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Multiplicative hyperring of fractions and
coprime hyperideals

R. Ameri, A. Kordi and S. Hoskova-Mayerova

Abstract

In this paper we will introduce the notion of coprime hyperideals
in multiplicative hyperrings and we will show some properties of them.
Then we introduce the notion of hyperring of fractions generated by a
multiplicative hyperring and then we will show some properties of them.

1 Introduction

The theory of hyperstructures was introduced by Marty in 1934 during the 8th

Congress of the Scandinavian Mathematicians [20]. Marty introduced hyper-
groups as a generalization of groups. He published some notes on hypergroups,
using them in different contexts as algebraic functions, rational fractions, non
commutative groups and since then, many researchers have worked on this
new field of modern algebra and developed it. It was later observed that
the theory of hyperstructures has many applications in both pure and applied
sciences; for example, semi-hypergroups are the simplest algebraic hyperstruc-
tures that possess the properties of closure and associativity. The theory of
hyperstructures has been widely reviewed [6, 7, 8, 10, 13, 21, 25, 28].

In [7] Corsini and Leoreanu-Fotea collected numerous applications of al-
gebraic hyperstructures, especially those from the last fifteen years to the
following subjects: geometry, hypergraphs, binary relations, lattices, fuzzy
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sets and rough sets, automata, cryptography, codes, median algebras, relation
algebras, artificial intelligence, and probabilities.

As mentioned e.g. in [9] the hyperrings have appeared as a new class of
algebraic hyperstructures more general than that of hyperfields, introduced by
Krasner [19] in the theory of valued fields. A Krasner hyperring is a nonempty
set R endowed with a hyperoperation (the addition) and a binary operation
(the multiplication) such that (R;+) is a canonical hypergroup, (R;·) is a semi-
group and the multiplication is distributive with respect to the addition. The
theory of these hyperrings has been developing since the beginning of seventies,
thanks to the contributions of Mittas [22, 23], Krasner [19], Stratigopoulos [39].
Some principal notions of hyperring theory can be found in [13, 14, 22, 36, 41].
Several types of hyperrings have been proposed e.g. in [24, 21, 42], in [40] the
various types of hyperrings were given, with an outline of applications in chem-
istry and physics. The most general one were introduced by Spartalis [37], used
also in the context of P-hyperrings or (H;R)-hyperrings [38]. A comprehen-
sive review of hyperrings theory is covered in Nakassis [24] and in the book
[14] written by Davvaz, Leoreanu-Fotea. The hyperrings were studied also by
Ameri and Norouzi [1, 2, 3], Cristea and Jancic-Rasovic [9], Pelea [27] and
others.

One important class of hyperrings was introduced by Rota in 1982, where
the multiplication is a hyperoperation, while the addition is an operation,
which is called multiplicative hyperrings (for more details see [32, 33, 34, 35])
and was subsequently investigated by Olson and Ward [26] and many others.
De Salvo [15] introduced hyperrings in which the additions and the multipli-
cations are hyperoperations. Moreover, there exist other types of hyperrings
where both the addition and multiplication are hyperoperations and instead
associativity, commutativity and distributivity satisfy weak associativity, weak
commutativity and weak distributivity. This type of hyperrings, called HV -
hyperrings, can be seen in [40, 41]. Also, there are other types of hyperrings
which were fully studied in [13]. These hyperrings are studied by Rahnamai
Barghi [31]. Procesi and Rota in [29] have studied ring of fractions in Kras-
ner hyperrings and also they conceptualized in [30] the notion of primeness of
hyperideal in a multiplicative hyperring, and in [11], Dasgupta extended the
prime and primary hyperideals in multiplicative hyperrings. Asokkumar and
Velrajan [4, 5] have studied Von Neumann regularity in Krasner hyperrings.

Some equivalence relations - called fundamental relations - play impor-
tant roles in the the theory of algebraic hyperstructures. The fundamental
relations are one of the most important and interesting concepts in algebraic
hyperstructures that ordinary algebraic structures are derived from algebraic
hyperstructures by them. The fundamental relation β∗ on hypergroups was
defined by Koskas [18], mainly studied by Corsini [20], Freni [16, 17], Vou-
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giouklis [41] (for more details about hyperrings and fundamental relations on
hyperrings see [1, 2, 12, 13, 36, 41]).

In this paper we consider the class of multiplicative hyperring as a hyper-
structures (R,+, ·), where (R,+) is an abelian group, (R,+) is a semihyper-
group and the hyperoperation ” ·” is distributive with respect to the operation
” + ”, i.e. a · (b + c) ⊆ a · b + a · c. In this paper we introduce and study the
notion of coprime (comaximal) hyperideals of multiplicative hyperrings and
obtain their basic properties. Further, we introduce the notion of a hyperring
of fractions of multiplicative hyperrings and investigate the basic properties
such hyperrings.

2 Preliminaries

A hyperoperation “·” on nonempty set H is a mapping of H×H into the family
of all nonempty subsets of H. Let “·” be a hyperoperation on H. Then, (H, ·)
is called a hypergroupoid.

We can extend the hyperoperation on H to subsets of H as follows. For
A,B ⊆ H and h ∈ H, then

A ·B = ∪a∈A,b∈Ba · b, A · h = A · {h}, h ·B = {h} ·B.

A semihypergroup is a hypergroupoid (H, ·), which is associative, that is (a ·
b) · c = a · (b · c) for all a, b, c ∈ H. A hypergroup is a semihypergroup (H, ·),
that satisfies the reproduction axioms, that is a ·H = H = H · a for all a ∈ H.

