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A relaxation theorem for a differential inclusion
with ”maxima”

Aurelian Cernea

Abstract

We consider a Cauchy problem associated to a nonconvex differential
inclusion with ”maxima” and we prove a Filippov type existence result.
This result allows to obtain a relaxation theorem for the problem con-
sidered.

1 Indroduction

Differential equations with maximum have proved to be strong tools in the
modelling of many physical problems: systems with automatic regulation,
problems in control theory that correspond to the maximal deviation of the
regulated quantity etc.. As a consequence there was an intensive development
of the theory of differential equations with ”maxima” [2, 5, 6, 8-14] etc..

A classical example is the one of an electric generator ([2]). In this case the
mechanism becomes active when the maximum voltage variation is reached in
an interval of time. The equation describing the action of the regulator has
the form

x′(t) = ax(t) + b max
s∈[t−h,t]

x(s) + f(t),

where a, b are constants given by the system, x(.) is the voltage and f(.) is a
perturbation given by the change of voltage.

In this paper we study the following problem

x′(t) ∈ F (t, x(t), max
s∈[0,t]

x(s)) a.e. ([0, 1]), x(0) = x0 (1)
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where F : [0, 1] × R × R → P(R) is a set-valued map and x0 ∈ R. Several
existing results for problem (1) obtained with fixed point approaches may be
found in our previous paper [3].

The aim of this note is to obtain a relaxation theorem for the problem
considered. Namely, we prove that the solution set of the problem (1) is dense
in the set of the relaxed solutions; i.e. the set of solutions of the differential
inclusion whose right hand side is the convex hull of the original set-valued
map. In order to prove this result we show, first, that Filippov’s ideas ([4]) can
be suitably adapted in order to obtain the existence of solutions of problem
(1). We recall that for a differential inclusion defined by a lipschitzian set-
valued map with nonconvex values Filippov’s theorem ([4]) consists in proving
the existence of a solution starting from a given ”quasi” solution. Moreover,
the result provides an estimate between the starting ”quasi”solution and the
solution of the differential inclusion.

The paper is organized as follows: in Section 2 we briefly recall some
preliminary results that we will use in the sequel and in Section 3 we prove
the main results of the paper.

2 Preliminaries

In this section we sum up some basic facts that we are going to use later.
Let (X, d) be a metric space. The Pompeiu-Hausdorff distance of the

closed subsets A,B ⊂ X is defined by dH(A,B) = max{d∗(A,B), d∗(B,A)},
d∗(A,B) = sup{d(a,B); a ∈ A}, where d(x,B) = inf{d(x, y); y ∈ B}. Let
I := [0, 1] and denote by L(I) the σ-algebra of all Lebesgue measurable subsets
of I. Denote by P(R) the family of all nonempty subsets of R and by B(R)
the family of all Borel subsets of R. For any subset A ⊂ R we denote by clA
the closure of A and by co(A) the closed convex hull of A.

As usual, we denote by C(I,R) the Banach space of all continuous functions
x(.) : I → R endowed with the norm |x|C = supt∈I |x(t)| and by L1(I,R) the
Banach space of all integrable functions x(.) : I → R endowed with the norm

|x|1 =
∫ T
0
|x(t)|dt. The Banach space of all absolutely continuous functions

x(.) : I → R will be denoted by AC(I,R). We recall that for a set-valued map
U : I → P(R) the Aumann integral of U, denoted by

∫
I
U(t)dt, is the set∫

I

U(t)dt = {
∫
I

u(t)dt; u(.) ∈ L1(I,R), u(t) ∈ U(t) a.e. (I)}

We recall two results that we are going to use in the next section. The
first one is a selection result (e.g., [1]) which is a version of the celebrated
Kuratowski and Ryll-Nardzewski selection theorem. The proof of the second
one may be found in [7].
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Lemma 1. Consider X a separable Banach space, B is the closed unit ball
in X, H : I → P(X) is a set-valued map with nonempty closed values and
g : I → X,L : I → R+ are measurable functions. If

H(t) ∩ (g(t) + L(t)B) 6= ∅ a.e.(I),

then the set-valued map t→ H(t)∩ (g(t) +L(t)B) has a measurable selection.

