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Modules which are self-p-injective relative to
projection invariant submodules

Yeliz Kara and Adnan Tercan

Abstract

In this article, we focus on modules M such that every homomor-
phism from a projection invariant submodule of M to M can be lifted to
M . Although such modules share some of the properties of PI -extending
(i.e., every projection invariant submodule is essential in a direct sum-
mand) modules, it is shown that they form a substantially bigger class
of modules.

1 Introduction

Throughout this paper, let R be a ring with identity and let all modules be
unitary right R-modules. Let M be a module. The injective hull of M is
denoted by E(M). A submodule K of M is projection invariant (denoted by
K Ep M) provided K is invariant under every idempotent endomorphism of
M (see [3], [5]). Note that the set of projection invariant submodules of a
module M forms a sublattice of the lattice of all submodules of M .

A module M is called an extending module, or a CS-module, if every sub-
module of M is essential in a direct summand, or, equivalently, if every closed
submodule of M is a direct summand. This condition has proven to be an im-
portant common generalization of the injective and semisimple module notions
(see, [4], [11]). In [3], the extending condition relative to various sets of sub-
modules have been investigated. Recall that a moduleM is called PI-extending
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if every projection invariant submodule is essential in a direct summand of M .
In the papers [14] and [16], the authors studied the following property, for a
module M :

(Pn) : For every submodule K of M such that K can be written as a finite
direct sum K1 ⊕ K2 ⊕ ... ⊕ Kn of complements K1,K2, ...,Kn of M , every
homomorphism α : K → M can be lifted to a homomorphism β : M → M .
Following an idea from [16], we are concerned with the study of self-p-injective
modules, i.e., modules M that satisfy the condition that every homomorphism
from a projection invariant submodule of M to M can be lifted to M . Observe
that the aforementioned property is equivalent to that of every homomorphism
from a finite direct sum of projection invariant submodules of M to M lifts
to M . Extending and PI-extending modules are examples of self-p-injective
modules. Our investigation focuses on the behavior of self-p-injective modules
with respect to direct sums and direct summands. To this end, we provide
algebraic geometrical examples which show that being self-p-injective is not
inherited by direct summands. In contrast, we prove that any direct sum of
self-p-injective modules enjoys with the property. Moreover we obtain useful
characterizations and direct sum property on relatively p-injective modules.
Finally, we give examples which show that there is no implication between
self-p-injective and tight concepts. Recall that a module M is said to be right
tight (resp.,right M -tight) if every finitely generated (resp., cyclic) submodule
of E(M) can be embedded in M (see [1], [6]).

Recall the following conditions for a module M .
(C2): every submodule of M can be embedded in a direct summand of M .
(C3): for all direct summandsK and L ofM withK∩L = 0, the submodule

K ⊕ L is also a direct summand of M .
Observe that C2 implies C3 by [11, Proposition 2.2]. Recall further that,

a ring is called Abelian if every idempotent is central. Other terminology and
notation can be found in [2], [4], [10], and [11].

2 Direct Summands and Direct Sums

In this section, we concern ourselves with direct summands and direct sums
of self-p-injective modules. We provide examples which show that, in general,
direct summands of a self-p-injective module need not to be self-p-injective.
Amongst some affirmative answers for the former closure property we also
prove that any direct sum of self-p-injective modules is again self-p-injective.

Lemma 2.1. Let M be an indecomposable module. Then the following state-
ments are equivalent.

(i) M is quasi-injective.
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(ii) M is extending.
(iii) M is PI-extending.
(iv) M is self-p-injective.

Proof. (i)⇒ (ii) Obvious.
(ii)⇒ (iii) Clear from [3, Proposition 3.7].
(iii)⇒ (iv) Let X be a projection invariant submodule of M and ϕ : X →

M be a homomorphism. Then there exists a direct summand D of M such
that X is essential in D where M = D ⊕D′. Let π be projection map on X
in D. Then define α : M → M such that α = ϕπ. It can be easily seen that
α lifts ϕ. Hence M is self-p-injective.

(iv) ⇒ (i) Since M is an indecomposable module, every submodule of M
is projection invariant. Then it is clear that self-p-injectivity implies quasi-
injectivity.

