ON $B I$-ALGEBRAS

Arsham Borumand Saeid, Hee Sik Kim and Akbar Rezaei

Abstract

In this paper, we introduce a new algebra, called a $B I$-algebra, which is a generalization of a (dual) implication algebra and we discuss the basic properties of $B I$-algebras, and investigate ideals and congruence relations.

1 Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$ algebras and $B C I$-algebras ([7]). It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. J. Neggers and H. S. Kim ([19]) introduced the notion of d-algebras, which is another useful generalization of $B C K$-algebras and investigated several relations between d-algebras and $B C K$-algebras, and then investigated other relations between oriented digraphs and d-algebras.

It is known that several generalizations of a B-algebra were extensively investigated by many researchers and properties have been considered systematically. The notion of B-algebras was introduced by J. Neggers and H. S. $\operatorname{Kim}([17])$. They defined a B-algebra as an algebra $(X, *, 0)$ of type $(2,0)$ (i.e., a non-empty set with a binary operation "*" and a constant 0) satisfying the following axioms:
(B1) $x * x=0$,
(B2) $x * 0=x$,

[^0](B) $(x * y) * z=x *[z *(0 * y)]$
for any $x, y, z \in X$.
C. B. Kim and H. S. Kim ([12]) defined a $B G$-algebra, which is a generalization of B-algebra. An algebra $(X, *, 0)$ of type $(2,0)$ is called a $B G$-algebra if it satisfies $(B 1),(B 2)$, and
$(B G) x=(x * y) *(0 * y)$
for any $x, y \in X$.
Y. B. Jun, E. H. Roh and H. S. Kim ([9]) introduced the notion of a $B H-$ algebra which is a generalization of $B C K / B C I / B C H$-algebras. An algebra $(X, *, 0)$ of type $(2,0)$ is called a $B H$-algebra if it satisfies $(B 1),(B 2)$, and
$(B H) x * y=y * x=0$ implies $x=y$
for any $x, y \in X$.
Moreover, A. Walendziak ([21]) introduced the notion of $B F / B F_{1} / B F_{2^{-}}$ algebras. An algebra $(X, *, 0)$ of type $(2,0)$ is called a $B F$-algebra if it satisfies $(B 1),(B 2)$ and
$(B F) 0 *(x * y)=y * x$
for any $x, y \in X$.
A $B F$-algebra is called a $B F_{1}$-algebra (resp., a $B F_{2}$-algebra) if it satisfies $(B G)$ (resp., $(B H)$).

In this paper, we introduce a new algebra, called a $B I$-algebra, which is a generalization of a (dual) implication algebra, and we discuss the basic properties of $B I$-algebras, and investigate ideals and congruence relations.

2 Preliminaries

In what follows we summarize several axioms for construct several generalizations of $B C K / B C I / B$-algebras. Let $(X ; *, 0)$ be an algebra of type $(2,0)$. We provide several axioms which were discussed in general algebraic structures as follows: for any $x, y, z \in X$,
(B1) $x * x=0$,
(B2) $x * 0=x$,
(B) $(x * y) * z=x *(z *(0 * y))$,

$$
\begin{aligned}
& (B G) x=(x * y) *(0 * y) \\
& (B M)(z * x) *(z * y)=y * x, \\
& (B H) x * y=0 \text { and } y * x=0 \text { implies } x=y, \\
& (B F) 0 *(x * y)=y * x, \\
& (B N)(x * y) * z=(0 * z) *(y * x), \\
& (B O) x *(y * z)=(x * y) *(0 * z), \\
& (B P) x *(x * y)=y, \\
& (Q)(x * y) * z=(x * z) * y, \\
& (C O)(x * y) * z=x *(y * z), \\
& (B Z)((x * z) *(y * z)) *(x * y)=0, \\
& (K) 0 * x=0 .
\end{aligned}
$$

These axioms played important roles for researchers to construct algebraic structures and investigate several properties. For details, we refer to [1-23].