A nonempty set R with two hyperoperations “+” and “·” is said to be a
hyperring if (R,+) is acanonical hypergroup, (R, ·) is a semihypergroup with
r · 0 = 0 · r = 0 for all r ∈ R (0 as a bilaterally absorbing element) and the
hyperoperation “·′′ is distributive over +, i.e., for every a, b, c ∈ R; a · (b+ c) =
a · b+ a · c and (a+ b) · c = a · c+ b · c.

A multiplicative hyperring is an abelian group (R,+) endowed with a hy-
peroperation ” · ” which satisfies the following conditions:

(R1) ∀a, b, c ∈ R : a · (b · c) = (a · b) · c;
(R2) ∀a, b, c ∈ R : (a+ b) · c ⊆ a · c+ b · c, a · (b+ c) ⊆ a · b+ a · c;
(R3) ∀a, b ∈ R : (−a) · b = a · (−b) = −(a · b).

If in (R2) the equality holds then we say that the multiplicative hyperring is
strongly distributive.

Let (R,+, ·) be a hyperring. We define the relation γ as follows:
aγb if and only if {a, b} ⊆ U where U is a finite sum of finite products of
elements of R, i.e.,

aγb⇔ ∃z1, · · · , zn ∈ R such that {a, b} ⊆
∑
j∈J

∏
i∈Ij

zi; Ij , J ⊆ {1, · · · , n}.
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We denote the transitive closure of γ by γ∗. The relation γ∗ is the small-
est equivalence relation on a multiplicative hyperring (R,+, ·) such that the
quotient R/γ∗, the set of all equivalence classes, is a fundamental ring. Let U

be the set of all finite sums of products of elements of R we can rewrite the
definition of γ∗ on R as follows:
aγ∗b⇔ ∃z1, . . . , zn+1 ∈ R with z1 = a, zn+1 = b and u1, . . . , un ∈ U such that
{zi, zi+1} ⊆ ui for i ∈ {1, . . . , n}.

Suppose that γ∗(a) is the equivalence class containing a ∈ R. Then, both
the sum ⊕ and the product � in R/γ∗ are defined as follows: γ∗(a)⊕ γ∗(b) =
γ∗(c) for all c ∈ γ∗(a)+γ∗(b) and γ∗(a)�γ∗(b) = γ∗(d) for all d ∈ γ∗(a)·γ∗(b).
Then R/γ∗ is a ring, which is called a fundamental ring of R (see also [40]).

Definition 2.1. Let R be a multiplicative hyperring. Then
(i) an element e ∈ R is said to be a left (resp. right) identity if a ∈ e · a

(resp. a ∈ a · e) for a ∈ R. An element e is called an identity element if it is
both left and right identity element.

(ii) an element e ∈ R is said to be a left (resp. right) scalar identity if
a = e · a (resp., a = a · e) for a ∈ R. An element e is called an scalar identity
element if it is both left and right scalar identity element.

(iii) Let R be a multiplicative hyperring with an identity e. An element A
is called a left (right) invertible (with respect to e), if there exists x ∈ R, such
that e ∈ x · a(e ∈ a · x) and a is called invertible if it is both a left and a right
invertible.

A multiplicative hyperring R is called a left (right) invertible if every ele-
ment of R has a left (right) invertible and R is called an invertible if it is both
a left and a right invertible. Denote the set of all invertible elements in R by
U(R) (with respect to the identity e by Ue(R)).

Definition 2.2. Let R be a multiplicative hyperring. The element e ∈ R is
an idempotent if 0 ∈ e · (1 − e). Denote the set of all idempotent elements of
R by Idem(R).

Definition 2.3. Let R be a multiplicative hyperring. Then we call Mn(R) as
the set of all hypermatixes of R. Also we called that for all A = (Aij)n×n,B
= (Bij)n×n ∈ P ∗(Mn(R)), A ⊆ B if and only if Aij ⊆ Bij .

Definition 2.4. We say that I is a hyperideal of a multiplicative hyperring
(R,+, .) if it satisfies the following conditions:

(i) I − I ⊆ I,
(ii) ∀x ∈ I, r ∈ R, x · r ∪ r · x ⊆ I.

Definition 2.5. Let R be a multiplicative hyperring. An element a ∈ R is
nilpotent, if there exists an integer n such that 0 ∈ an. Denote the set of all
nilpotent elements of R by nil(R).
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Definition 2.6. For an element x of a multiplicative hyperring R, the left
(right) annihilator of x is Ann(x) = {r ∈ R|r · x = 0} (Ann(x) = {r ∈
R|x · r = 0}). For a non-empty subset B of a multiplicative hyperring R, the
annihilator of B is Ann(B) = ∩{Ann(x)|x ∈ B}.

Definition 2.7. [11] A hyperideal P (6= R) of a multiplicative hyperring
(R,+, ◦) is called a prime hyperideal of R, if for all A,B ⊆ R, A ◦ B ⊆ P
then A ⊆ P or B ⊆ P .

A hyperideal I(6= R) of a multiplicative hyperring R is maximal in R if for
any hyperideal J of R, I ( J ⊆ R then J = R. Also, we say that R is local, if
it has just one maximal hyperideal.

Definition 2.8. [11] Let C be the class of all finite products of elements of a
multiplicative hyperring (R,+, ◦), i.e., C = {

∏n
i=1 ri|ri ∈ R, i ∈ N} ⊆ P ∗(R).

A hyperideal I of R is said to be a C-ideal of R if, for any A ∈ C, A ∩ I 6= ∅,
then A ⊆ I.

Definition 2.9. [14] A homomorphism (resp. good homomorphism) between
two multiplicative hyperrings (R,+, ◦) and (R′,+′, ◦′) is a map φ from R to
R′ such that for all a, b ∈ R,

φ(a+ b) = φ(a) +′ φ(b) and φ(a ◦ b) ⊆ φ(a) ◦′ φ(b),

(resp. φ(a ◦ b) = φ(a) ◦′ φ(b)).

