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On monodromy representation of period
integrals associated to an algebraic curve with

bi-degree (2,2)

Susumu TANABÉ

Abstract

We study a problem related to Kontsevich’s homological mirror sym-
metry conjecture for the case of a generic curve Y with bi-degree (2,2) in
a product of projective lines P1×P1. We calculate two differenent mon-
odromy representations of period integrals for the affine variety X(2,2)

obtained by the dual polyhedron mirror variety construction from Y.
The first method that gives a full representation of the fundamental
group of the complement to singular loci relies on the generalised Picard-
Lefschetz theorem. The second method uses the analytic continuation of
the Mellin-Barnes integrals that gives us a proper subgroup of the mon-
odromy group. It turns out both representations admit a Hermitian
quadratic invariant form that is given by a Gram matrix of a split gen-
erator of the derived category of coherent sheaves on on Y with respect
to the Euler form.

0 Introduction

In this note we study a problem related to Kontsevich’s homological mirror
symmetry conjecture for the case of a generic curve Y with bi-degree (2,2) in
a product of projective lines P1 × P1.
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In [19] we studied the Calabi-Yau complete intersection Y in a weighted
projective space. We claimed that the space of Hermitian quadratic invariants
of the monodromy group for the period integrals associated to the Batyre-
Borisov mirror dual complete intersection X is one-dimensional, and spanned
by the Gram matrix of a split-generator of the derived category of coher-
ent sheaves on Y with respect to the Euler form. To show this result the
monodromy group has been calculated as monodromy group for Pochhammer
hypergeometric functions.

In following the spirit of [19] where period integrals depending on single
deformation parameter are studied, we establish a similar result for the case of
period integrals depending on two variables. In particular, here the crucial mo-
ment is an interpretation of period integrals as Horn hypergeometric functions
in two variables whose rank 4 monodromy representation is reducible.

Namely we consider the generic curve Y of bi-degree (2,2) in P1×P1 and its

mirror counter-part X
(2,2)
x,y obtained by Batyrev’s dual polyhedron construction

(2.2). We establish the following result on the monodromy representation of

period integrals defined as integrals along cycles from H1(X
(2,2)
x,y ). In this note

we shall use both notations
√
−1 and i to denote the unit pure imaginary

number.

Theorem 0.1. The monodromy representation H0 calculated by the Mellin-
Barnes integrals (Proposition 3.2) as well as that obtained by the generalised
Picard-Lefschetz theorem ( Proposition 4.2) admits a Hermitian quadratic in-
variant

√
−1G for

G =


0 −2 0 2
2 0 −2 0
0 2 0 −2
−2 0 2 0

 ,

up to conjugate isomorphism of representations. Here the anti-symmetric ma-
trix G is a Gram matrix with respect to the Euler form of a split generator
on Y obtained by restricting a full exceptional collection (Fi)

4
i=1 determined by

(3.5) that is a right dual exceptional collection to (O,O(1, 0),O(1, 1),O(2, 1))
on DbCoh (P1 × P1) restricted to Y.

Our theorem 0.1 is closely related to the works of Horja [10, Theorem
4.9] and Golyshev [8, §3.5], which originated from a conjecture proposed by
Kontsevich in 1998.

The main difference of [19] from the works [10], [8] lies in the fact that it
treats the reducible system which contains sections not coming from period
integrals on the compact mirror manifold. In the case of the irreducible local
system (hypergeometric equation), Golyshev gave a beautiful interpretation
in terms of autoequivalences of the derived category of the mirror manifold.
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Our proof of Theorem 0.1 relies on calculus of a Horn hypergeometric sys-
tem wth reducible monodromy, just as in [19] where the case of the irreducible
hypergeometric system has been extended to that of a reducible system.

We shall recognise that our description of the representation H0 in Propo-
sition 3.2 is not conclusive so far as we ignore its nature as a representation of
the fundamental group of the complement to singular loci of the Horn hyper-
geometric system. Furthermore the representation H0 gives only a proper sub-
group of the entire monodromy group ( Proposition 3.2, Remark 3.3) . None
the less it admits a one dimensional real vector space of Hermitian quadratic
forms.

The core part of this note is the monodromy calculus in Proposition 3.2
made by means of analytic continuation of Mellin-Barnes integrals. To our
knowledge no trial has been made to calculate a global monodromy represen-
tation of bivariate period integrals using Mellin-Barnes integrals. We shall,
however, mention [10, 4.3] as one of precious testimony where this approach
was successfully applied to a problem related to the Kontsevich’s homological
mirror conjecture. The proposal made in [4] also deserves special attention for
further studies of period integrals as a class of A-hypergeometric functions.

One of advantages of our method consists in the fact that the choice of
the solution basis (3.1) allows us to calculate the monodromy without connec-
tion matrices. In the calculus of the monodromy of univariate hypergeometric
functions ([20, 2.4.6], [15]) solution basis has been chosen in dependence on
the asymptotic behaviour (i.e. characteristic exponents) of the solution around
singular points and quite involved calculus of connection matrix was necessary.
In this note every data on the monodromy are calculated relying exclusively
on the Mellin transform (2.7) that can be easily derived from the Newton poly-
hedron ∆F2,2

of the Laurent polynomial F2,2 (2.3) according to the principle
proposed in [18]. After this principle the Mellin transform of a period integral
has poles with a semi-group like structure whose features are determined by
outer normals to the faces of ∆F2,2 and their scalar product with exponent
characterising the monomial cohomology class present in the integrand.