Definition 2.1. An algebra $(X ; *, 0)$ of type $(2,0)$ is called a

- BCI-algebra if satisfies in $(B 2),(B H)$ and $((x * y) *(x * z)) *(z * y)=0$ for all $x, y, z \in X([7])$.
- BCK-algebra if it is a BCI-algebra and satisfies in (K) ([22]).
- BCH-algebra if satisfies in $(B 1),(B H)$ and $(Q)([6])$.
- BH-algebra if satisfies in $(B 1),(B 2)$ and $(B H)([9])$.
- BZ-algebra if satisfies in $(B 2),(B H)$ and $(B Z)([23])$.
- d-algebra if satisfies in $(B 1),(K)$ and $(B H)([19])$.
- Q-algebra if satisfies in $(B 1),(B 2)$ and $(Q)([20])$.
- B-algebra if satisfies in $(B 1),(B 2)$ and $(B)([17])$.
- BM-algebra if satisfies in (B2) and (BM) ([11]).
- BO-algebra if satisfies in $(B 1),(B 2)$ and $(B O)([13])$.
- BG-algebra if satisfies in $(B 1),(B 2)$ and $(B G)([12])$.
- BP-algebra if satisfies in $(B 1),(B P 1)$ and ($B P 2$) ([3]).
- $B N$-algebra if satisfies in $(B 1),(B 2)$ and $(B N)([10])$.
- BF-algebra if satisfies in $(B 1),(B 2)$ and $(B F)([21])$.
- Coxeter algebra if satisfies in (B1), (B2) and (CO) ([15]).

Definition 2.2. A groupoid ($X ; *$) is called an implication algebra ([1]) if it satisfies the following identities
(I1) $(x * y) * x=x$,
(I2) $(x * y) * y=(y * x) * x$,
(I3) $x *(y * z)=y *(x * z)$,
for all $x, y, z \in X$.
Definition 2.3. Let $(X ; *)$ be an implication algebra and let a binary operation " \circ " on X be defined by

$$
x * y:=y \circ x .
$$

Then $(X ; \circ)$ is said to be a dual implication algebra. In fact, the axioms of that are as follows:
(DI1) $x \circ(y \circ x)=x$,
(DI2) $x \circ(x \circ y)=y \circ(y \circ x)$,
(DI3) $(x \circ y) \circ z=(x \circ z) \circ y$,
for all $x, y, z \in X$. W. Y. Chen and J. S. Oliveira ([4]) proved that in any implication algebra $(X ; *)$ the identity $x * x=y * y$ holds for all $x, y \in X$. We denote the identity $x * x=y * y$ by the constant 0 . The notion of $B I$-algebras comes from the (dual) implication algebra.

3 BI-algebras

Definition 3.1. An algebra $(X ; *, 0)$ of type $(2,0)$ is called a BI-algebra if
(B1) $x * x=0$,
(BI) $x *(y * x)=x$
for all $x, y \in X$.
Let $(X, *, 0)$ be a $B I$-algebra. We introduce a relation " \leq " on X by $x \leq y$ if and only if $x * y=0$. We note that " \leq " is not a partially order set, but it is only reflexive.

Example 3.2. (i). Every implicative $B C K$-algebra is a $B I$-algebra. (ii). Let $X:=\{0, a, b, c\}$ be a set with the following table.

$*$	0	a	b	c
0	0	0	0	0
a	a	0	a	b
b	b	b	0	b
c	c	b	c	0

Then it is easy to see that $(X ; *, 0)$ is a $B I$-algebra, but it is not implicative $B C K$-algebra, since

$$
(c *(c * a)) * a=(c * b) * a=c * a=b \neq 0
$$

(iii). Let X be a set with $0 \in X$. Define a binary operation "*" on X by

$$
x * y= \begin{cases}0 & \text { if } x=y \\ x & \text { if } x \neq y\end{cases}
$$

Then $(X ; *, 0)$ is an implicative $B C K$-algebra ([22]), and hence a $B I$-algebra.