Observe that every quasi-injective module is self-p-injective. However there
are self-p-injective modules which are not quasi-injective. For example let
MZ = (Z/Zp)⊕Q where p is any prime integer. Then MZ is not quasi-injective
but it is self-p-injective by Theorem 2.8. Note that every PI-extending module
is self-p-injective. But the converse of this result is not true, in general. For
instance, let M be the Specker group, MZ =

∏∞
i=1Ai with Ai = Z for any

positive integer i. Then it can be checked that MZ is not PI-extending by [5],
but it is self-p-injective by Theorem 2.14.

The next example shows that direct summands of self-p-injective modules
need not to be self-p-injective, in general.

Example 2.2. (See, [3, Example 5.5] or [17, Example 4]) Let R be the real
field and n be any odd integer with n ≥ 3. Let S be the polynomial ring
R [x1, ..., xn] over R in indeterminates x1, ..., xn. Let R be the ring S/Ss,
where s = x2

1 + ...+x2
n− 1. Then the free R- module, the countable direct sum

M = R(N) of copies of R is self-p-injective which contains a direct summand
KR which is not self-p-injective.

Surprisingly, we may provide more examples in the next result which is

based on certain hypersurfaces in projective spaces, Pn+1
C over complex num-

bers.

Theorem 2.3. Let X be the hypersurface in Pn+1
C , n ≥ 2, defined by the

equation xm0 + xm1 + ...+ xmn+1 = 0. Let R = C[x1, ..., xn+1]/(
∑n+1
i=1 x

m
i + 1) be

the coordinate ring of X. There exist self-p-injective R-modules but contain
direct summands which are not self-p-injective for m ≥ n+ 2.



Modules which are self-p-injective relative to projection 120

Proof. By [12], there are indecomposable projective R-modules of rank n over
R. It follows that FR = K ⊕W where FR is a free module, K is indecom-
posable and projective R-module of rank n. From [3, Corollary 4.11], FR is
PI -extending and hence it is self-p-injective. Now KR is not uniform. Thus
KR is not PI-extending so it is not self-p-injective by Lemma 2.1.

However, we deal with some special cases when the self-p-injectivity is
inherited by direct summands in the following results.

Proposition 2.4. Let M = M1 ⊕M2 where M1 and M2 are projection in-
variant submodules of M . If M is self-p-injective then M1, M2 are also self-
p-injective.

Proof. Let N1 be a projection invariant submodule of M1 and ϕ : N1 → M1

be a homomorphism. Since N1 is projection invariant submodule of M1 and
M1 is projection invariant submodule of M , then N1 is projection invariant
submodule of M . Observe that ιϕ : N1 →M where ι is inclusion map. Then
there exists θ : M → M such that θ lifts to ιϕ. Define γ : M1 → M1 by
γ(m1) = θ(m1). It is clear that ϕ can be extended to γ. Then M1 is self-p-
injective. Similarly, it can be shown that M2 is also self-p-injective.

Corollary 2.5. Let M = M1⊕M2 for submodules M1 and M2 of M with S =
End(MR) an Abelian ring. If M is self-p-injective then any direct summand
of M is also self-p-injective.

Proof. Let π : M →M2 be projection map with ker(π) = M1. Let e = e2 ∈ S.
Since S is Abelian, e(ker(π)) ⊆ ker(π). Hence M1 is projection invariant in
M . Now, apply Proposition 2.4 which yields the corollary.

Proposition 2.6. Let M = M1 ⊕M2 where M1,M2 ≤ M such that M2 is
a projection invariant submodule of M . If M is self-p-injective then M1 is
self-p-injective.

Proof. Let N be projection invariant submodule of M1 and ϕ : N → M1 be
a homomorphism. Then N ⊕M2 is projection invariant in M by [3, Lemma
4.13]. Now consider θ = ιϕπ1 where π1 : N ⊕M2 → N is projection and
ι : M1 →M is inclusion. Thus there exists γ : M →M such that γ lifts to θ.
Hence

γ(n+m2) = θ(n+m2) = ιϕπ1(n+m1) = ϕ(n).