3 Coprime hyperideals in multiplicative hyperring

Theorem 3.1. Let R be a commutative multiplicative hyperring with scalar
identity 1. Then the hyperideal I of R is prime if and only if I/γ∗ be a prime
ideal of R/γ∗.

Proof. (⇒) Let for x, y ∈ R/γ∗, x · y ∈ I/γ∗. Thus, there exist a, b ∈ R such
that x = γ∗(a), y = γ∗(b) and xy = γ∗(a)γ∗(b) = γ∗(a · b). So, γ∗(a)γ∗(b) =
γ∗(a · b) ∈ I/γ∗, then a · b ⊆ I. Since I is prime, then a ∈ I or b ∈ I. Hence
x = γ∗(a) ∈ I/γ∗ or y = γ∗(b) ∈ I.
(⇐) Assume that a · b ⊆ I for a, b ∈ R, then γ∗(a), γ∗(b) ∈ R/γ∗ and
γ∗(a)γ∗(b) = γ∗(a · b) ∈ I/γ∗. Therefore γ∗(a) ∈ I/γ∗ or γ∗(b) ∈ I/γ∗.
Hence a ∈ I or b ∈ I, i.e., I is a prime hyperideal of R.

Theorem 3.2. Let R be a commutative multiplicative hyperring with scalar
identity 1 and I be a left hyperideal of R. If Mn(I) is a prime hyperideal of
Mn(R), then I is prime hyperideal of R.
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Proof. Assume that a, b ∈ R such that ab ⊆ I. Then
ab 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ⊆Mn(I)

But 
ab 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 =


a 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0



b 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 .

Therefore
a 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ∈Mn(I) or


b 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ∈Mn(I).

Hence a ∈ I or b ∈ I, i.e., I is a prime hyperideal of R.

Proposition 3.3. Every non zero commutative multiplicative hyperring R
with scalar identity 1, has at least one maximal hyperideal.

Proof. Let Σ be the set of all hyperideals 6=< 1 >. Since 0 ∈ Σ, then Σ is not
empty. Assume that < It > be a chain of hyperideals in Σ, so that for each
pair of indices t1, t2 we have either It1 ⊆ It2 or It2 ⊆ It1 . Let I =

⋃
t It. It is

clear that I is a hyperideal. Since for all t, 1 /∈ It we have 1 /∈ I. Hence I ∈ Σ
and I is an upper bound of the chain. Therefore by Zorn’s lemma Σ has a
maximal element.

Theorem 3.4. Let R be a commutative multiplicative hyperring with scalar
identity 1. Then we have the following statements:

(i) Let M be a proper hyperideal of R such that every x ∈ R\M is invertible
in R. Then R is a local multiplicative hyperring and M is the only maximal
hyperideal of R.

(ii) Let M be a maximal hyperideal of R such that every element of 1 +M
be invertible in R and also for all x /∈ M , < x >= R · x. Then R is a local
multiplicative hyperring.

Proof. (i) Let I be a proper hyperideal of R. Then I has not any invertible
elements. Hence M is the only maximal hyperideal of R, i.e., R is local
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multiplicative hyperring.
(ii) Let x ∈ R \M . Since M is maximal hyperideal then < x,M >= R. So,
there exist m ∈ M such that 1 ∈< x > +m. Thus 1 − m ∈< x >. Since
1 −m ∈ 1 + M , then it’s invertible. Therefore there exists ` ∈ R such that
1 ∈ (1 − m) · `, so, 1 ∈< x > ·`, x is invertible. Hence by (i), R is local
multiplicative hyperring.

Theorem 3.5. The set Υ of all nilpotent elements in a commutative multi-
plicative hyperring R with scalar identity 1, is a hyperideal, and R/Υ has no
nonzero nilpotent element.

Proof. Assume that x ∈ Υ, there exists n ∈ N such that 0 ∈ xn. Thus for all
r ∈ R, we have 0 ∈ r ·xn = (r ·x)n, so r ·x ⊆ Υ and similarly x · r ⊆ Υ. Hence
r · x ∪ x · r ⊆ Υ. Now, assume that x, y ∈ Υ, then there exist n,m ∈ N such
that 0 ∈ xn and 0 ∈ ym. Therefore, we have 0 ∈ (x−y)n+m. Hence x−y ∈ Υ,
i.e., Υ−Υ ⊆ Υ and therefore Υ is a hyperideal.

Now, assume that x + Υ ∈ R/Υ, where x ∈ R. Let 0R/Υ ∈ (x + Υ)n for

some n ∈ N then xn ∈ Υ, so there exists k ∈ N such that 0 ∈ (xn)k = xnk.
Therefore x ∈ Υ, i.e., x+ Υ = Υ = 0R/Υ.

Theorem 3.6. Let R be a commutative multiplicative hyperring with scalar
identity 1, which every element x ∈ R, x ∈ xn for some n ≥ 2. Then every
prime C-ideal in R is maximal hyperideal.

Proof. Let P be a prime hyperideal of R. For all non zero element x in R−P
there exists n ≥ 2 such that x ∈ xn. Since 0 ∈ (x − xn) ∩ P , we have
(x− xn) ⊆ P , also x(1− xn−1) ⊆ x− xn. So since x /∈ P , 1− xn−1 ⊆ P . It’s
clear that 1 ∈ xn−1, therefore x is invertible. Hence by Theorem 3.4(i), P is
a maximal hyperideal of R.

Theorem 3.7. Let R be a commutative multiplicative hyperring with scalar
identity 1. Let I1, I2, · · · , In be hyperideals and P be a prime hyperideal con-
taining ∩ni=1Ii. Then Ii ⊆ P for some i. If P = ∩ni=1Ii, then for some i,
P = Ii.