Note that in Example 3.2(ii), we can see that it is not a B-algebra, since

$$
(c * a) * b=b * b=0 \neq c *(b *(0 * a))=c *(b * 0)=c * b=c .
$$

It is not a $B G$-algebra, since

$$
c \neq(c * a) *(0 * a)=b * 0=b .
$$

It is not a $B M$-algebra, since

$$
(b * a) *(b * c)=b * b=0 \neq c * a=b
$$

It is not a $B F$-algebra, since

$$
0 *(a * b)=0 \neq b * a=b
$$

It is not a $B N$-algebra, since

$$
(c * b) * a=c * a=b \neq(0 * a) *(b * c)=0
$$

It is not a $B O$-algebra, since

$$
c *(a * a)=c * 0=c \neq(c * a) *(0 * a)=b * 0=b .
$$

It is not a $B P$-algebra, since

$$
c *(c * b)=c * c=0 \neq b .
$$

It is not a Q-algebra, since

$$
(c * b) * a=c * a=b \neq(c * a) * b=b * b=0 .
$$

It is not a Coxeter algebra, since

$$
(c * a) * b=b * b=0 \neq c *(a * b)=c * a=b .
$$

It is not a $B Z$-algebra, since

$$
((a * c) *(0 * c)) *(a * 0)=(b * 0) * a=b \neq 0
$$

Also, we consider the following example.
Example 3.3. Let $X:=\{0, a, b, c\}$ be a set with the following table.

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	0
b	b	0	0	b
c	c	0	c	0

Then $(X ; *, 0)$ is a $B I$-algebra, but not a $B H / B C I / B C K$-algebra, since

$$
a * b=0 \text { and } b * a=0, \text { while } a \neq b .
$$

Proposition 3.4. If $(L ; \vee, \wedge, \neg, 0,1)$ is a Boolean lattice, then $(L ; *, 0)$ is a BI-algebra, where "*" is defined by $x * y=\neg y \wedge x$, for all $x, y \in L$.

Proposition 3.5. Any dual implication algebra is a $B I$-algebra.
Note that the converse of Proposition 3.5 does not hold in general. See the following example.

Example 3.6. Let $X:=\{0, a, b\}$ be a set with the following table.

$$
\begin{array}{c|ccc}
* & 0 & a & b \\
\hline 0 & 0 & 0 & 0 \\
a & a & 0 & a \\
b & b & b & 0
\end{array}
$$

Then $(X ; *, 0)$ is a $B I$-algebra, but it is not a dual implication algebra, since

$$
a *(a * c)=a * b=a, \text { while } c *(c * a)=c * b=c
$$

Proposition 3.7. Let X be a $B I$-algebra. Then
(i) $x * 0=x$,
(ii) $0 * x=0$,
(iii) $x * y=(x * y) * y$,
(iv) if $y * x=x, \forall x, y \in X$, then $X=\{0\}$,
(v) if $x *(y * z)=y *(x * z), \forall x, y \in X$, then $X=\{0\}$,
(vi) if $x * y=z$, then $z * y=z$ and $y * z=y$,
(vii) if $(x * y) *(z * u)=(x * z) *(y * u)$, then $X=\{0\}$,
for all $x, y, z, u \in X$.
Proof. (i). Using (BI) and (B1) we have $x=x *(x * x)=x * 0$.
(ii). By $(B I)$ and (i) we have $0=0 *(x * 0)=0 * x$.
(iii). Given $x, y \in X$, we have

$$
x * y=(x * y) *(y *(x * y))=(x * y) * y
$$

(iv). For $x \in X$, we have

$$
x=x *(y * x)=x * x=0
$$

Hence $X=\{0\}$.
(v). Given $x \in X$, we have

$$
0=0 *(x * 0)=x *(0 * 0)=x * 0=x
$$

Hence $X=\{0\}$.
(vi). If $x * y=z$, then by (iii) we have

$$
z * y=(x * y) * y=x * y=z
$$

Also, $y * z=y *(x * y)=y$.
(vii). If $x \in X$, then we have

$$
x=x * 0=(x * 0) *(x * x)=(x * x) *(0 * x)=0 *(0 * x)=0 * 0=0 .
$$

Hence $X=\{0\}$.
Definition 3.8. A $B I$-algebra X is said to be right distributive (or left distributive, resp.) if

$$
(x * y) * z=(x * z) *(y * z),(z *(x * y)=(z * x) *(z * y), \text { resp. })
$$

for all $x, y, z \in X$.
Proposition 3.9. If $B I$-algebra X is a left distributive, then $X=\{0\}$.
Proof. Let $x \in X$. Then by $(B I)$ and ($B 1$) we have

$$
x=x *(x * x)=(x * x) *(x * x)=0 * 0=0 .
$$

Example 3.10. (i). Let $X:=\{0, a, b, c\}$ be a set with the following table.