Lemma 2. Let U : I → P(R) be a measurable set-valued map with closed
nonempty images and having at least one integrable selection. Then

cl(

∫ T

0

coU(t)dt) = cl(

∫ T

0

U(t)dt).

Let I(.) : R→ P(R) a set-valued map with compact convex values defined
by I(t) = [a(t), b(t)], where a(.), b(.) : R → R are continuous functions with
a(t) ≤ b(t) ∀t ∈ R. For x(.) : R → R continuous we define (maxI)(t) =
maxs∈I(t) x(s). Therefore, maxI : C(R,R) → C(R,R) is an operator whose
properties are summarized in the next lemma proved in [12].

Lemma 3. If x(.), y(.) ∈ C(R,R), then one has
i) |maxs∈I(t) x(s)−maxs∈I(t) y(s)| ≤ maxs∈I(t) |x(s)− y(s)| ∀t ∈ R.
ii) maxt∈K |maxs∈I(t) x(s)−maxs∈I(t) y(s)| ≤ maxs∈∪t∈KI(t) |x(s)− y(s)|

∀t ∈ R.

3 The main results

In what follows we assume the following hypotheses.

Hypothesis. i) F (., ., .) : I ×R×R→ P(R) has nonempty closed values and
is L(I)⊗B(R× R) measurable.

ii) There exist l1(.), l2(.) ∈ L1(I,R+) such that, for almost all t ∈ I,

dH(F (t, x1, y1), F (t, x2, y2)) ≤ l1(t)|x1−x2|+ l2(t)|y1−y2| ∀x1, x2, y1, y2 ∈ R.

Theorem 1. Assume Hypothesis satisfied and |l1|1 + |l2|1 < 1. Let y(.) ∈
AC(I,R) be such that there exists p(.) ∈ L1(I,R+) verifying d(y′(t), F (t,
y(t),maxs∈[0,t] y(s))) ≤ p(t) a.e. (I).

Then there exists x(.) a solution of problem (1) satisfying for all t ∈ I

|x− y|C ≤
1

1− (|l1|1 + |l2|1)
(|x0 − y(0)|+ |p|1). (2)
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Proof. We set x0(.) = y(.), f0(.) = y′(.).
The set-valued map t→ F (t, y(t),maxs∈[0,t] y(s)) is measurable with closed

values and

F (t, y(t), max
s∈[0,t]

y(s)) ∩ {y′(t) + p(t)[−1, 1]} 6= ∅ a.e. (I).

It follows from Lemma 1 that there exists a measurable function f1(.) such
that f1(t) ∈ F (t, x0(t),maxs∈[0,t] x0(s)) a.e. (I) and, for almost all t ∈ I,

|f1(t)− y′(t)| ≤ p(t). Define x1(t) = x0 +
∫ t
0
f1(s)ds and one has

|x1(t)− y(t)| ≤ |x0 − y(0)|+
∫ t

0

p(s)ds ≤ |x0 − y(0)|+ |p|1.

Thus |x1 − y|C ≤ |x0 − y(0)|+ |p|1.
The set-valued map t → F (t, x1(t),maxs∈[0,t] x1(s)) is measurable. More-

over, the map t→ l1(t)|x1(t)−x0(t)|+ l2(t)|maxs∈[0,t] x1(s)−maxs∈[0,t] x0(s)|
is measurable. By the lipschitzianity of F (t, ., .) we have that for almost all
t ∈ I

d(f1(t), F (t, x1(t), max
s∈[0,t]

x1(s))) ≤ dH(F (t, x0(t), max
s∈[0,t]

x0(s)),

F (t, x1(t), max
s∈[0,t]

x1(s))) ≤ l1(t)|x1(t)−x0(t)|+ l2(t)| max
s∈[0,t]

x0(s)− max
s∈[0,t]

x1(s)|.

Therefore,

F (t, x1(t),maxs∈[0,t] x1(s))) ∩ {f1(t) + (l1(t)|x1(t)− x0(t)|+
l2(t)|maxs∈[0,t] x1(s)−maxs∈[0,t] x0(s)|)[−1, 1]} 6= ∅.