Proof. Suppose that Ii * P for all 1 ≤ i ≤ n, then there exists xi ∈ Ii
such that xi /∈ P . Thus

∏
xi ⊆

∏
Ii ⊆ ∩Ii, but since P is prime hyperideal∏

xi * P . Hence ∩Ii * P .
Now, if P = ∩ni=1Ii, then P ⊆ Ii. Therefore P = Ii for some 1 ≤ i ≤ n.

Let I, J be two hyperideals in a commutative multiplicative hyperring.
Then define:

(I : J) = {x ∈ R|x · J ⊆ I}
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Theorem 3.8. Let R be a multiplicative hyperring and I, J are two hyperideals
in R. Then (I : J) is a hyperideal of R.

Proof. For all x, y ∈ (I : J), we have x · J ⊆ I, y · J ⊆ I, then (x − y) · J ⊆
x · J − y · J ⊆ I − I ⊆ I. Also, for all x ∈ (I : J) and r ∈ R we have
r ·x ·J ⊆ r · I ⊆ I,i.e., r ·x ⊆ (I : J) and similarly x · r ⊆ (I : J). Hence (I : J)
is a hyperideal of R.

Theorem 3.9. Let R be a commutative multiplicative hyperring and I, J and
K be hyperideals in R. Then we have the following statements:

(i) I ⊆ (I : J),
(ii) (I : J) · J ⊆ I,
(iii) ((I : J) : K) = (I : J ·K) = ((I : K) : J),
(iv) (∩iIi : J) = ∩i(Ii : J),
(v) ∩i(I : Ji) = (I :

∑
i Ji).

Proof. It’s straightforward.

Theorem 3.10. Let R be a commutative multiplicative hyperring and I, J are
hyperideals in R. If I is prime hyperideal, then (I : J) = I or R.

Proof. Since I is prime hyperideal, then we have (I : J) = {x ∈ R|x ·J ⊆ I} =
{x ∈ R|x ∈ I or J ⊆ I} = I or R.

Theorem 3.11. Let I, J be hyperideals of commutative multiplicative hyper-
ring R with scalar identity 1 and I ⊆ J . If

(i) J/I is cyclic,
(ii) J and J · (I : J) are idempotent,
(iii) I and J · (I : J) are C-ideal,
then we have I = J · (I : J).

Proof. Assume that J = I+ < a > for a ∈ R. Let K = J · (I : J), then K ⊆ I.
Thus K ⊆ K2 ⊆ I2 ⊆ J · I ⊆ J · (I : J) = K. So I2 = K. Now, let x ∈ I.
Then, since I ⊆ J ⊆ J2, we have x ∈ y + a · r + na where y ∈ I2, r ∈ R
and n ∈ Z. Therefore, there exists t ∈ a · r + na such that x − y = t, i.e.,
a · r + na ∩ I 6= ∅ and since I is C-ideal, then a · (r + n · 1R) ⊆ a · r + na ⊆ I.
Since r + n · 1R ∈ (I : a) = (I : J), we have a · (r + n · 1R) ⊆ J · (I : J) = K.
Thus (a · r + na) ∩ K 6= ∅. Since K is C-ideal, then a · r + na ⊆ K. Hence
x ∈ y + a · r + na ⊆ I2 +K ⊆ K.

Definition 3.12. Let R be a commutative multiplicative hyperring and I, J
be hyperideals in R with scalar identity 1. We said that I, J are coprime
(comaximal) if I + J = R.
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Example 3.13. Let R = Z
⊕

Z and define

(a, b) ◦ (c, d) =

{
(ac,Z); bd 6= 0

(ac, 0); bd = 0
.

Then (R,+, ◦) is a multiplicative hyperring such that is not strongly dis-
tributive, because by considering a = (1, 1), b = (0, 2), c = (0,−2), we have
a◦ (b+ c) = (1, 1)◦ (0, 0) = (0, 0) but a◦ b+a◦ c = (0,Z) + (0,Z) = (0,Z+Z).
Now, let I = (Z, 0) be a strongly distributive hyperideal of R and e = (1, 0)
is scalar identity element of I. It is clear that Ann(I) = (0,Z) and R =
I +Ann(I). Therefore, I and Ann(I) are coprime.

Theorem 3.14. Let R be a commutative multiplicative hyperring and I, J are
hyperideals in R with scalar identity 1. Then we have the following statements:

(i) If I, J are coprime, then In, Jm are also coprime for all m,n ∈ N.
(ii) If I, J are coprime, then rad(I), rad(J) are coprime.
(iii) If I, J are coprime, then (I : J) = I.
(iv) I, J are coprime if and only if Mn(I),Mn(J) are coprime.

Proof. (i) Assume that In + Jm 6= R. Then there exists a prime hyperideal
P such that In + Jm ⊆ P . Thus In ⊆ P and Jm ⊆ P . Since P is a prime
hyperideal then we have I, J ⊆ P . But I + J ⊆ P and it is a contradiction.

(ii) Since R = rad(R) = rad(I + J) ⊆ rad(rad(I) + rad(J)), then
rad(rad(I) + rad(J)) = R, i.e., rad(I) + rad(J) = R.

(iii) By Theorem 3.9(v) and since I, J are coprime, we have (I : J) =
(I : I + J) = (I : R) = I.

(iv) Let I, J are coprime, then I + J = R. Thus Mn(I) + Mn(J) =
Mn(I + J) = Mn(R), i.e., Mn(I),Mn(J) are coprime.

The converse is straightforward.

Let f : R → R′ be a good homomorphism from multiplicative hyperring
R to R′. We define the extension Ie of hyperideal I to be the generated
hyperideal by f(I) in R′. Now, if J is a hyperideal of R′, then f−1(J) is
always an hyperideal of R, called the contraction Jc of J .