$*$	0	a	b	c
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
c	c	b	a	0

Then $(X ; *, 0)$ is a right distributive $B I$-algebra.
(ii). Example 3.2(ii) is not right distributive, since

$$
(c * a) * b=b * b=0 \neq(c * b) *(a * b)=c * a=b .
$$

Proposition 3.11. Let $(X ; *)$ be a groupoid with $0 \in X$. If the following axioms holds:
(i) $x * x=0$,
(ii) $x * y=x$, for all $x \neq y$,
then $(X ; *, 0)$ is a right distributive $B I$-algebra.
Proposition 3.12. Let X be a right distributive $B I$-algebra. Then
(i) $y * x \leq y$,
(ii) $(y * x) * x \leq y$,
(iii) $(x * z) *(y * z) \leq x * y$,
(iv) if $x \leq y$, then $x * z \leq y * z$,
(v) $(x * y) * z \leq x *(y * z)$,
(vi) if $x * y=z * y$, then $(x * z) * y=0$,
for all $x, y, z \in X$.
Proof. For any $x, y \in X$, we have
(i).

$$
(y * x) * y=(y * y) *(x * y)=0 *(x * y)=0
$$

which shows that $y * x \leq y$.
(ii).

$$
\begin{aligned}
((y * x) * x) * y & =((y * x) * y) *(x * y) \\
& =((y * y) *(x * y)) *(x * y) \\
& =(0 *(x * y)) *(x * y) \\
& =0 *(x * y)=0,
\end{aligned}
$$

which shows that $(y * x) * x \leq y$.
(iii).

$$
\begin{aligned}
((x * z) *(y * z)) *(x * y) & =((x * y) * z) *(x * y) \\
& =((x * y) *(x * y)) *(z *(x * y)) \\
& =0 *(z *(x * y))=0
\end{aligned}
$$

proving that $(x * z) *(y * z) \leq x * y$.
(iv). If $x \leq y$, then $x * y=0$ and hence

$$
(x * z) *(y * z)=(x * y) * z=0 * z=0
$$

proving that $x * z \leq y * z$.
(v). By (i), we have $x * z \leq x$. It follows from (iv) that $(x * z) *(y * z) \leq$ $x *(y * z)$. Using the right distributivity, we obtain $(x * y) * z \leq x *(y * z)$.
(vi). Let $x * y=z * y$. Since X is right distributive, we obtain

$$
(x * z) * y=(x * y) *(z * y)=(x * y) *(x * y)=0
$$

It is easy to see that, if $x \leq y$, we does not conclude that $z * x \leq z * y$ in general, since, in Example 3.10(i), $a \leq c$ but

$$
b * a=b \not \leq b * c=0 .
$$

Proposition 3.13. Let X have the condition: $(z * x) *(z * y)=y * x$ for all $x, y, z \in X$. If $x \leq y$, then $z * y \leq z * x$.

Proof. If $x \leq y$, then $x * y=0$. It follows that $(z * y) *(z * x)=x * y=0$. Hence $z * y \leq z * x$.

An algebra $(X ; *)$ is said to have an inclusion condition if $(x * y) * x=0$ for all $x, y \in X$. Every right distributive $B I$-algebra has the inclusion condition by Proposition $3.12(\mathrm{i})$. If X is a right distributive $B I$-algebra, then X is a quasi-associative algebra by Proposition 3.12(v).

Proposition 3.14. Let X be a right distributive $B I$-algebra. Then induced relation " $\leq "$ is a transitive relation.

Proof. If $x \leq y$ and $y \leq z$, then we obtain by Proposition 3.7(i)

$$
\begin{aligned}
x * z & =(x * z) * 0 \\
& =(x * z) *(y * z) \\
& =(x * y) * z \\
& =0 * z \\
& =0 .
\end{aligned}
$$

Therefore $x \leq z$.

4 Ideals in $B I$-algebras

In what follows, let X denote a $B I$-algebra unless otherwise specified.
Definition 4.1. A subset I of X is called an ideal of X if
(I1) $0 \in I$,
(I2) $y \in I$ and $x * y \in I$ imply $x \in I$ for any $x, y \in X$.
Obviously, $\{0\}$ and X are ideals of X. We shall call $\{0\}$ and X a zero ideal and a trivial ideal, respectively. An ideal I is said to be proper if $I \neq X$.

Example 4.2. In Example 3.2(ii), $I_{1}=\{0, a, c\}$ is an ideal of X, while $I_{2}=\{0, a, b\}$ is not an ideal of X, since $c * a=b \in I_{2}$ and $a \in I_{2}$, but $c \notin I_{2}$.

We denote the set of all ideals of X by $I(X)$.