From Lemma 1 we deduce the existence of a measurable function f2(.) such
that f2(t) ∈ F (t, x1(t),maxs∈[0,t] x1(s)) a.e. (I) and for almost all t ∈ I

|f1(t)− f2(t)| ≤ d(f1(t), F (t, x1(t), max
s∈[0,t]

x1(s))) ≤ dH(F (t, x0(t), max
s∈[0,t]

x0(s)),

F (t, x1(t), max
s∈[0,t]

x1(s))) ≤ l1(t)|x1(t)−x0(t)|+ l2(t)| max
s∈[0,t]

x0(s)− max
s∈[0,t]

x1(s)|.

Define x2(t) = x0 +
∫ t
0
f2(s)ds and one has

|x1(t)− x2(t)| ≤
∫ t

0

|f1(s)− f2(s)|ds ≤
∫ t

0

[l1(s)|x0(s)− x1(s)|+

l2(s)| max
σ∈[0,s]

x0(σ)− max
σ∈[0,s]

x1(σ)|]ds ≤ (|l1|1 + |l2|1)|x1 − x0|C
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≤ (|l1|1 + |l2|1)(|x0 − y(0)|+ |p|1).

Assume that for some n ≥ 1 we have constructed (xi(.))
n
i=1 with xn satis-

fying
|xn − xn−1|C ≤ (|l1|1 + |l2|1)n−1(|x0 − y(0)|+ |p|1).

The set-valued map t → F (t, xn(t),maxs∈[0,t] xn(s)) is measurable. At
the same time, the map t → l1(t)|xn(t) − xn−1(t)| + l2(t)|maxs∈[0,t] xn(s) −
maxs∈[0,t] xn−1(s)| is measurable. As before, by the lipschitzianity of F (t, ., .)
we have that for almost all t ∈ I

F (t, xn(t),maxs∈[0,t] xn(s))) ∩ {fn(t) + (l1(t)|xn(t)− xn−1(t)|+
l2(t)|maxs∈[0,t] xn(s)−maxs∈[0,t] xn−1(s)|)[−1, 1]} 6= ∅.

Using again Lemma 1 we deduce the existence of a measurable function
fn+1(.) such that fn+1(t) ∈ F (t, xn(t),maxs∈[0,t] xn(s)) a.e. (I) and for almost
all t ∈ I

|fn+1(t)− fn(t)| ≤ d(fn+1(t), F (t, xn−1(t), max
s∈[0,t]

xn−1(s))) ≤

dH(F (t, xn(t), max
s∈[0,t]

xn(s)), F (t, xn−1(t), max
s∈[0,t]

xn−1(s))) ≤

l1(t)|xn(t)− xn−1(t)|+ l2(t)| max
s∈[0,t]

xn(s)− max
s∈[0,t]

xn−1(s)|.

Define

xn+1(t) = x0 +

∫ t

0

fn+1(s)ds. (3)

We have

|xn+1(t)− xn(t)| ≤
∫ t

0

|fn+1(s)− fn(s)|ds ≤∫ t

0

[l1(s)|xn(s)− xn−1(s)|+ l2(s)| max
σ∈[0,s]

xn(σ)− max
σ∈[0,s]

xn−1(σ)|]ds

≤ (|l1|1 + |l2|1)|xn − xn−1|C ≤ (|l1|1 + |l2|1)n(|x0 − y(0)|+ |p|1).

Therefore (xn(.))n≥0 is a Cauchy sequence in the Banach space C(I,R),
so it converges to x(.) ∈ C(I,R). Since, for almost all t ∈ I, we have

|fn+1(t)− fn(t)| ≤ l1(t)|xn(t)− xn−1(t)|+ l2(t)| max
s∈[0,t]

xn(t)− max
s∈[0,t]

xn−1(t)|

≤ [l1(t) + l2(t)]|xn − xn−1|C ,

{fn(.)} is a Cauchy sequence in the Banach space L1(I,R) and thus it con-
verges to f(.) ∈ L1(I,R).
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We note that one may write

|
∫ t

0

fn(s)ds−
∫ t

0

f(s)ds| ≤
∫ t

0

|fn(s)−f(s)|ds ≤
∫ t

0

[l1(s)+l2(s)]|xn+1−x|Cds

≤ (|l1|1 + |l2|1).|xn+1 − x|C .