The author expresses his gratitude to Kazushi Ueda who furnished the con-
crete form of the Gram matrix G upon his request. Without this information
it would have been impossible to make any kind of trial. His acknowledgement
goes also to M.Uludağ, F.Beukers, Y.Goto, J.Kaneko for valuable discussions
and comments. A special recognition goes out to the organisers of the First
Romanian-Turkish Mathematics Colloquium at Constanţa in October 2015.
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1 Preliminaries on elliptic integrals and Gauss hyperge-
ometric functions

First of all we recall basic facts on the relation between period integrals for
the elliptic curve (elliptic integrals) and Gauss hypergeometric functions.

Consider a double covering of P1 \ {x = 0, 1, t,∞}

R = {(x, y) ∈ P2 : y2 = x(x− 1)(x− t)}. (1.1)

It is known that this algebraic curve (elliptic curve) gives a Riemann surface
of genus 1. One can define the elliptic integral for a cycle α ∈ H1(R)∫

α

dx

y
=

∫
α

dx√
x(x− 1)(x− t)

(1.2)

Figure 1: Cycles on the curve R.

This integral can be expressed by the classical Gauss hypergeometric function

F (
1

2
,

1

2
, 1|t) =

∞∑
m=0

Γ( 1
2 +m)2

(m!)2
tm, (1.3)

for |t| < 1 and it satisfies a second order differential equation

[(θt)
2 − t(θt +

1

2
)2]f(x) = 0, (1.4)

(θt = t ∂∂t ). The solution space to this equation has dimension 2 that is equal
to the rank of H1(R). This means that a general solution to (1.4) is given by∫
nα+mβ

dx

y
for some (n,m) ∈ Z2.
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We remark here that the solution (1.3) admits a Mellin-Barnes integral repre-
sentation (sum of residues)

∞∑
n=0

Resz=n (
Γ( 1

2 + z)2Γ(−z)(−t)zdz
Γ(1 + z)

), (1.5)

As a basis of the cohomology of the elliptic curve H1(R) we can choose a
couple of rational forms

dx

y
, x

dx

y
(1.6)

The dimension of the C vector space H1(R) is equal to 2 = rankH1(R).
The period integral ∫

nα+mβ

xdx

y
, (n,m) ∈ Z2

also satisfies a Gauss hypergeometric equation analogous to (1.4) ,

[(θt)
2 − t(θt −

1

2
)2]u(t) = 0. (1.7)

The monodromy group G of a solution system to (1.4) admits the following
representation ([5])

G ⊂ SL(2,Z) = Sp(1,Z)

G = 〈h0 :=

(
0 1
−1 2

)
, h∞ :=

(
−2 −1
1 0

)
〉 (1.8)

By conjugation with the matrix C0 ∈ SL(2,R)

C0 =

(
1√
2

1√
2

− 1√
2

1√
2

)
,

we get the following two matrices

hC0
0 =

(
1 0
−2 1

)
, hC0
∞ =

(
−1 2
0 −1

)
that generates together with −Id2 (that becomes trivial in passing to the
projective linear group),

Γ(2) = {g ∈ SL(2,Z); g ≡ Id2 mod 2}

the principal congruence subgroup of level 2. From now on we use the notation

AB = B−1AB
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for A ∈M(m,C) and B ∈ GL(m,C), m ≥ 1. Namely hC0
0 = C−1

0 h0C0 etc.
The intersection matrix Int with respect to the basis α, β of H1(R)

Int :=

(
< α,α > < α, β >
< β, α > < β, β >

)
=

(
0 1
−1 0

)
,

th0.Int.h0 = Int, th∞.Int.h∞ = Int. (1.9)

The intersection matrix Int is the simplest example of the Hermitian quadratic
invariant associated to a hypergeometric functions/period integrals (see [5,
Chapter 4]).

Here we shall remark that the conjugate matrix C0 satisfies tC0.Int.C0 =
Int and the monodromy representation G can be determined only up to a
conjugate by a matrix of Sp(1,R) = {g ∈ GL(2,R);t g.Int.g = Int}. This kind
of ambiguity will play essential rôle as we compare different presentations of
a monodromy group.

In the remaining part of the note all statements mentioned in this section
will be generalised to the case of a bi-degree (2,2) curve.

2 Period integrals of a bi-degree (2,2) curve

The generic curve Y with bi-degree (2, 2) in P1 × P1 is defined by a Laurent
polynomial whose Newton polyhedron is

{(α, β) ∈ R2;−1 ≤ α ≤ 1,−1 ≤ β ≤ 1}. (2.1)

The main object of this article is an affine curve

X(2,2)
x,y = {(z, w);F2,2(z, w) = 0} = elliptic curve \ 3 points (2.2)

for
F2,2(z, w) = 1 + z +

x

z
+ w +

y

w
(2.3)

whose Newton polyhedron is defined as the dual polyhedron to (2.1) after
Batyrev’s construction. The period integral associated to the curve (2.2) is
defined as

Ia,b(x, y) =

∫
γ

zawb

zw

dz ∧ dw
dF2,2

for γ ∈ H1(X
(2,2)
x,y ) and a monomial zawb ∈ C[z, w].