Lemma 4.3. If $\left\{I_{i}\right\}_{i \in \Lambda}$ is a family of ideals of X, then $\bigcap_{i \in \Lambda} I_{i}$ is an ideal of X.

Proof. Straightforward.
Since the set $I(X)$ is closed under arbitrary intersections, we have the following theorem.

Theorem 4.4. $(I(X), \subseteq)$ is a complete lattice.
Proposition 4.5. Let I be an ideal of X. If $y \in I$ and $x \leq y$, then $x \in I$.

Proof. If $y \in I$ and $x \leq y$, then $x * y=0 \in I$. Since $y \in I$ and I is an ideal, we obtain $x \in I$.

For any $x, y \in X$, define $A(x, y):=\{t \in X:(t * x) * y=0\}$. It is easy to see that $0, x \in A(x, y)$. In Example 3.2(ii), $A(a, b)=\{0, a, b, c\}$ and $A(b, a)=\{0, a, b\}$. Hence $A(a, b) \neq A(b, a)$. We note that

$$
\begin{aligned}
A(a, 0) & =\{t \in X:(t * a) * 0=0\} \\
& =\{t \in X: t * a=0\} \\
& =\{t \in X:(t * 0) * a=0\} \\
& =A(0, a) .
\end{aligned}
$$

Theorem 4.6. If X is a right distributive $B I$-algebra, then $A(x, y)$ is an ideal of X where $x, y \in X$.

Proof. Let $x * y \in A(a, b), y \in A(a, b)$. Then $((x * y) * a) * b=0$ and $(y * a) * b=0$. By the right distributivity we have

$$
\begin{aligned}
0=((x * y) * a) * b & =((x * a) *(y * a)) * b \\
& =((x * a) * b) *((y * a) * b) \\
& =((x * a) * b) * 0 \\
& =(x * a) * b,
\end{aligned}
$$

whence $x \in A(a, b)$. This proves that $A(a, b)$ is an ideal of X.
Proposition 4.7. Let X be a $B I$-algebra. Then
(i) $A(0, x) \subseteq A(x, y)$, for all $x, y \in X$,
(ii) if $A(0, y)$ is an ideal and $x \in A(0, y)$, then $A(x, y) \subseteq A(0, y)$.

Proof. (i). Let $z \in A(0, x)$. Then $z * x=(z * 0) * x=0$. Hence $(z * x) * y=$ $0 * y=0$. Thus $z \in A(x, y)$ and so $A(0, x) \subseteq A(x, y)$.
(ii). Let $A(0, y)$ be an ideal and $x \in A(0, y)$. If $z \in A(x, y)$, then $(z * x) * y=$ 0 . Hence $((z * x) * 0) * y=0$. Therefore $z * x \in A(0, y)$. Now, since $A(0, y)$ is an ideal and $x \in A(0, y), z \in A(0, y)$. Thus $A(x, y) \subseteq A(0, y)$.

Proposition 4.8. Let X be a $B I$-algebra. Then

$$
A(0, x)=\bigcap_{y \in X} A(x, y)
$$

for all $x, y \in X$.
Proof. By Proposition 4.7(i), we have $A(0, x) \subseteq \bigcap_{y \in X} A(x, y)$. If $z \in$ $\bigcap_{y \in X} A(x, y)$, then $z \in A(x, y)$, for all $y \in X$. It follows that $z \in A(0, x)$. Hence $\bigcap_{y \in X} A(x, y) \subseteq A(0, x)$.

Theorem 4.9. Let I be a non-empty subset of X. Then I is an ideal of X if and only if $A(x, y) \subseteq I$ for all $x, y \in I$.

Proof. Assume that I is an ideal of X and $x, y \in I$. If $z \in A(x, y)$, then $(z * x) * y=0 \in I$. Since I is an ideal and $x, y \in I$, we have $z \in I$. Hence $A(x, y) \subseteq I$.

Conversely, suppose that $A(x, y) \subseteq I$ for all $x, y \in I$. Since $(0 * x) * y=0$, $0 \in A(x, y) \subseteq I$. Let $a * b$ and $b \in I$. Since $(a * b) *(a * b)=0$, we have $a \in A(b, a * b) \subseteq I$, i.e., $a \in I$. Thus I is an ideal of X.