Define τ : M1 → M1 by τ = πβ where β is a restriction of θ to M1 and
π : M →M1. Then let n ∈ N . τ(n) = πβ(n) = πθ(n) = ϕ(n). Thus ϕ can be
extended to τ so M1 is self-p-injective.
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Proposition 2.7. Let M = M1 ⊕M2 for submodules M1, M2 of M. If M1 is
self-p-injective then ϕ : N →M can be lifted to θ : M →M for all projection
invariant submodule N of M1.

Proof. Let N be projection invariant submodule of M1 and ϕ : N → M be a
homomorphism. Then π1ϕ ∈ Hom(N,M1) where π1 : M → M1. Then there
exists θ : M1 → M1 such that π1ϕ can be lifted to θ. Define γ : M → M by
γ = ιθπ1. It is easy to check that γ lifts to ϕ.

Theorem 2.8. Any direct sum of self-p-injective modules is self-p-injective.

Proof. Let Mλ (λ ∈ Λ) be a nonempty collection of self-p-injective modules.
Let M = ⊕

λ∈Λ
Mλ and ϕ : N −→M be homomorphism where N is a projection

invariant submodule of M . Let Λ
′

be a nonempty subset of Λ. Consider the
set

H = {(Λ′
,K ′, α′, θ′) | Λ′ ⊆ Λ,K ′ Ep M ′ = ⊕

λ∈Λ′
Mλ and α′ : K ′ →M ′

homomorphism with θ′ : M ′ →M ′ such that θ′ lifts to α′}

which becomes a partially ordered set by the componentwise order ≤ defined
by

(Λ1,K1, α1, θ1) ≤ (Λ2,K2 α2, θ2)⇔ Λ1 ⊆ Λ2, K1 ⊆ K2,
α2 |K1

= α1 and θ1 = πθ2ι

where π is canonical projection from ⊕
λ∈Λ2

Mλ to ⊕
λ∈Λ1

Mλ and ι is natural

inclusion from ⊕
λ∈Λ1

Mλ to ⊕
λ∈Λ2

Mλ.

Since Mλ is self-p-injective for all λ ∈ Λ, the identity map ι can extend to
θ : Mλ →Mλ. Hence ({λ},Mλ, ι, θ) ∈ H so H 6= ∅. Applying Zorn’s Lemma,
we can find a maximal element (Λ1,K1, α1, θ1) in H.

We claim that Λ = Λ1. Suppose not, then there exists µ ∈ Λ, µ /∈ Λ1.
Let Λ2 = Λ1 ∪ {µ} and M

′′
= ⊕

λ∈Λ2

Mλ = ⊕
λ∈Λ1

Mλ ⊕Mµ = M ′ ⊕Mµ. Since

Mµ is self-p-injective, then for any projection invariant submodule Nµ of Mµ

and αµ : Kµ → Mµ homomorphism, there exists θµ : Mµ → Mµ such that θµ
extends to ϕµ. Observe that K1⊕Kµ is projection invariant in M

′′
. Consider

the homomorphism γ : K1⊕Kµ →M
′′

such that γ(k1+kµ) = α1(k1)+αµ(kµ).

It is clear that γ extends to α1. Define θ : M
′′ → M

′′
by θ = θ1π1 +

θµπ2 where π1 : M
′′ → M ′ and π2 : M

′′ → Mµ. Let m′ ∈ M ′. Then
πθι(m′) = π(θ1π1(m′) + θµπ2(m′)) = πθ1(m′) = θ1(m′). Hence θ1 = πθι.
Now (Λ2,K1⊕Kµ, γ, θ) ∈ H. Note that (Λ1,K1, α1, θ1) ≤ (Λ2,K1⊕Kµ, γ, θ)
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which contradicts the maximalitiy of (Λ1,K1, α1, θ1) in H. Therefore Λ = Λ1,
so M = ⊕

λ∈Λ
Mλ is self-p-injective.

Corollary 2.9. Any direct sum of modules which are PI-extending (resp.,
quasi-injective, extending or uniform) is self-p-injective.

Proof. Immediate by Theorem 2.8.