After the method in [18] we calculate the Mellin transform of the period
integral that equals to

Γ(s+ a)Γ(s)Γ(t+ b)Γ(t)Γ(1− a− b− (2s+ 2t))
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up to multiplication by a meromorphic period function φ(s, t) such that φ(s+
a′, t + b′) = φ(s, t) for every (a′, b′) ∈ Z2. Thus the period integral Ia,b(x, y)
satisfies the following system of linear PDE,

(θx(θx + a)− x(2θx + 2θy + 1 + a+ b)(2θx + 2θy + 2 + a+ b)) f(x, y) = 0,
(θy(θy + b)− y(2θx + 2θy + 1 + a+ b)(2θx + 2θy + 2 + a+ b)) f(x, y) = 0.

(2.4)
Further we use the notation

θx = x
∂

∂x
, θy = y

∂

∂y
.

This type of system of differential equations is called Horn hypergeometric
system and solutions to it are called Horn hypergeometric functions (see [7],
[12], [14]). The system (2.4) has a solution holomorphic in the neighbourhood
of (x, y);

f1
1,1(x, y) =

∑
(i1,i2)∈Z2

≥0

Γ( 1−a−b
2 + i1 + i2)Γ( 2−a−b

2 + i1 + i2)

Γ(1− a+ i1)Γ(1− b+ i2)(i1!)(i2!)
(4x)i1(4y)i2 .

(2.5)

As the rank H1(X
(2,2)
x,y ) = 4 that is calculated by the area of a parallelo-

gram with vertices {(±1, 0), (0,±1)} (the Newton polyhedron of F2,2(z, w) for
(x, y) ∈ (C∗)2) we conclude that every solution to the system (2.4) is a linear
combination over C of period integrals.

In particular the period integral I0,0(s, y) satisfies the Horn system with
holonomic rank 4 (see [7, Corollary 4.3]):(

θ2
x − x(2θx + 2θy + 1)(2θx + 2θy + 2)

)
f(x, y) = 0,(

θ2
y − y(2θx + 2θy + 1)(2θx + 2θy + 2)

)
f(x, y) = 0.

(2.6)

In fact every period integral I0,0(x, y) can be expressed as residues of the
Mellin transform that is known under the name of Mellin-Barnes integral∫

Γk

φ(s, t)Γ(s)2Γ(t)2Γ(1− (2s+ 2t))ds ∧ dt, (2.7)

where Γk is one of the following pole lattices (points with a semi-group struc-
ture located inside of a cone)

Γ1 = {(s, t) ∈ C; s ∈ Z≤0, t ∈ Z≤0},
Γ2 = {(s, t) ∈ C; t ∈ Z≤0, 2s+ 2t− 1 ∈ Z≥0},
Γ3 = {(s, t) ∈ C; s ∈ Z≤0, 2s+ 2t− 1 ∈ Z≥0}.

(2.8)
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Figure 2: Poles of Γ(s)2Γ(t)2Γ(1− (2s+ 2t))x−sy−t

We remark that the affine part S of the singular loci of the system ( 2.6)
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is given by a parabola and two coordinate axes,

S = {(x, y) ∈ C2;xy(16(x− y)2 − 8(x+ y) + 1) = 0}.

Figure 3: generators of π1(C2 \ S)

For S the following presentation of the fundamental group has been estab-
lished in [11], [1]:

π1(C2 \ S) =
〈
γ1, γ2, γ3; γ2γ1 = γ1γ2, (γ2γ3)2 = (γ3γ2)2, (γ3γ1)2 = (γ1γ3)2

〉
.

(2.9)
Here γ1 (resp. γ2) denotes the loop around x = 0 (resp. y = 0), while γ3 de-
notes the loop around the parabola as drawn in Figure 3 (precise parametrisa-
tion of loops is available in [11]). The loop around the line at infinity : P2 \C2

is represented by (γ1γ3γ2γ3)−1.
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3 Monodromy calculus by Mellin-Barnes integrals

To obtain a monodromy representation of the solution space to the system (2.6)
we try to use the following Mellin-Barnes integrals that span a 4-dimensional
solution space to it,

fki,j(x, y) =

∫
Γk

Γ(s)2−iΓ(t)2−jΓ(1− 2(s+ t))

Γ(1− s)iΓ(1− t)j
x−sy−te−(si+tj)π

√
−1ds ∧ dt,

(3.1)
where 0 ≤ i ≤ 1, 0 ≤ j ≤ 1.

Especially we have the following holomorphic solution in the neighbour-
hood of (x, y) = (0, 0)

f1
1,1(x, y) =

∑
(i1,i2)∈Z2

≥0

(2i1 + 2i2)!

(i1!)2(i2!)2
xi1yi2 . (3.2)

Let us denote by H the image of the homomorphism

ρ : π1(C2 \ S) −→ GL(4,C)

induced by the monodromy action along loops on the base solution vector
~f = (f00, f10, f01, f11) defined by (3.1).

To characterise the domain of convergence of fki,j(x, y) we recall the notion
of amoeba.

Definition 3.1. The amoeba Aφ of a polynomial φ(x, y) (or of the algebraic
hypersurface {(x, y) ∈ (C∗)2;φ(x, y) = 0}) is defined to be the image of the
hypersurface φ−1(0) under the map Log : (x, y) 7→ (log |x|, log |y|) ∈ R2.