Therefore, one may pass to the limit in (3) and we get x(t) = x0+
∫ t
0
f(s)ds.

Moreover, since the values of F (., ., .) are closed and fn+1(t) ∈ F (t, xn(t),
maxs∈[0,t] xn(t)) passing to the limit we obtain f(t) ∈ F (t, x(t),maxs∈[0,t] x(t))
a.e. (I).

It remains to prove the estimate (2). One has

|xn − x0|C ≤ |xn − xn−1|C + ...+ |x2 − x1|C + |x1 − x0|C ≤

(|l1|1 + |l2|1)n−1(|x0 − y(0)|+ |p|1) + ...+ (|l1|1 + |l2|1)(|x0 − y(0)|+ |p|1)+

(|x0 − y(0)|+ |p|1) ≤ 1

1− (|l1|1 + |l2|1)
(|x0 − y(0)|+ |p|1).

Passage to the limit in the last inequality completes the proof.

Remark 1. A similar result to the one in Theorem 1 may be found in [3],
namely Theorem 3.1. The approach in [3], apart from the requirement that the
values of F (., .) are compact, does not provides a priori bounds for solutions
as in (3.1).

As we already pointed out, Theorem 1 allows to obtain a relaxation theo-
rem for problem (1). In what follows, we are concerned also with the convex-
ified (relaxed) problem

x′(t) ∈ coF (t, x(t), max
s∈[0,t]

x(s)), x(0) = x0. (4)

Note that if F (., ., .) satisfies Hypothesis, then so does the set-valued map
(t, x, y)→ coF (t, x, y) (e.g., [1]).

Theorem 2. We assume that Hypothesis is satisfied and |l1|1 + |l2|1 < 1. Let
x(.) : I → R be a solution to the relaxed inclusion (4) such that the set-valued
map t→ F (t, x(t),maxs∈[0,t] x(s)) has at least one integrable selection.

Then for every ε > 0 there exists x(.) a solution of problem (1) such that

|x− x|C < ε.

Proof. Since x(.) is a solution of the relaxed inclusion (4), there exists f(.) ∈
L1(I,R), f(t) ∈ coF (t, x(t),maxs∈[0,t] x(s)) a.e. (I) such that x(t) = x0 +∫ t
0
f(s)ds.
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From Lemma 2, for δ > 0, there exists f̃(t) ∈ F (t, x(t),maxs∈[0,t] x(s)) a.e.
(I) such that

sup
t∈I
|
∫ t

0

(f̃(s)− f(s))ds| ≤ δ.

Define x̃(t) = x0 +
∫ t
0
f̃(s)ds. Therefore, |x̃− x|C ≤ δ.

We apply Theorem 1 for the ”quasi” solution x̃(.) of (1). One has

p(t) = d(f̃(t), F (t, x̃(t), max
s∈[0,t]

x̃(s))) ≤ dH(F (t, x(t), max
s∈[0,t]

x(s)),

F (t, x̃(t), max
s∈[0,t]

x̃(s))) ≤ l1(t)|x(t)− x̃(t)|+ l2(t)| max
s∈[0,t]

x(s)− max
s∈[0,t]

x̃(s)|

≤ l1(t)|x̃− x|C + l2(t)|x̃− x|C ≤ (l1(t) + l2(t))δ,

which shows that p(.) ∈ L1(I,R).
From Theorem 1 there exists x(.) a solution of (1) such that

|x− x̃|C ≤
1

1− (|l1|1 + |l2|1)
|p|1 ≤

|l1|1 + |l2|1
1− (|l1|1 + |l2|1)

δ.

It remains to take δ = [1 − (|l1|1 + |l2|1)]ε and to deduce that |x − x|C ≤
|x− x̃|C + |x̃− x|C ≤ ε.
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