete Modules, London Math. Soc. 147, 1990.
- [12] Murthy, M. P., Zero cycles and projective modules, Ann. Math., (1994) 405-434.
- [13] Sandomierski, F.L., Non-singular rings, Proc. Amer. Math. Soc. 19 (1968) 225-230.

- [14] Santa-Clara, C., Smith, P. F., Modules which are self-injective relative to closed submodules, *Algebra and Its Applications*, Contemp. Math., Athens, Ohio, 259 (1999) 487499.
- [15] Smith, P.F., Tercan, A., Generalizations of CS-modules, Comm. Algebra 21 (1993) 1809-1847.
- [16] Smith, P.F., Tercan, A., Continuous and quasi-continuous modules, *Houston J. Math.*, 18(3) (1992) 339-348.
- [17] Smith, P.F., Tercan, A., Direct summands of modules which satisfy C₁₁, Algebra Collog., 11 (2004) 231-237.
- [18] Tercan, A., On certain CS rings, Comm. Algebra 23(2) (1995) 405-419.
- [19] Tercan, A., Yücel, C. C., Module Theory, Extending Modules and Generalizations, Basel, Birkhäuser, 2016.

Yeliz KARA Hacettepe University, Department of Mathematics, Beytepe Campus, Ankara 06532, Turkey Email:yelizkara@hacettepe.edu.tr

Adnan TERCAN Hacettepe University, Department of Mathematics, Beytepe Campus, Ankara 06532, Turkey Email:tercan@hacettepe.edu.tr