Corollary 2.10. Let M be a right R-module and M = U ⊕ V where U and
V are uniform submodules of M . Then every direct summand of M is self-p-
injective.

Proof. Let 0 6= K be a direct summand of M . If K = M then K is self-
p-injective from Corollary 2.9. If K 6= M then K is uniform. Hence K is
self-p-injective.

Theorem 2.11. Let M be a Z-module such that M is a direct sum of uniform
modules. Then every direct summand of M is self-p-injective.

Proof. Let N be a direct summand of M . Then N is also a direct sum of
uniform modules by [15, Theorem 5.5]. Now Corollary 2.9 yields that N is
also self-p-injective.

One might expect that an essential extension of a self-p-injective module
is self-p-injective. However, the next example eliminates this situation.

Example 2.12. Let R be a principial ideal domain. If R is not a complete dis-
crete valuation ring then there exists an indecomposable torsion-free R-module
M of rank 2 by [8, Theorem 19]. Hence there exist uniform U1, U2 submodules
of M such that U1 ⊕ U2 is essential in M. Then U1 ⊕ U2 is self-p-injective by
Corollary 2.9. However M is not self-p-injective by Lemma 2.1.

Lemma 2.13. Let X =
∏
i∈I
Xi be a direct product of modules of Xi for each

i ∈ I. If N is a projection invariant submodule of X then N =
∏
i∈I

(N ∩Xi).

Proof. It is straightforward to check.

Theorem 2.14. Let X =
∏
i∈I
Xi. Then X is self-p-injective if and only if Xi

is self-p-injective for all i ∈ I.

Proof. Let Ni be projection invariant in Xi and ϕ : Ni → Xi be a homomor-
phism. Then T =

∏
i∈I
Ni is projection invariant in X. Let αi : T → Ni be

a projection map. Consider ιϕαi : T → X where ι is inclusion. Then there
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exists θ : X → X such that θ lifts ιϕαi. Define γ : Xi → Xi by γ = πiθι
where πi is projection map from X to Xi. It is clear that γ lifts to ϕ, so Xi

is self-p-injective.
Conversely, let N be a projection invariant submodule of X and ϕ : N →

X be a homomorphism. Then N ∩ Xi is projection invariant submodule of
Xi. Let θ be the restriction of ϕ to N ∩ Xi. Then πiθ : N ∩ Xi → Xi for
all i ∈ I. Hence there exists γ : Xi → Xi such that γ lifts to πiθ for all
i ∈ I. Define α : X → X by α = ιγπi. Let n ∈ N . By Lemma 2.13, n =
(πi(n))i∈I . Thus α(n) = α((πi(n))i∈I) = ιγπi((πi(n))i∈I) = ιγ((πi(n))i∈I) =
ιπiθ((πi(n))i∈I) = θ((πi(n))i∈I) = ϕ((πi(n))i∈I) = ϕ(n). Hence α lifts to ϕ
so X is self-p-injective.

The conditions C2 and C3 can be characterized by the lifting homomor-
phisms from certain submodules to the module itself, as was shown in [16].
We obtain relations between the class of modules which is self-p-injective and
the class of modules which has C3 condition. From [16, Lemma 1], we have
the following implication for a module M .

C3 ⇒ self-p-injective

Note that this implication is not reversible. For example, let MZ = ⊕∞i=1Z.
Then MZ is self-p-injective by Theorem 2.8, but MZ does not satisfy C3 by
[16, Example 9].

The next few results, which generalize [9, Theorem 2.12 ], concern the endo-
morphism ring of self-p-injective π-duo modules. We call a module M is π-duo
if every submodule is projection invariant in M . We will use S and J(S) to de-
note the endomorphism ring of a module M and the Jacobson radical of S, re-
spectively. Further ∆ will stand for the ideal {α ∈ S | ker(α) is essential in M}.

Theorem 2.15. Let MR be a self-p-injective module and S an Abelian ring.
Then S/∆ is a (von Neumann) regular ring and ∆ = J(S).