Let A(φ) denote the amoeba of the singularity of the hypergeometric sys-
tem (2.6) with φ(x, y) = (16(x− y)2 − 8(x+ y) + 1). The complement to the
amoeba A(φ) consists of three connected components M1,M2,M3 such that

u−k − C
∨
k ⊂Mk ⊂ u+

k − C
∨
k ,

for some u−k ∈Mk u
+
k ∈ Log(Aφ), k = 1, 2, 3 (see Two- sided Abel lemma [12,

Lemma11 ]). Here C∨k is the dual cone to the cone Ck defined by replacing
Z by R in the definition (2.8) of Γk, k = 1, 2, 3. After [14, Theorem 5.3]
the convergence domain of fki,j(x, y) contains Log−1(Mk) for every fixed k ∈
{1, 2, 3} and for all 0 ≤ i ≤ 1, 0 ≤ j ≤ 1.

Proposition 3.2. The analytic continuation of 4 linearly independent solu-
tions (3.1) to the Horn hypergeometric system (2.6) gives the following mon-
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odromy representation H0 =< M10,M20,M1∞,M2∞ >≤ H (a proper sub-
group),

M10 =


1 −2πi 0 0
0 1 0 0
0 0 1 −2πi
0 0 0 1

 , M20 =


1 0 −2πi 0
0 1 0 −2πi
0 0 1 0
0 0 0 1

 ,

M−1
1∞ =


1 0 2πi 0
0 −1 −2 0
0 0 1 −2πi
0 0 0 −1

 , M−1
2∞ =


1 2πi 0 0
0 1 0 −2πi
0 −2 −1 0
0 0 0 −1

 .

Here the local monodromy matrices act on the solution space from right.
That is to say for ~a ∈ C4 ∼=< ~a, ~f > with ~f = (f00, f10, f01, f11), the mon-
odromy action around x = 0 is given by ~a → ~aM10. The local monodromy
acts on the column vector of solutions t ~f from left.

Proof. We shall use a method (named Mellin-Barnes contour throw [14, Propo-
sition 6.6]) to find analytic continuation of an integral (3.1) from one domain of
convergence to another. This is a generalisation of a method to calculate con-
nection matrix for the univariate hypergeometric function by means of Barnes
integrals ([20, 2.4.6], [15] ).

Let us denote by λ10(fki,j) the result of the monodromy action on fki,j(x, y)
around x = 0

λ10(fki,j)(x, y) = fki,j(e
2π
√
−1x, y), 0 ≤ i ≤ 1, 0 ≤ j ≤ 1.

In an analogous way we denote

λ20(fki,j)(x, y) = fki,j(x, e
2π
√
−1y), 0 ≤ i ≤ 1, 0 ≤ j ≤ 1.

For fki,j(x, y) convergent in the neighbourhood of (x, y) = (∞, 0) the result
of the clockwise monodromy action on it around x =∞ is denoted by

λ1∞(fki,j)(x, y) = fki,j(e
2π
√
−1x, y), 0 ≤ i ≤ 1, 0 ≤ j ≤ 1.

For f `i,j(x, y) convergent in the neighbourhood of (x, y) = (0,∞) clockwise
turn around y =∞ yields

λ2∞(f `i,j)(x, y) = f `i,j(x, e
2π
√
−1y), 0 ≤ i ≤ 1, 0 ≤ j ≤ 1.

Further we shall calculate the above monodromy actions on the local solutions.
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• The local monodromy of f1
1,1(x, y) around x = 0.

The residue∑
n≥0,m≥0

Ress=−nRest=−m
Γ(s)Γ(t)Γ(1− 2(s+ t))

Γ(1− s)Γ(1− t)
x−sy−te−(s+t)π

√
−1

will give us a function (3.2) holomorphic near (0, 0) and in Log−1(M1). Thus
λ10(f1

1,1)(x, y) = f1
1,1(x, y), λ20(f1

1,1)(x, y) = f1
1,1(x, y).

• The local monodromy of f1
0,1(x, y) around x = 0.

The residue∑
n≥0,m≥0

Ress=−nRest=−m
Γ(s)2Γ(t)Γ(1− 2(s+ t))

Γ(1− t)
(e2π

√
−1x)−sy−te−tπ

√
−1

turns out to be∑
n≥0,m≥0

Ress=−nRest=−m
Γ(s)2Γ(t)Γ(1− 2(s+ t))

Γ(1− t)
x−sy−te−tπ

√
−1

−2π
√
−1

∑
n≥0,m≥0

Ress=−nRest=−m
Γ(s)Γ(t)Γ(1− 2(s+ t))

Γ(1− s)Γ(1− t)
x−sy−te−(s+t)π

√
−1,

i.e. λ10(f1
0,1)(x, y) = f1

0,1(x, y)− 2π
√
−1f1

1,1(x, y).

• The local monodromy of f1
1,0(x, y) around x = 0.

The residue∑
n≥0,m≥0

Ress=−nRest=−m
Γ(s)Γ(t)2Γ(1− 2(s+ t))

Γ(1− t)
(e2π

√
−1x)−sy−te−sπ

√
−1

equals to f1
1,0(x, y) itself i.e. λ10(f1

1,0)(x, y) = f1
1,0(x, y).

• The local monodromy of f1
0,0(x, y) around x = 0.