Theorem 3.15. Let f : R→ R′ be a good homomorphism from multiplicative
hyperring R to R′. Then we have the following statements:

(i) If I is a prime hyperideal of R′, then Ic is prime hyperideal of R.
(ii) If Ic, Jc are coprime in R′ and f is onto, then I, J are coprime in R.

Proof. (i) Assume that I is a hyperideal of R′. Let a, b ∈ R such that a · b ⊆
f−1(I). Then f(a · b) ⊆ I and so f(a) ∈ I or f(b) ∈ I. Hence a ∈ f−1(I) or
b ∈ f−1(I), i.e., f−1(I) is prime hyperideal of R.
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(ii) Suppose that Ic, Jc are coprime in R′, then Ic +Jc = R′. Since Ic +Jc ⊆
(I + J)c, thus (I + J)c = R′. Therefore I + J = R, by f is onto.

Theorem 3.16. (Chinese Remainder Theorem) Suppose that I1, · · · , In are
coprime hyperideals of multiplicative hyperring R with scalar identity 1. Then
the canonical good homomorphism φ : R→

∏n
i=1R/Ii is onto.

Proof. It’s enough to show that (0, . . . , r+ Ii, 0, . . . , 0) ∈ Im(φ) for all 1 ≤ i ≤
n. We need to show that (1, 0, . . . , 0) ∈ Im(φ), i.e., there exists r ∈ R such
that 1− r ∈ I1 and r ∈ I2 ∩ · · · ∩ In. For all j > 1, since I1, Ij are comaximal,
then there exist a1j ∈ I1 and aj ∈ Ij such that 1 = a1j + aj . Thus we have,
1 ∈ (a12 + a2)(a13 + a3) · · · (a1n + an) ⊆ A + a2 · · · an, where A is a sum of
terms from I1. Therefore, letting r ∈ a2 . . . an we have 1 − r ∈ A ⊆ I1 and
r ∈ I2 ∩ . . . ∩ In, as desired.

Corollary 3.17. If I1, . . . , In are comprime hyperideals of multiplicative hy-
perring R with scalar identity 1, then R/

⋂n
i=1 Ii

∼=
∏n

i=1R/Ii.

Proof. Assume that φ(r) = (0, . . . , 0). Then for all i, we have r + Ii = 0R/Ii .
Therefore r ∈ Ii for all i, i.e., ker(φ) =

⋂n
i=1 Ii. Hence by Theorem 3.16,

R/
⋂n

i=1 Ii
∼=
∏n

i=1R/Ii.

Theorem 3.18. Let R be a multiplicative hyperring with scalar identity 1 and
for all r ∈ R and e ∈ Idem(R), |r · e| = 1. Then the following statements are
equivalent:

(i) R ∼= R1 × R2, where neither of the hyperrings R1 and R2 is the zero
hyperring,

(ii) R contains the non trivial idempotents.

Proof. (i) ⇒ (ii) Let e be a non trivial idempotent in R. Define the good
homomorphism φ : R → R/ < e > ×R/ < 1 − e > by φ(r) = (r+ < e >,
r+ < 1 − e >). It’s clear that < e >,< 1 − e > are coprime, then by
Chinese Remainder Theorem φ is epimorphism and for all r ∈ ker(φ) we have
(r+ < e >, r+ < 1 − e >) = (0R/<e>, 0R/<1−e>), i.e., r ∈< e > ∩ < 1 − e >
and since for all ` ∈ R, |` · e| = 1, then r = 0, therefore ker(φ) = {0}. Now by
Corollary 3.17, we have R ∼= R/ < e > ×R/ < 1− e >.
(ii) ⇒ (i) Assume that e be a non trivial idempotent in R. Since R ∼= R/ <
e > ×R/ < 1 − e > then (1, 0) ∈ R/ < e > ×R/ < 1 − e > is a non trivial
idempotent.
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4 Multiplicative hyperring of fractions

Definition 4.1. A nonempty subset S of multiplicative hyperring (R,+, ·)
with scalar identity 1 is called a multiplicative closed subset (MCS), if it has
the following properties:

(i) 1 ∈ S, (ii) a · S = S · a = S for all a ∈ S.

Let S be a MCS of (R,+, ·). We shall construct the hyperring of fractions
S−1R. Let us consider the following relation in R× S:

(r, s) ∼ (r′, s′)⇐⇒ γ∗(A · r · s′) = γ∗(A · r′ · s),

for some nonempty subset A of S.

Theorem 4.2. ∼ is an equivalence relation on R× S.

Proof. It’s clear that ∼ is reflexive and symmetric. Now, assume that (r1, s1) ∼
(r2, s2) and (r2, s2) ∼ (r3, s3). Then there exist A,B ⊆ S such that γ∗(A ·
r1 · s2) = γ∗(A · r2 · s1) and γ∗(B · r2 · s3) = γ∗(B · r3 · s2). Thus we have
γ∗(A·B·r2·s3·s1) = γ∗(A·B·r3·s2·s1), which implies that γ∗(B·(A·r2·s1)·s3) =
γ∗(A ·B · r3 · s2 · s1), and hence γ∗(B · (A · r1 · s2) · s3) = γ∗(A ·B · r3 · s2 · s1).
So that γ∗(A · B · s2)γ∗(r1 · s3) = γ∗(A · B · s2)γ∗(r3 · s1). Therefore ∼ is
transitive.

Now we define the following hyperoperations on S−1R,
(r1, s1)⊕ (r2, s2) = (r1 · s2 + r2 · s1, s1 · s2)

= {(r, s)|r ∈ r1 · s2 + r2 · s1, s ∈ s1 · s2}
and

(r1, s1)� (r2, s2) = (r1 · r2, s1 · s2) = {(r, s)|r ∈ r1 · r2, s ∈ s1 · s2}.