Proof. Let f ∈ S and K = kerf . Since ker(f) ∩ ker(1 − f) = 0, there exists
an isomorphism α : K → (1 − f)K. Consider the inverse map of α. Since
M is π-duo module, (1 − f)K is projection invariant in M . By hypothesis,
there exists g ∈ S such that g lifts inverse map of α. Then g(1 − f)(k) = k
for all k ∈ K. Let B be a complement of ker(f) in M . Note that f restricts
to an isomorphism of B onto f(B), since B ∩ ker(f) = 0. Observe that
f(B) is also projection invariant submodule of M as S is Abelian. By self-p-
injectivity of M , extend the inverse isomorphism f(B) → B to some γ ∈ S.
Now, γ(f(b)) = b for all b ∈ B and hence (fγf − f)(B) = 0. Moreover,
B ⊕ ker(f) ≤ ker(fγf − f) ≤M which gives that (fγf − f) ∈ ∆. Hence S/∆
is a (von Neumann) regular ring. It is well known that, regular rings have zero
radical, hence J(S/∆) = 0. Since J(S)/∆ ⊆ J(S/∆), then J(S) = ∆.
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Corollary 2.16. Let M be a nonsingular π-duo right R-module. If M is a
self-p-injective module , then S is a regular ring.

Proof. Let g ∈ ∆ and N = ker(g). Then for any x ∈M , build up the following
set

L = {r ∈ R | xr ∈ N}

Then clearly L is a right ideal ofR and also L is essential inR. Now, g(x)L = 0.
Since M is nonsingular then g(x) = 0, and since x is arbitrary g = 0. Therefore
∆ = 0 ([13, Lemma 2.3]). Hence the result follows from Theorem 2.16.

The following example shows that the converse of Corollary 2.16 does
not hold. Moreover this example explains that endomorphism ring of a PI-
extending (and hence self-p-injective) module need not to be Abelian.

Example 2.17.
(i) Let T = M2(R) be the ring in [19, Example 4.77]. Note that TT is
nonsingular self-p-injective which is not CS-module. Since T is regular, so
does S = End(TT ). However T is not π-duo. Because if it were π-duo, then
it would be a CS-module, a contradiction.
(ii) Let V be a countably infinite dimensional vector space over a division
ring D and let S = End(VD). Let {x1, x2, ...} be a basis of V . It is clear that
VD is PI-extending so it is self-p-injective. Since ∆ = 0, S is regular ring.
However S is not an Abelian ring. In fact, define σ : V → V by σ(xi) = xi+1

for all i ≥ 1 and π : V → xiD by π(xi) = xi and π(xj) = 0 for i 6= j. Now
σπ(xi) = σ(xi) = xi+1 but πσ(xi) = π(xi+1) = 0.

3 Relatively p-injective Modules

In this section we introduce the concept of a relative p-injective module and
investigate some properties of these modules. Let us begin with the definition.

Definition 3.1. Let M1 and M2 be modules. The module M2 is M1-p-injective
if every homomorphism α : N → M2, where N is a projection invariant
submodule of M1, can be extended to a homomorphism β : M1 →M2.

It is clear that relative p-injectivity is more general than relative injectivity.
Next result provides equivalent conditions to be PI -extending in terms of
relative p-injectivitiy.

Proposition 3.2. The following statements are equivalent for a module M.
(i) M is PI-extending.
(ii) Every module is M -p-injective.
(iii) Every projection invariant submodule of M is M-p-injective.
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Proof. (i) ⇒ (ii) Let X be a module and N be a projection invariant sub-
module of M with ϕ : N → X homomorphism. Since M is PI-extending,
there exists a direct summand D of M such that N is essential in D. Then
M = D ⊕ D′ for some D′ submodule of M . Let π be the projection map
on N in D. Define α : M → X by α = ϕπ. Clearly, α lifts to ϕπ so X is
M -p-injective.

(ii)⇒ (iii) It is obvious.
(iii)⇒ (i) LetN be a projection invariant submodule ofM . By hypothesis,

N is M -p-injective so the identity map ι : N → N can be extended to α : M →
N . It is easy to check that M = N ⊕ kerα. Thus M is PI-extending.

Next result, which generalizes [4, 7.5], concerns relative p-injective direct
summands of a module.