The residue∑
n≥0,m≥0

Ress=−nRest=−mΓ(s)2Γ(t)2Γ(1− 2(s+ t))(e2π
√
−1x)−sy−t

turns out to be∑
n≥0,m≥0

Ress=−nRest=−mΓ(s)2Γ(t)2Γ(1− 2(s+ t))x−sy−t
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−2π
√
−1

∑
n≥0,m≥0

Ress=−nRest=−m
Γ(s)Γ(t)2Γ(1− 2(s+ t))

Γ(1− s)
x−sy−te−sπ

√
−1

i.e. λ10(f1
0,0)(x, y) = f1

0,0(x, y)− 2π
√
−1f1

1,0(x, y).

• As for the local monodromy of f1
i,j(x, y), 0 ≤ i ≤ 1, 0 ≤ j ≤ 1 around

y = 0 the calculation is symmetric with respect to the exchange of
variables x and y.

λ20(f1
0,0)(x, y) = f1

0,0(x, y)− 2π
√
−1f1

0,1(x, y),

λ20(f1
1,0)(x, y) = f1

1,0(x, y)− 2π
√
−1f1

1,1(x, y)

λ20(f1
0,1)(x, y) = f1

0,1(x, y), λ20(f1
1,1)(x, y) = f1

1,1(x, y).

• The local monodromy of f2
∗,∗(x, y) around y = 0 gives the same result

as the local monodromy of f1
∗,∗(x, y) around y = 0.

• The local monodromy of f2
∗,∗(x, y) induced by a clockwise turn around

1
x = 0, 1

x 7→
e−2π

√
−1

x . We have the development

f2
1,0(x, y) = − 1

2x
+

1
2 i(log(x) + iπ)− 1

2 i log(y)− iγ − iψ
(

1
2

)
√
x

+
−6y − 1

12x2
+...

(γ =Euler constant, ψ(z) = Γ′(z)/Γ(z)) that gives us

λ1∞(f2
1,0)(x, y) + f2

1,0(x, y)

= −−30πx5/2 + 30x2 + 30xy + 5x+ 30y2 + 20y + 1

30x3
+ ...

We compare it with the development

f2
0,1(x, y) =

1 + 5x+ 20y + 30x2 + 30xy + 30y2 − 30πx5/2

60x3
+ ...

and conclude

λ1∞(f2
1,0)(x, y) = −f2

1,0(x, y)− 2f2
0,1(x, y)

Similar residue calculus gives us the following results.

λ1∞(f2
0,0)(x, y) = f2

0,0(x, y) + 2π
√
−1f2

0,1(x, y),

λ1∞(f2
0,1)(x, y) = f2

0,1(x, y)− 2π
√
−1f2

1,1(x, y), λ1∞(f2
1,1)(x, y) = −f2

1,1(x, y).
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• The local monodromy of f3
∗,∗(x, y) induced by a clockwise turn around

1
y = 0, 1

y 7→
e−2π

√
−1

y the result can be obtained from the the calculation

of λ1∞(f2
∗,∗(x, y)) due to a symmetry with respect to the exchange of

variables x and y.

λ2∞(f3
0,0)(x, y) = f3

0,0(x, y) + 2π
√
−1f3

1,0(x, y),

λ2∞(f3
1,0)(x, y) = f3

1,0(x, y)− 2π
√
−1f3

1,1(x, y)

λ2∞(f3
0,1)(x, y) = −f3

0,1(x, y)− 2f3
1,0(x, y), λ2∞(f3

1,1)(x, y) = −f3
1,1(x, y).

• The local monodromy of f3
∗,∗(x, y) around x = 0 gives the same result

as the local monodromy of f1
∗,∗(x, y) around x = 0.

We shall remark here that the Mellin-Barnes contour throw sends fki,j(x, y)

(residues at poles in Γk, holomorphic in Log−1(Mk)) to f `i,j(x, y) (residues at

poles in Γ`, holomorphic in Log−1(M`)) for every 0 ≤ i ≤ 1, 0 ≤ j ≤ 1. Thus
we have no need to calculate the connection matrix like in [20, 2.4.6], [15] if
we choose the solution basis (3.1).

In the following figure the analytic continuation between the residues along
Γ1 and those along Γ2 is illustrated. By the same principle we can calculate the
analytic continuation between residues Γk and Γ` for every {k, `} ⊂ {1, 2, 3}.

- q q q��a a a a a�

q q qa a a a a �-��

a : s = 0,−1,−2, . . . , t = 0 or − 1 etc. fixedq : 1 − (2s + 2t) = 0,−1,−2, . . . , t = 0 or − 1 etc.fixed

C
C
C
C
C
C
CCW
Mellin-Barnes contour throw

Figure 4: Mellin-Barnes contour throw

In conclusion we obtained the matrices M10,M20,M1∞,M2∞. In fact the
calculation of M10,M20 can be done with the aid of local monodromy around
x = 0 of solutions to Pochhammer hypergeometric equation

(θnx − x(nθx + 1) · · · (nθx + n)) f(x) = 0 (3.3)
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for n = 2. See Appendix, Lemma 5.1. Thus the essential calculus is reduced
to that of M1∞ as we see

M2∞ = E2,3M1∞E2,3

for

E2,3 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


that arises because of a symmetry between x and y variables.