We need to show that ⊕ and � are well defined. If (r1, s1) = (a1, t1) and
(r2, s2) = (a2, t2), then there exist A,B ⊆ S such that

γ∗(A · r1 · t1) = γ∗(A · a1 · s1) (1)

γ∗(B · r2 · t2) = γ∗(B · a2 · s2) (2).

Multiplying (1) by γ∗(B · t2 · s2) and (2) by γ∗(A · t1 · s1). Then we have
γ∗(A · B · s1 · s2 · t2 · a1) = γ∗(A · B · s2 · t2 · t1 · r1) and γ∗(A · B · s1 · s2 ·
t1 · a2) = γ∗(A ·B · s1 · t1 · t2 · r2). Now, by adding these equalities we obtain
γ∗(A · B · (s1 · s2 · (t2 · a1 + t1 · a2))) = γ∗(A · B · (t1 · t2 · (r1 · s2 + r2 · s1))).
Hence (r1 · s2 + r2 · s1, s1 · s2) = (a1 · t2 + a2 · t1, t1 · t2) , i.e., ⊕ is well
defined. Again, multiplying (1) by (2) we obtain γ∗(A ·B · (r1 · r2) · (t1 · t2)) =
γ∗(A · B · (a1 · a2) · (s1 · s2)). Therefore (r1 · r2, s1 · s2) = (a1 · a2, t1 · t2), i.e.,
� is well defined.
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Theorem 4.3. Let (R,+, ·) be a commutative multiplicative hyperring with
scalar identity 1 and S be a MCS of R. Then (S−1R,⊕,�) is a commutative
hyperring with scalar identity.

Proof. By above discussion ⊕ and � are well defined. Now we need to show
that (S−1R,⊕) is a hypergroup and (S−1R,�) is an associative hyperoper-
ation, which is distributive with respect to ⊕. If (r1, s1), (r2, s2), (r3, s3) ∈
S−1R, then we have:

(r1, s1)⊕ [(r2, s2)⊕ (r3, s3)] = (r1, s1)⊕ (r2 · s3 + r3 · s2, s2 · s3)

= (r1 · (s2 · s3) + (r2 · s3 + r3 · s2) · s1, s1 · s2 · s3)

= (r1 · (s2 · s3) + r2 · s1 · s3 + r3 · s1 · s2, s1 · s2 · s3)

=
[
(r1, s1)⊕ (r2, s2)

]
⊕ (r3, s3).

It means that (S−1R,⊕) is associative. Now, we prove the reproduction
axioms for (S−1R,⊕). For every (r1, s1), (r2, s2) ∈ S−1R we have s1, s2 ∈ S
and by definition there exists s3 ∈ S such that s1 ∈ s2 · s3. Since (R,+) is
a group then reproduction axioms hold for the additive law in R, we have
r2 · s3 + (s2 + 1) · R = R. Therefore, there exists r3 ∈ R such that r1 ∈
r2 · s3 + s2 · r3 + r3 which implies that r1 ∈ r2 · s3 + r3 · s2 + r3 · 1 ⊆ r2 · s3 +
r3 · s2 + r3 · s4 · s2, where 1 ∈ s2 · s4. Then r1 ∈ r2 · s3 + (r3 + r3 · s4) · s2.
Therefore, there exists a ∈ r3 + r3 · s4 such that r1 ∈ r2 · s3 + a · s2. Hence
(r1, s1) ∈ (r2, s2) ⊕ (a, s3), which implies that S−1R ⊆ (r2, s2) ⊕ S−1R, so
S−1R = (r2, s2) ⊕ S−1R. Also, � is distributive with respect to ⊕, because
for all (r1, s1), (r2, s2), (r3, s3) ∈ S−1R, then we have:
(r1, s1)�

[
(r2, s2)⊕ (r3, s3)

]
= (r1, s1)� (r2 · s3 + r2 · s2, s2 · s3)

= (r1 · (r2 · s3 + r2 · s2), s1 · s2 · s3)
= (r1 · r2 · s3 + r1 · r2 · s2, s1 · s2 · s3)
= (r1 · r2 · s3 · s1 + r1 · r2 · s2 · s1, s1 · s2 · s3 · s1)
=
[
(r1, s1)� (r2, s2)

]
⊕
[
(r1, s1)� (r3, s3)

]
,

because for all r ∈ R, s ∈ S, (r ·s, s·s) = (r, s). Thus (S−1R,⊕) is hypergroup.
Also, it’s clear that (S−1R,�) is associative and (1, 1) is as scalar identity and
since (R,+, ·) is commutative we obtain (S−1R,⊕,�) is commutative. Hence
(S−1R,⊕,�) is the commutative hyperring with scalar identity.

Example 4.4. Let (R,+, .) be a commutative ring with an identity 1. Define
a hyperoperation x◦y = {x.y, 2x.y, 3x.y, . . .}. Then (R,+, ◦) is a commutative
multiplicative hyperring which is not strongly distributive. Let x ∈ R such
that x /∈ nil(R) and let S = {xn|n ≥ 0}. Then (S−1R,⊕,�) is a commutative
hyperring with an identity.

Theorem 4.5. Let (R1,+, .) and (R2,+
′, .′) be two commutative multiplicative

hyperrings with scalar identity 1 and S be a MCS of R1 and let g : R1 → R2
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be a good homomorphism of multiplicative hyperrings such that g(1R1) = 1R2 .
Then we have a good homomorphism ĝ : S−1R1 → S−1R2 defined by ĝ(r, s) =
(g(r), g(s)). Also, ker(ĝ) = S−1 ker(g).