Proposition 4.10. If I is an ideal X, then

$$
I=\bigcup_{x, y \in I} A(x, y)
$$

Proof. Let I be an ideal of X and $z \in I$. Since $(z * 0) * z=z * z=0$, we have $z \in A(0, z)$. Hence

$$
I \subseteq \bigcup_{z \in I} A(0, z) \subseteq \bigcup_{x, y \in I} A(x, y)
$$

If $z \in \bigcup_{x, y \in I} A(x, y)$, then there exist $a, b \in I$ such that $z \in A(a, b)$. It follows from Theorem 4.9 that $z \in I$, i.e., $\bigcup_{x, y \in I} A(x, y) \subseteq I$.

Theorem 4.11. If I is an ideal of X, then

$$
I=\bigcup_{x \in I} A(0, x) .
$$

Proof. Let I be an ideal of X and $z \in I$. Since $(z * 0) * z=z * z=0$, we have $z \in A(0, z)$. Hence

$$
I \subseteq \bigcup_{z \in I} A(0, z)
$$

If $z \in \bigcup_{x \in I} A(0, z)$, then there exists $a \in I$ such that $z \in A(0, a)$, which means that $z * a=(z * 0) * a=0 \in I$. Since I is an ideal of X and $a \in I$, we obtain $z \in I$. This means that $\bigcup_{x \in I} A(0, x) \subseteq F$.

Let X be a right distributive $B I$-algebra and let I be an ideal of X and $a \in X$. Define

$$
I_{a}^{l}:=\{x \in X: x * a \in I\}
$$

Theorem 4.12. If X is a right distributive $B I$-algebra, then I_{a}^{l} is the least ideal of X containing I and a.

Proof. By (B1) we have $a * a=0$, for all $a \in X$, i.e. $a \in I_{a}^{l}$ and so $I_{a} \neq \emptyset$. Assume that $x * y \in I_{a}^{l}$ and $y \in I_{a}^{l}$. Then $(x * y) * a \in I$ and $y * a \in I$. By the right distributivity, we have $(x * a) *(y * a) \in I$. Since $y * a \in I$, we have $x * a \in I$ and so $x \in I_{a}^{l}$. Therefore I_{a}^{l} is an ideal of X.

Let $x \in I$. Since $(x * a) * x=(x * x) *(a * x)=0 *(a * x)=0 \in I$ and I is an ideal of X, we obtain $x * a \in I$. Hence $x \in I_{a}$. Thus $I \subseteq I_{a}^{l}$.

Now, let J be an ideal of X containing I and a. Let $x \in I_{a}^{l}$. Then $x * a \in I \subseteq J$. Since $a \in J$ and J is an ideal of X, we have $x \in J$. Therefore $I_{a}^{l} \subseteq J$.

The following example shows that the condition, right distributivity, is very necessary.

Example 4.13. In Example 3.2(ii), $(X ; *, 0)$ is a $B I$-algebra, but not right distributive, since

$$
(c * a) * b=b * b=0 \neq(c * b) *(a * b)=c * a=b .
$$

We can see that $I=\{0, a\}$ is an ideal of X, but $I_{b}^{l}=\{0, a, b\}$ is not an ideal of X.

Note. Let I be an ideal of X and $a \in X$. If we denote

$$
I_{a}^{r}:=\{x \in X: a * x \in I\}
$$

Then I_{a}^{r} is not an ideal of X in general.
Example 3.14. In Example 3.10(i), $I=\{0, b\}$ is an ideal of X but $I_{c}^{r}=\{a, c\}$ is not an ideal of X, because $0 \notin I_{c}^{r}$.

Let A be a non-empty subset of X. The set $\bigcap\{I \in I(X) \mid A \subseteq I\}$ is called an ideal generated by A, written $<A>$. If $A=\{a\}$, we will denote $<\{a\}>$, briefly by $\langle a\rangle$, and we call it a principal ideal of X. For $I \in I(X)$ and $a \in X$, we denote by $[I \cup\{a\})$ the ideal generated by $I \cup\{a\}$. For convenience, we denote $[\emptyset)=\{0\}$.

Proposition 4.15. Let A and B be two subsets of X. Then the following statements hold:
(i) $[0)=\{0\},[X)=X$,
(ii) $A \subseteq B$ implies $[A) \subseteq[B)$,
(iii) if $I \in I(X)$, then $[I)=I$.