According to the presentation (2.9) this method allows us to calculate at
most the monodromy representation of the group < γ1, γ2, γ1γ3γ2γ3 > that is
a proper subgroup of π1(C2 \ S). Therefore the group H0 generated by above
4 generators is a proper subgroup of H.

This way to consider the analytic continuation by means of Mellin-Barnes
contour throw has been used to prove the key statement Proposition 6.6 in
[14].

Remark 3.3. From this proposition we see easily that this monodromy rep-
resentation has a 1-dimensional invariant subspace < (0, 0, 0, 1) > (corre-
sponding to the solution space spanned by f11 : a solution holomorphic at
(x, y) = (0, 0)) and a 2-dimensional (resp. 3-dimensional) invariant subspace
< (0, 1, 1, 0), (0, 0, 0, 1) > (resp. < (0, 1, 1, 0), (0, 1, −1, 0), (0, 0, 0, 1) > .

This representation has no 2-dimensional subspace with irreducible mon-
odromy action. Even though the 2-dimensional solution space spanned by
f10 + f01, f00 corresponds to the space of period integrals of an elliptic curve

X̄ in P1 × P1 (whose affine part X̄ ∩ (C∗)2 is isomorphic to X
(2,2)
x,y for (x, y) ∈

(C∗)2 \S) its monodromy does not give rise to a group isomorphic to the prin-
cipal subgroup of level 2 :Γ(2) as expected. More precisely, the base change
by

L =


2iπ 0 0 0
0 −1 + 2iπ 1 −2iπ
0 1 −1 2iπ
0 −1 1 0


yields a monodromy representation on a two dimensional solution subspace V
such that

ML
10 |V = ML

20 |V =

(
2 −1
1 0

)
,

ML
10(ML

1∞)−1 |V = ML
20(ML

2∞)−1 |V =

(
−1 0
0 −1

)
.
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This monodromy representation is equivalent to

<

(
1 2
0 1

)
,

(
−1 0
0 −1

)
>

i.e. a proper subgroup of Γ(2). In other words the monodromy representa-
tion H0 gives only proper subgroup of full monodromy representation H. The
reason of this phenomenon lies in the fact that from the monodromy repre-
sentation of Proposition 3.2 it is impossible to recover the monodromy action
induced by the loop along γ3 of (2.9) i.e. in this representation one of two
Dehn twist actions around cycles α, β (represented in Figure 1) is lacking. We
may recover at our best the representation of < γ1, γ2, γ1γ3γ2γ3 > that is a
proper subgroup of π1(C2 \ S). To the moment we did not succeed to inter-
pret Proposition 3.2 as a monodromy representation of the fundamental group
(2.9).

Here we remark the following facts:

rank (M10M1∞ − Id4) = 2

not a pseudo-reflection

rank ((M10M1∞)2 − Id4) = 1

i.e. (M10M1∞)2 is a pseudo-reflection.
The following relations also hold,

M10M20 = M20M10,

(M−1
1∞M

−1
10 M20)2 = (M20M

−1
1∞M

−1
10 )2,

(M−1
1∞)2 = (M10M

−1
1∞M

−1
10 )2.

We calculate the Hermitian quadratic invariant H : a 4× 4 matrix

tḡHg = H, (3.4)

for every g ∈< M10,M20,M1∞,M2∞ >: the monodromy representation H0 of
the system ( 2.6) as follows,

H =


0 0 0 0

0 0 0 2
√

2

0 0 0 2
√

2

0 2
√

2 2
√

2 0

 .
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Let (Ei)
4
i=1 be the full strong exceptional collection on DbCoh (P1 × P1)

given by
(E1,E2,E3,E4) = (O,O(1, 0),O(1, 1),O(2, 1))

and (F1,F2,F3,F4) be its right dual exceptional collection characterised by
the condition

Extk(E5−i,Fj) =

{
C i = j, and k = 0,

0 otherwise.

The Euler form on the Grothendieck group K(P1 × P1) defined by

χ(E,F) =
∑
n≥0

(−1)ndimExtn(E,F).

is neither symmetric nor anti-symmetric, whereas that onK(Y) is anti-symmetric.
The bases {[Ei]}4i=1 and {[Fi]}4i=1 of K(P1 × P1) are dual to each other in

the sense that

χ(E5−i,Fj) = δij . (3.5)

We will write the derived restrictions of Ei and Fi to Y as Ei and Fi respectively.
After[16, Lemma 5.4] the split generator on the curve Y with bidegree (2, 2)
can be obtained by restricting the full exceptional collection to Y. Unlike
{[Ei]}4i=1 and {[Fi]}4i=1, {[Ei]}4i=1 and {[Fi]}4i=1 are not bases of K(Y), and
their images in the numerical Grothendieck group are linearly dependent.

The Gram matrix G with respect to the Euler form of the split generator
{[Fi]}4i=1 is calculated as follows.

G =
(
χ([Fi], [Fj ])

)4
i,j=1

=


0 −2 0 2
2 0 −2 0
0 2 0 −2
−2 0 2 0

 (3.6)

Proof. As the Euler form for the restricted sheaves {Fi}4i=1 satisfies

χ([Fi1 ], [Fi2 ]) = χ(Fi1 ,Fi2)− χ(Fi2 ,Fi1), (3.7)

and χ(Fi1 ,Fi2) = 0 if i1 > i2, the Gram matrix must be anti-symmetric.
From [2] it follows that

χ(O,O) = χ(O(1, 0),O(1, 0)) = χ(O(1, 1),O(1, 1)) = χ(O(2, 1),O(2, 1)) = 1,

χ(O,O(1, 0)) = χ(O(1, 0),O(1, 1)) = χ(O(1, 1),O(2, 1)) = 2,

χ(O,O(1, 1)) = χ(O(1, 0),O(2, 1)) = 4,
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χ(O,O(2, 1)) = 6.