Proof. Since S is MCS in R1, then we are able to see that g(S) is MCS in
R2. Now, we need to show that ĝ is well defined. Assume that (r1, s1) =
(r2, s2), then there exists A ⊆ S such that γ∗1 (A · r1 · s2) = γ∗1 (A · r2 · s1).
So, g(γ∗1(A · r1 · s2)) = g(γ∗1(A · r2 · s1)) or g(γ∗1 (A))g(γ∗1 (r1))g(γ∗1(s2)) =
g(γ∗1(A))g(γ∗1 (r2))g(γ∗1(s1)). Since γ∗2(g(r)) = g(γ∗1 (r)) for all r ∈ R, then we
have

γ∗2 (g(A))γ∗2(g(r1))γ∗2 (g(s2)) = γ∗2 (g(A))γ∗2 (g(r2))γ∗2(g(s1))

which implies that

γ∗2(g(A) ·′ g(r1) ·′ g(s2)) = γ∗2 (g(A) ·′ g(r2) ·′ g(s1)).

Since g(A) ⊆ g(S), we have(
g(r1), g(s1)

)
=
(
g(r2), g(s2)

)
or ĝ(r1, s1) = ĝ(r2, s2).

Therefore ĝ is well defined. Also ĝ is a good homomorphism, because for all
(r1, s1), (r2, s2) ∈ S−1R1 we have:
ĝ((r1, s1)⊕ (r2, s2)) = ĝ(r1s2 + r2s1, s1s2)

= (g(r1 · s2 + r2 · s1), g(s1s2))
= (g(r1) ·′ g(s2) +′ g(r2) ·′ g(s1), g(s1) ·′ g(s2))
= (g(r1), g(s1))⊕′ (g(r2), g(s2))
= ĝ(r1, s1)⊕′ ĝ(r2, s2).

Also we have
ĝ((r1, s1)� (r2, s2)) = ĝ(r1 · r2, s1 · s2)

= (g(r1 · r2), g(s1 · s2)) = (g(r1) ·′ g(r2), g(s1) ·′ g(s2))
= (g(r1), g(s1))�′ (g(r2), g(s2))
= ĝ(r1, s1)�′ ĝ(r2, s2).

Now for the last section, it’s clear that S−1 ker(g) ⊆ ker(ĝ). Therefore we
need to show ker(ĝ) ⊆ S−1 ker(g). Assume that (r, s) ∈ ker(ĝ), then ĝ(r, s) = 0
or (g(r), g(s)) = 0. Thus g(r) = 0 or r ∈ ker(g), i.e., (r, s) ∈ S−1 ker(g).

Theorem 4.6. Let S be a MCS of a multiplicative hyperring R with scalar
identity 1. Then S−1R/γ∗1 = (γ∗2(S))−1(R/γ∗2).

Proof. It is enough to show that γ∗1(r, s) = (γ∗2 (r), γ∗2(s)) for r ∈ R, s ∈ S.
In order to achieve our claim, we have (r′, s′) ∈ γ∗1(r, s) if and only if there
exist z̄1, z̄2, . . . , z̄n such that {(r, s), (r′, s′)} ⊆

∏n
i=1 z̄i, where z̄i = (ri, si) for

ri ∈ R, si ∈ S. It holds, if and only if {(r, s), (r′, s′)} ⊆ (
∏n

i=1 ri,
∏n

i=1 si)
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if and only if {r, r′} ⊆
∏n

i=1 ri and {s, s′} ⊆
∏n

i=1 si if and only if r′ ∈
γ∗2 (r), s′ ∈ γ∗2 (s) if and only if (r′, s′) ∈ (γ∗2(r), γ∗2 (s)). Hence S−1R/γ∗1 =
(γ∗2(S))−1(R/γ∗2).

It is easy to check that φ : R → S−1R defined by φ(r) = (r, 1) is a good
homomorphism. Now, let I be a hyperideal of multiplicative hyperring R,
then we can define that S−1I = {(i, s)|i ∈ I, s ∈ S}, which is a hyperideal of
S−1R.

Remark 4.7. If (r, s) ∈ S−1I we don’t have necessarily r ∈ I, because maybe
(r, s) = (r′, s) with r′ ∈ I, r /∈ I.

Theorem 4.8. Let S be a MCS of a multiplicative hyperring R with scalar
identity 1 and I and J be two hyperideals in R, then we have the following
statements:

(i) S−1(I + J) = S−1I + S−1J
(ii) S−1(I · J) = (S−1I)(S−1J)
(iii) S−1(I ∩ J) = S−1I ∩ S−1J .

Proof. It is straightforward.

Theorem 4.9. Let I be a C-ideal and S be a MCS of multiplicative hyperring
R with scalar identity 1. Then I ∩ S 6= ∅ if and only if S−1I = S−1R.

Proof. (⇒) Assume that x ∈ I ∩ S, then (1, 1) = (x, x) ∈ S−1I. So (1, 1) �
(r, s) ∈ S−1I for all (r, s) ∈ S−1R. Therefore (r, s) ∈ S−1I. Hence S−1I =
S−1R.
(⇐) Consider the inclusion homomorphism φ : R→ S−1R, then φ(1) = (1, 1).
Since φ(1) ∈ S−1R and S−1I = S−1R, then φ(1) ∈ S−1I. So, there exist
i ∈ I, s ∈ S such that (1, 1) = φ(1) = (i, s). Therefore, there exists A ⊆ S such
that γ∗(A·i) = γ∗(A·s). Since A·i ⊆ I and A·i ⊆ γ∗(A·i), then I∩γ∗(A·i) 6= ∅
and on the other hands I is C-ideal, then we have A·s ⊆ γ∗(A·s) = γ∗(A·i) ⊆ I.
Hence I ∩ S 6= ∅.