Theorem 3.3. Let M1, M2 be modules and M = M1 ⊕M2. Then M2 is
M1-p-injective if and only if every submodule N of M such that N ∩M2 = 0;
and π1(N) is a projection invariant submodule of M1, there exists a submodule
N ′ of M such that N ≤ N ′ and M = N ′ ⊕M2.

Proof. Let N ≤ M such that N ∩M2 = 0 and π1(N) is projection invariant
submodule of M1. Let π1 : M → M1 be the projection and consider the
restriction of π1 to N . Then π1|N is an isomorphism between N to π1(N),
since N ∩M2 = 0. Consider the homomorphism α : π1(N) → M2 by α(x) =
π2(π1|N )−1(x). Since π1(N) is projection invariant submodule of M1 and
M2 is M1-p-injective, the map α can be extended to a homomorphism β :
M1 → M2. Define N ′ = {x + β(x) | x ∈ M1}. Clearly, N ′ is a submodule
of M and M = N ′ ⊕M2. Let n ∈ N . βπ1(x) = απ1(x) = π2(x) and hence
x = π1(x) + π2(x) = π1(x) + βπ1(x) ∈ N ′. Then N ≤ N ′.

Conversely, let K be a projection invariant submodule of M1 and α : K →
M2 be a homomorphism. Define N = {x− α(x) | x ∈ K}. N is a submodule
of M and N∩M2 = 0. Moreover, it can be easily seen that π1(N) = K. Hence
π1(N) is projection invariant submodule of M1. By hypothesis, there exists a
submodule N ′ of M such that N ≤ N ′ and M = N ′ ⊕M2. Let π : M → M2

be projection with kernel N ′ and let β : M1 → M2 be the restriction of π to
M1. Let x ∈ K. β(x) = π(x) = π(x − α(x) + α(x)) = α(x). It follows that
M2 is M1-p-injective.

Proposition 3.4. Let {Mλ}λ∈Λ be a family of R-modules. Then X is Mλ-p-
injective for all λ ∈ Λ if and only if X is ⊕

λ∈Λ
Mλ-p-injective.

Proof. Let M = ⊕
λ∈Λ

Mλ and α : N → A be homomorphism with a projection

invariant submodule N of M . Then N = ⊕
λ∈Λ

(N ∩ Mλ) where N ∩ Mλ is
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projection invariant in Mλ. Consider the restriction of α on N ∩Mλ. Then
there exists a homomorphism θ : Mλ → X such that θ lifts to α|N∩Mλ

. Define
γ : M → X by γ = θπλ where πλ : M → Mλ canonical projection. Then it
can be easily seen that γ lifts to α, hence X is M -p-injective.

Conversely, let Kλ be projection invariant in Mλ for any λ ∈ Λ and α :
Kλ → X be homomorphism. Then K = ⊕

λ∈Λ
Kλ is projection invariant in

M = ⊕
λ∈Λ

Mλ. Now, there exists a homomorphism θ : M → X such that θ lifts

to απλ where πλ is a projection map from K onto Kλ. Define γ : Mλ → X by
γ = θι where ι is inclusion map. Then, it is clear that γ lifts to α. Therefore
X is Mλ-p-injective.

Our next two results give conditions for a module X and its quotient being
relative p-injective. To this end, we refer to [2, 16.8] for the corresponding
relative injectivity results.

Theorem 3.5. Let K be any projection invariant submodule of an R-module
M. Then an R-module X is M-p-injective if and only if

(i) X is K-p-injective.
(ii) X is (M/K)-p-injective.
(iii) any homomorphism ϕ : K → X can be lifted to a homomorphism

θ : M → X.

Proof. Suppose that X is M -p-injective. Then (i) and (iii) clearly hold. Now
suppose that N/K is projection invariant in M/K for K ⊆ N ≤ M and α :
N/K → X is a homomorphism. Since N/K is projection invariant in M/K,
then N is projection invariant in M . Let π1 : M →M/K and π2 : N → N/K
be the canonical epimorphisms. Since X is M -p-injective, the homomorphism
απ2 : N → X can be extended to the homomorphism γ : M → X. Since
N ≤ ker γ, there exists a homomorphism β : M/K → X such that βπ1 = γ.
Let n ∈ N . β(n+K) = β(π1(n)) = γ(n) = απ2(n) = α(n+K). Hence β lifts
to α so X is (M/K)-p-injective.