These relations (i.e. (χ([Ei], [Ej ]))
4
i,j=1) entail

(χ(Fi,Fj))
4
i,j=1 =


1 −2 0 2
0 1 −2 0
0 0 1 −2
0 0 0 1

 =


1 2 4 6
0 1 2 4
0 0 1 2
0 0 0 1


−1

.

This upper triangle matrix together with (3.7) calculates the Gram matrix G
(3.6).

Proposition 3.4. We can choose an unitary base change matrix R

R =
1

2


√

2 0
√

2 0
−i −1 i −1
−i 1 i 1

0 −
√

2 0
√

2

 , tR̄R = Id4

such that
HR =

√
−1G

for the Hermitian quadratic invariant H (3.4) of the monodromy subgroup H0.

In fact by a direct calculation we see that
√
−1G is an element of a one

dimensional real vector space of Hermitian quadratic invariants of

< MR
10,M

R
20,M

R
1∞,M

R
2∞ >∼= H0.

4 Monodromy calculus by generalised Picard-Lefschetz
theorem.

In [9, Corollary 4.1, Remark 4.4] (see also [11] for generic parameter case)
the following monodromy representation of the fundamental group (2.9) with
respect to a certain twisted cycle basis has been obtained by means of the
generalised Picard-Lefschetz theorem. A solution holomorphic in the neigh-
bourhood of (x, y) = (0, 0) can be written down in the form (2.5).

Proposition 4.1. The solution to the Horn hypergeometric system (2.4) with
rank 4 admits the following monodromy representation including the cases with
a, b ∈ Z;

ρa,b(γ1) =


1 0 0 0
1 e2iaπ 0 0
0 0 1 0
0 0 1 e2iaπ
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ρa,b(γ2) =


1 0 0 0
0 1 0 0
1 0 e2ibπ 0
0 1 0 e2ibπ

 ,

ρa,b(γ3) =


1 −1− e2iaπ −1− e2ibπ 1− e2i(a+b)π

0 1 0 0
0 0 1 0
0 0 0 1

 .

The Hermitian quadratic invariant (unique up to a real constant multipli-
cation) associated to the Appell’s system F4 (2.4) can be calculated as

H̃ =


V1

V2

V3

V4

 (4.1)

V1 = (0, i
(
1 + e2iaπ

)
, i
(
1 + e2ibπ

)
, i
(
−1 + e2i(a+b)π

)
)

V2 = (−i
(
1 + e−2iaπ

)
,−ie−2iaπ

(
−1 + e4iaπ

)
,

i
(
e−2iaπ − e2ibπ

)
,−ie2ibπ

(
−1 + e2iaπ

) (
1− e−2i(a+b)π

)
)

V3 = −i(
(
1 + e−2ibπ

)
,
(
e2iaπ − e−2ibπ

)
,

e−2ibπ
(
−1 + e4ibπ

)
, e2iaπ

(
−1 + e2ibπ

) (
1− e−2i(a+b)π

)
)

V4 = i
(

1− e−2i(a+b)π
)

(1,
(
−1 + e2iaπ

)
,
(
−1 + e2ibπ

)
,
(
−1 + e2iaπ

) (
−1 + e2ibπ

)
).

The analytic variety in the space of 4× 4 Hermitian matrices represented
by (4.1) depending on parameters a, b form a closed set. Thus we can consider
the limit case a, b→ 0 and obtain (after multiplication by

√
2)

H̃0 =


0 2i

√
2 2i

√
2 0

−2i
√

2 0 0 0

−2i
√

2 0 0 0
0 0 0 0

 . (4.2)

From the monodromy representation of Proposition 4.1 for the limit case
a, b→ 0 we obtain
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ρ(0,0)(γ1) =


1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1

 , ρ(0,0)(γ2) =


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 , (4.3)

ρ(0,0)(γ3) =


1 −2 −2 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Proposition 4.2. We can choose an unitary base change matrix R0

R0 =
1√
2


i 0 −i 0
0 − 1+i√

2
0 − 1−i√

2

0 1−i√
2

0 1+i√
2

1 0 1 0

 , tR̄0.R0 = Id4

such that
H̃R0

0 =
√
−1G.

That is to say a pure imaginary multiple of the Gram matrix G (3.6 ) spans a
1-dimensional real space of Hermitian quadratic invariants of the monodromy
representation of (2.6)

< ρ(0,0)(γ1)R0 , ρ(0,0)(γ2)R0 , ρ(0,0)(γ3)R0 >

given by (4.3).

Remark 4.3. 1. There is no conjugation matrix that would send Mj,0 to
ρ(0,0)(γj) for both j = 1, 2.

2. The question about the faithfulness of the monodromy representation
(4.3) deserves a special attention. In other words, we ask whether the mon-
odromy group given in Proposition 4.2 is isomorphic to the fundamental group
π1(C2 \ S) given by (2.9 ) . If the answer is negative e.g. (4.3) gives rise to a
subgroup strictly smaller than π1(C2\S), we may ask the same question about
the monodromy representation given in Proposition 4.1 for generic values of
a, b.