Corollary 4.10. Let I and J be two hyperideals and S be a MCS of multi-
plicative hyperring R with scalar identity 1 such that I + J is C-ideal. Then I
and J are coprime in R if and only if S−1I and S−1J are coprime in S−1R.

Proof. (⇒) Assume that I and J are coprime, then I+J = R, and by Theorem
4.8(i) we have S−1R = S−1I + S−1J , i.e., S−1I and S−1J are coprime in
S−1R.
(⇐) Since S−1I and S−1J are coprime in S−1R, we have S−1R = S−1I +
S−1J = S−1(I + J). Thus we observe that (I + J) ∩ S 6= ∅ and since I + J is
C-ideal we have S ⊆ I + J and since 1 ∈ S, we have I + J = R.
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Theorem 4.11. If I is a nilpotent hyperideal of multiplicative hyperring R
with scalar identity 1, and S−1I is a hyperideal of S−1R, then S−1I is nilpo-
tent.

Proof. We need to show that for any sequence (r1, s1), (r2, s2), . . . in S−1I,
there are a′i ∈ I and s′i ∈ S such that for each n we have

(rn, sn)� (rn−1, sn−1)� . . .� (r1, s1) = (r′n . . . r
′
1, s
′n).

In order to achieve our claim, we use induction. Assume that we have found
them for i ≤ n − 1, then (rn−1, sn−1) � . . . � (r1, s1) = (r′n−1 · . . . · r′1, s′n−1).
By our assumption A = (rn, sn) � (1, s′n−1) ⊆ S−1I, then for suitable r′n ∈ I
and s′n ∈ S, we have A = (r′n, s

′
n). Therefore,

(rn, sn)� (rn−1, sn−1)� . . .� (r1, s1) = (rn, sn)� (r′n−1 · . . . · r′1, s′n−1)

= A� (a′n−1 · . . . · a′1, 1) = (a′n, s
′
n)� (a′n−1 · . . . · a′1, 1)

= (a′n · a′n−1 · . . . · a′1, s′n),

hence our claim holds. Now our claim follow that, if there exists n such that
0 ∈ In then 0 ∈ (S−1I)n.

Theorem 4.12. Let R be a commutative multiplicative hyperring with scalar
identity 1 and S be a MCS. Then we have the following statements:

(i) Every hyperideal in S−1R is an extension hyperideal.
(ii) If I is an C-ideal of R, then Iec = ∪s∈S(I : s).
(iii) Let I be a C-ideal of R and D = {J |Jec = J}. Then I ∈ D if and

only if no element of S is a zero divisor in R/I.

Proof. (i) Let J be a hyperideal in R and let (r, s) ∈ J . Since (r, 1) = (r, s)�
(s, 1), then (r, 1) ∈ J , hence r ∈ Jc and therefore (r, s) ∈ Jce. Since Jce ⊂ J ,
then J = Jce.

(ii) For all r ∈ R, r ∈ Iec = (Ie)c = (S−1I)c if and only if (r, 1) = (i, s)
for some i ∈ I, s ∈ S if and only if there exists A ⊆ S such that γ∗(A · r · i) =
γ∗(A · s) if and only if A · s · i ⊆ I (since γ∗(A · s) = γ∗(I) and 0 ∈ γ∗(I) and
since I is C-ideal, therefore A · s · i ⊆ γ∗(A · s · i) ⊆ I). Hence, it holds if and
only if r ∈ ∪s∈S(I : s).

(iii) For all hyperideal I of R, I ∈ D if and only if Iec = I if and only if
for some s ∈ S and r ∈ R such that s · r ⊆ I implies r ∈ I. Hence, it holds
if and only if no s ∈ S is a zero divisor in R/I, because if there exists s ∈ S
such that I ⊆ s · (r + I) = s · r + I, then s · r ∩ I 6= ∅. Since I is C-ideal then
s · r ⊆ I, hence r ∈ I and it is contradiction.
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Theorem 4.13. Let R be a commutative multiplicative hyperring with scalar
identity 1 and S be a MCS and every prime hyperideal of R is C-ideal. Then
the prime hyperideals of S−1R are in one to one correspondence with the prime
hyperideals of R which don’t meet S.

Proof. Assume that P is a prime hyperideal in S−1R, then P c is a prime
hyperideal in R. Conversely, let Q be a prime hyperideal in R. Then R

Q is a

hyperdomain. Now define φ : S−1R→ S̄−1(R
Q ) by φ(r, s) = (r+Q, s+Q). It is

clear that φ is well define and good homomorphism and onto. Also we have for
all (r, s) ∈ S−1R such that φ(r, s) = 0S̄−1( R

Q ), then (r+Q, s+Q) = (Q, s+Q).

Therefore there exists Ā ⊆ S̄ such that γ∗(A · r · s+Q) = γ∗(Q). Then there
exists

z̄1, z̄2, . . . , z̄n in
R

Q

such that

A · r · s+Q,Q ⊆
n∏

i=1

z̄i =

n∏
i=1

zi +Q,

i.e.,

A · r · s+Q ⊆
n∏

i=1

zi +Q and Q ⊆
n∏

i=1

zi +Q.

Thus Q ∩
∏n

i=1 zi 6= ∅ and (A · r · s −
∏n

i=1 zi) ∩ Q 6= ∅. Since Q is a C-
ideal, then A · r · s ⊆ Q and since S ∩ Q = ∅ and Q is prime, then r ∈ Q.

Hence ker(φ) = S−1Q, so we have S−1R
S−1Q

∼= S̄−1(R
Q ), which is either 0 or else is

contained in the hyperfield of fractions of R
Q and is then a hyperdomain and

so S−1Q is either prime or is the unit hyperideal and the latter occurs if and
only if Q meets S, by Theorem 4.11(i).
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