5 Congruence relations in $B I$-algebras

Let I be a non-empty set of X. Define a binary relation " \sim_{I} " by

$$
x \sim_{I} y \text { if and only if } x * y \in I \text { and } y * x \in I
$$

The set $\left\{y: x \sim_{I} y\right\}$ will be denoted by $[x]_{I}$.
Theorem 5.1. Let I be an ideal of a right distributive $B I$-algebra X. Then " \sim_{I} " is an equivalence relation on X.

Proof. Since I is an ideal of X, we have $x * x=0 \in I$. Thus $x \sim_{I} x$. So, \sim_{I} is reflexive. It is obvious that \sim_{I} is symmetric. Now, let $x \sim_{I} y$ and $y \sim_{I} z$. Then $x * y, y * x \in I$ and $y * z, z * y \in I$. By Proposition 3.12(iii), we have $(x * z) *(y * z) \leq x * y$. Since I is an ideal and $x * y \in I$, we have $(x * z) *(y * z) \in X$ and so $x * z \in I$. Similarly, we obtain $z * x \in I$. Thus $x \sim_{I} z$ and so \sim_{I} is a transitive relation. Therefore \sim_{I} is an equivalence relation on X.

Recall that a binary relation " θ " on an algebra $(X ; *)$ is said to be
(i) a right compatible relation if $x \theta y$ and $u \in X$, then $(x * u) \theta(y * u)$,
(ii) a left compatible relation if $x \theta y$ and $v \in X$, then $(v * x) \theta(v * y)$,
(iii) a compatible relation if $x \theta y$ and $u \theta v$, then $(x * u) \theta(y * v)$.

A compatible equivalence relation on X is called a congruence relation on X.
Theorem 5.2. The equivalence relation " \sim_{I} " in Theorem 5.1 is a right congruence relation on X.

Proof. If $x \sim_{I} y$ and $u \in X$, then $x * y$ and $y * x \in I$. By Proposition 3.12(iii), we have $((x * u) *(y * u)) *(x * y)=0 \in I$. Since I is an ideal and $x * y \in I$, we have $(x * u) *(y * u) \in I$. Similarly we obtain $(y * u) *(x * u) \in I$. Therefore $(x * u) \sim_{I}(y * u)$.

Example 5.3. In Example 3.10(i), $I=\{0, a\}$ is an ideal of X and
$\sim_{I}:=\{(0,0),(a, a),(0, a),(a, 0),(0, b),(b, 0),(b, b),(c, b),(b, c),(c, 0),(0, c),(c, c)\}$
is a right congruence relation on X and

$$
[0]_{I}=[a]_{I}=\{0, a\} \text { and }[b]_{I}=[c]_{I}=\{0, a, b, c\} .
$$

Proposition 5.4. Let I be a subset of X with $0 \in I$. If I has the condition: if $x * y \in I$, then $(z * x) *(z * y) \in I$. Then $X=I$.

Proof. Let $x:=0$ and $y:=z$. Then $0 * z=0 \in I$ imply $(z * 0) *(z * z)=$ $z * 0=z \in I$. Therefore $X \subseteq I$ and so $I=X$.

Proposition 5.5. Let X be a right distributive $B I$-algebra and let $I, J \subseteq$ X.
(i) If $I \subseteq J$, then $\sim_{I} \subseteq \sim_{J}$,
(ii) If $\sim_{I_{i}}$ for all $i \in \Lambda$ are right congruence relations on X, then $\sim_{\cap I_{i}}$ is also a right congruence relation on X.

Lemma 5.6. If \sim_{I} is a left congruence relation on a right distributive $B I$-algebra X, then $[0]_{I}$ is an ideal of X.

Proof. Obviously, $0 \in[0]_{I}$. If y and $x * y$ are in $[0]_{I}$, then $x * y \sim_{I} 0$ and $y \sim_{I} 0$. It follows that $x=x * 0 \sim_{I} x * y \sim_{I} 0$. Therefore $x \in[0]_{I}$.

Proposition 5.7. Let X be a right distributive BI-algebra. Then

$$
\phi_{x}:=\{(a, b) \in X \times X: x * a=x * b\}
$$

is a right congruence relation on X.
Proof. Straightforward.
Example 5.8. In Example 3.10(i),

$$
\phi_{b}=\{(0,0),(0, a),(a, 0),(a, a),(b, b),(c, c),(b, c),(c, b)\}
$$

is a right congruence relation on X.
Proposition 5.9. Let X be a $B I$-algebra. Then
(i) $\phi_{0}=X \times X$,
(ii) $\phi_{x} \subseteq \phi_{0}$,
(iii) if X is right distributive, then $\phi_{x} \cap \phi_{y} \subseteq \phi_{x * y}$,
for all $x, y \in X$.