5 Appendix: Maximally unipotent local monodromy of
the Poch-hammer hypergeometric equation.

We prepare a lemma on the local monodromy around x = 0 of the Pochhammer
hypergeometric equation,

(θnx − x(nθx + 1) · · · (nθx + n)) f(x) = 0. (5.1)
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with reducible monodromy to which the Levelt type theorem [5, Theorem 3.5]
cannot be directly applied. Despite the reducibility, in fact the Levelt type
theorem holds [17], [19, Theorem 1.1] in this case also.

Lemma 5.1. Let us consider a basis of the solution space to ( 5.1) as follows.

fj(x) =
∑

k∈Z≥0

Ress=−k
Γ(s)n−jΓ(1− ns)

Γ(1− s)j
x−se−π

√
−1jsds, j = 0, · · ·n− 1.

(5.2)
The monodromy around x = 0 with respect to a basis ( 5.2) of solutions to
(5.1) is given as follows

1 −2πi 0 · · · 0 0
0 1 −2πi · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −2πi
0 0 0 · · · 0 1


.

Proof. First of all we introduce a periodic meromorphic function

P (s) = Γ(s)Γ(1− s)eπ
√
−1s =

πeπ
√
−1s

sin πs
,

with period 1 i.e. P (s+ 1) = P (s) and a meromorphic function

H(s) =
Γ(1− ns)
Γ(1− s)n

x−se−nπ
√
−1s.

This means that

fn−k(x) =

∫
Γ0

P (s)kH(s)ds

after the notation ( 5.2). We shall denote by Γ0 the integration contour turning
counter clockwise around the negative integers points so that the integration
along it give the summation of residues ( 5.2). Here we recall the partial
fraction expansion of the cosecant function,

π

sin πs
=

1

s
+
∑
m∈N

(−1)m(
1

s+m
+

1

s−m
)
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It is clear that P (s) has residue (−1)m at s = −m ∈ Z≤0 and there P (s)kH(s)
has the only possible k−th order poles on the negative real axis. In summay
the following relation would entail the desired result,

fn−k−1(e2π
√
−1x) =

∫
Γ0

P (s)(P (s)kH(s)e−2π
√
−1s)ds

=

∫
Γ0

P (s)(P (s)kH(s))ds− 2π
√
−1

∫
Γ0

P (s)kH(s)ds,

= fn−k−1(x)− 2π
√
−1fn−k(x). (5.3)

for k = 1, · · · , n− 1.
We show ( 5.3 ) by the following argument. Let us introduce a function

B(s) = sP (s) =
∑
m≥0

Bm(2π
√
−1s)m

m!
,

with Bm :Bernoulli number such that B0 = 1, B1 = 1/2, B2m+1 = 0. The
leading term of the asymptotic expansion at x = 0 of a solution to ( 5.1) in the
form of a linear combination of (lnx)j , j = 0, · · · , n−1 completely determines
how this solution is represented as a linear combination of solutions fn−k−1(x),
k = 0, · · · , n− 1. This situation allows us to reduce the proof of ( 5.3) to the
following equality between residues.

Ress=0((
B(s)

s
)k+1H(s)e−2π

√
−1s) = Ress=0((

B(s)

s
)k+1H(s)−2π

√
−1(

B(s)

s
)kH(s)).

The LHS of the above equality equals to

1

k!
(B(s)k+1H(s)e−2π

√
−1s)(k)|s=0

=
1

k!

(
(B(s)k+1H(s))(k)|s=0 +

k−1∑
`=0

kC`(B(s)k+1H(s))(`)|s=0(−2π
√
−1)k−`

)
.

Hence

1

k!

(
(B(s)k+1H(s)e−2π

√
−1s)(k) − (B(s)k+1H(s))(k)

)
|s=0

= −2π
√
−1

(
k∑
`=1

1

(k − `)!`!
(B(s)k+1H(s))(k−`)|s=0(−2π

√
−1)`−1

)
,

as B(0) = 1. The required equality will be proven if

k∑
`=1

1

(k − `)!`! (B(s)k+1H(s))(k−`)|s=0(−2π
√
−1)`−1 − 1

(k − 1)!
(B(s)kH(s))(k−1)|s=0
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turns out to be zero. This difference is calculated as

k∑
`=1

1

(k − `− 1)!
(

`+1∑
r=1

(−2π
√
−1)r−1B(`−r+1)(0)

(`− r + 1)!r!
)(B(s)kH(s))(k−`−1)|s=0

=

k∑
`=1

(−2π
√
−1)`

(k − `− 1)!`!
(B` +

`−1∑
r=0

`!Br
(`− r + 1)!r!

− 1)(B(s)kH(s))(k−`−1)|s=0.

The coefficient of the factor (B(s)kH(s))(k−`−1)|s=0 vanishes by virtue of the
recurrent relation for Bernoulli numbers.

It is worthy noticing that the equality∫
Γ0

P (s)(P (s)kH(s)e−2π
√
−1s)ds =

∫
Γ0

P (s)(P (s)kH(s))ds−2π
√
−1

∫
Γ0

P (s)kH(s)ds,

holds for any function H(s) holomorphic in the neighbourhood of the negative
real axis. The last equality yields the desired result.
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