Conversely, suppose that X satisfies (i), (ii) and (iii). Let N be projection
invariant submodule of M and ϕ : N → X be homomorphism. It is clear that
N ∩ K is also projection invariant in K. Let ϕ′ be the restriction of ϕ to
N ∩K. By (i), there exists α : K → X such that ϕ′ can be lifted to α. By
(iii), there exists β : M → X such that β lifts to α. Thus

β(k) = α(k) = ϕ′(k) = ϕ(k) for all k ∈ N ∩K.

Let γ = ϕ − β. It is clear that γ : N → X and γ(N ∩ K) = 0. Define
ϕ′′ : N + K/K → X by ϕ′′(n + K) = γ(n + K) for all n ∈ N . ϕ′′ is well
defined, since γ(N ∩ K) = 0. Note that N + K and N + K/K are both
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projection invariant in M . Thus by (ii), there exists θ′ : M/K → X such that
θ′ lifts to ϕ′′. Define θ′′ : M → X by θ′′(m) = θ′(m+K) for all m ∈M . Let
θ = β + θ′′ where θ : M → X. Let n ∈ N . Then

θ(n) = β(n) + θ′′(n) = ϕ(n)− ϕ′′(n+K) + θ′(n+K) = ϕ(n).

Thus θ lifts ϕ so X is M -p-injective.

Proposition 3.6. Let K ⊆ N be submodules of an R-module M. Then the
following statements are equivalent.

(i) N/K is M-p-injective.
(ii) For all K ≤ N ≤ M with projection invariant submodule N/K of

M/K, N/K is a direct summand of M/K.

Proof. (i)⇒ (ii) N/K is M/K-p-injective by Theorem 3.5. Thus the identity
map ι : N/K → N/K can be lifted to a homorphism θ : M/K → N/K. It is
easy to check that M/K = ker θ ⊕ (N/K).

(ii) ⇒ (i) Let X be a projection invariant submodule of M and ϕ : X →
N/K be a homomorphism with K = kerϕ. Since X/K is projection invariant
in M/K and K = kerϕ ≤ X ≤ A, then X/K is a direct summand of M/K by
(ii). Thus there exists L ≤M such that K ⊆ L, M/K = X/K⊕L/K. Define
θ : M → N/K by θ(x+ l) = ϕ(x) where x ∈ X and l ∈ L. Note that if x ∈ X,
l ∈ L and x+ l = 0, then x = −l ∈ X ∩L = K. Thus θ is well defined. Clearly
θ is an R-homomorphism and θ lifts ϕ. Thus N/K is M -p-injective.

4 Examples

We provide examples which show that self-p-injective and tight are different
notions. Recall that 2-by-2 upper triangular matrix ring over a field is a right
CS ring by [18, Theorem 3.4]. To this end, the following example corrects [6,
Example 2.11].

Example 4.1. Let S = Z[x] and let R be the 2-by-2 full matrix ring over
S. Then R is not right CS by [4, Lemma 12.8]. By [10, Corollary 11.18 and
Corollary 11.19], R is a semiprime right Goldie ring. Then R is R-tight by
[7].

There is a self-p-injective module which is not tight (see, [1, Example 3.1]).
However the following example (see, [6, Example 2.13]) is R-tight but it is not
self-p-injective.

Example 4.2. Let R = {(m,n) | m ≡ n(mod 2)} ⊆ Z× Z. Then RR is tight
by [6, Example 2.13]. Since R is indecomposable, Lemma 2.1 yields that R is
not self-p-injective.
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Yeliz KARA
Hacettepe University,
Department of Mathematics,
Beytepe Campus, Ankara 06532, Turkey
Email:yelizkara@hacettepe.edu.tr

Adnan TERCAN
Hacettepe University,
Department of Mathematics,
Beytepe Campus, Ankara 06532, Turkey
Email:tercan@hacettepe.edu.tr



Modules which are self-p-injective relative to projection 130