6 Conclusion and future work

Recently, researchers proposed several kinds of algebraic structures related to some axioms in many-valued logic and several papers have been published in this field.

In this paper, we introduced a new algebra which is a generalization of a (dual) implication algebra, and we discussed the basic properties of $B I$ algebras, and investigated ideals and congruence relations. We hope the results can be a foundation for future works.

As future works, we shall define commutative $B I$-algebras and discuss on some relationships between other several algebraic structures. Also, we intend to study other kinds of ideals, and apply vague sets, soft sets, fuzzy structures to $B I$-algebras.

Acknowledgments: The authors wish to thank the reviewers for their excellent suggestions that have been incorporated into this paper.

References

[1] J. C. Abbott, Semi-boolean algebras, Mate. Vesnik 4(1967), 177-198.
[2] S. S. Ahn and H. S. Kim, On $Q S$-algebras, J. Chungcheong Math. Soc. 12(1999), 33-41.
[3] S. S. Ahn and J. S. Han, On BP-algebras, Hacettepe Journal of Mathematics and Statistics 42(2013), 551-557.
[4] W. Y. Chen and J. S. Oliveira, Implication algebras and the metropolis rota axioms for cubic lattices, J. Algebra 171(1995), 383-396.
[5] J. R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasigroups and Related Systems 8(2001), 1-6.
[6] Q. P. Hu and X. Li, On BCH-algebras, Math. Sem. Notes, Kobe Univ. 11(1983), 313-320.
[7] K. Iseki, On BCI-algebras, Math. Sem. Notes, Kobe Univ. 8(1980), 125130.
[8] K. Iseki, H. S. Kim and J. Neggers, On J-algebras, Sci. Math. Jpn. 63(2006), 413-419.
[9] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. 1(1998), 347-354.
[10] C. B. Kim and H. S. Kim, On BN-algebras, Kyungpook Math. J. 53(2013), 175-184.
[11] C. B. Kim and H. S. Kim, On BM-algebras, Sci. Math. Jpn. 63(2006), 421-427.
[12] C. B. Kim and H. S. Kim, On BG-algebras, Demonstratio Math. 41(2008), 497-505.
[13] C. B. Kim and H. S. Kim, On BO-algebras, Math. Slovaca 62(2012), 855-864.
[14] H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Jpn. 67(2007), 113-116.
[15] H. S. Kim, Y. H. Kim and J. Neggers, Coxeters and pre-Coxeter algebras in Smarandache setting, Honam Math. J. 26(2004), 471-481.
[16] M. Kondo, On the class of $Q S$-algebras, Int. Math. \& Math. J. Sci. 49 (2004), 2629-2639.
[17] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54(2002), 21-29.
[18] J. Neggers and H. S. Kim, On β-algebras, Math. Slovaca 52(2002), 517530.
[19] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49(1999), 19-26.
[20] J. Neggers, S. S. Ahn and H. S. Kim, On Q-algebras, Int. Math. \& Math. J. Sci. 27(2001), 749-757.
[21] A. Walendziak, On BF-algebras, Math. Slovaca 57(2007), 119-128.
[22] H. Yisheng, BCI-algebra, Science Press, Beijing, 2006.
[23] X. H. Zhang and R. F. Ye, BZ-algebras and groups, J. Math. \& Phy. Sci. 29(1995), 223-233.

Arsham Borumand Saeid,
Department of Pure Mathematics, Faculty of Mathematics and Computer,
Shahid Bahonar University of Kerman, Kerman, Iran.
Email: arsham@uk.ac.ir
Hee Sik Kim (corresponding author),
Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea.
Email: heekim@hanyang.ac.kr
Akbar Rezaei,
Department of Mathematics,
Payame Noor University, p.o.box. 19395-3697, Tehran, Iran.
Email: rezaei@pnu.ac.ir

[^0]: Key Words: BI-algebra, (right, left) distributive, congruence relation.
 2010 Mathematics Subject Classification: 06F35; 20 N02.
 Received: 15.12.2015
 Accepted: 30.04.2016

