A Fixed Point in Partial S_{b}-Metric Spaces

Nizar Souayah

Abstract

In this paper, we introduce an interesting extention of the partial b metric spaces called partial S_{b}-metric spaces, and we show the existence of fixed point for a self mapping defined on such spaces.

1 Introduction

There exist many generalizations of the concept of metric spaces in the literature. Several papers have been published on the fixed point theory in S-metric spaces [7], [8], [9], [13], and [14]. Also, fixed point results in b-metric spaces were also studied by many authors [1], [2], [3], [4], [5] and [15].
In this work, we consider a new concept of S-metric spaces called partial $S_{b^{-}}$ metric spaces, which is an extension of the S-metric spaces, by allowing the self distance to be different from zero. We extend the results obtained by Shukla [15] in partial b-metric spaces, and we prove theorems for some contractive type mapping.

First we would like to point out three errors in the proof of Theorem 1 (on page 5) in [15]. The equation $b\left(F z, F x_{l}\right)=\lambda^{n_{0}} b\left(z, x_{l}\right)$ must be an inequality. Also, the inequality $b\left(F z, x_{l}\right) \leq s\left[b\left(F z, F x_{l}\right)+b\left(F x_{l}, x_{l}\right)\right]-b\left(x_{l}, x_{l}\right)$, should instead be written as $b\left(F z, x_{l}\right) \leq s\left[b\left(F z, F x_{l}\right)+b\left(F x_{l}, x_{l}\right)\right]-b\left(F x_{l}, F x_{l}\right)$. The author used a wrong argument to show that $\left\{x_{n}\right\}$ is Cauchy sequence by mentioning that since $x_{n} \in B\left[x_{l}, \frac{\epsilon}{2}\right]$ and $x_{m} \in B\left[x_{l}, \frac{\epsilon}{2}\right]$, then $b\left(x_{n}, x_{m}\right)<$ $\frac{\epsilon}{2}+b\left(x_{l}, x_{l}\right)$ for all $n, m>l$. We suggest using the contraction principle after

Key Words: functional analysis, partial S_{b}-metric space, fixed point.
2010 Mathematics Subject Classification: Primary 54H25, 47H10.
Received: 09.02.2016
Accepted: 16.02.2016
showing that $F z \in B\left[x_{l}, \frac{\epsilon}{2}\right]$.
Let us recall the definitions of the b-metric spaces and the partial b-metric spaces.

Definition 1.1. [2] Let X be a nonempty set. A b-metric on X is a function $d: X^{2} \rightarrow[0, \infty)$ if there exists a real number $s \geq 1$ such that the following conditions hold for all $x, y, z \in X$:
(i) $d(x, y)=0$ if and only if $x=y$
(ii) $d(x, y)=d(y, x)$
(iii) $d(x, z) \leq s[d(x, y)+d(y, z)]$.

The pair (X, d) is called a b-metric space.
Definition 1.2. [15] A partial b-metric on a nonempty set X is a function $b: X^{2} \rightarrow[0, \infty)$ such that for all $x, y, z \in X::$
(i) $x=y$ if and only if $b(x, x)=b(x, y)=b(y, y)$
(ii) $b(x, x) \leq b(x, y)$
(iii) $b(x, y)=b(y, x)$
(iv) there exists a real number $s \geq 1$ such that $b(x, y) \leq s[b(x, z)+b(z, y)]-$ $b(z, z)$.

The partial b-metric space is a pair (X, b) such that X is a nonempty set and b is a partial b-metric on X.

Definition 1.3. A partial S_{b}-metric on a empty set X is a function S_{b} : $X^{3} \longrightarrow \mathbb{R}_{+}$such that for all $x, y, z, t \in X$:
(i) $x=y=z$ if and only if $S_{b}(x, x, x)=S_{b}(y, y, y)=S_{b}(z, z, z)=S_{b}(x, y, z)$
(ii) $S_{b}(x, x, x) \leq S_{b}(x, y, z)$
(iii) $S_{b}(x, x, y)=S_{b}(y, y, x)$
(iv) there exists $s \geq 1$ such that

$$
S_{b}(x, y, z) \leq s\left[S_{b}(x, x, t)+S_{b}(y, y, t)+S_{b}(z, z, t)\right]-S_{b}(t, t, t)
$$

$\left(X, S_{b}\right)$ is then called a partial S_{b}-metric space.

Definition 1.4. Let $\left(X, S_{b}\right)$ be a partial S_{b}-metric space and $\left\{x_{n}\right\}$ be a sequence in X. Then:

1. $\left\{x_{n}\right\}$ is called convergent if and only if there exists $z \in X$ such that $S_{b}\left(x_{n}, x_{n}, z\right) \longrightarrow S_{b}(z, z, z)$ as $n \rightarrow \infty$.
2. $\left\{x_{n}\right\}$ is said to be Cauchy sequence in $\left(X, S_{b}\right)$ if $\lim _{n \rightarrow \infty} S_{b}\left(x_{n}, x_{n}, x_{m}\right)$ exists and finite.
3. $\left(X, S_{b}\right)$ is a complete partial S_{b}-metric space if for every Cauchy sequence $\left\{x_{n}\right\}$ there exists $x \in X$ such that:

$$
\lim _{n \rightarrow \infty} S_{b}\left(x_{n}, x_{n}, x_{m}\right)=\lim _{n \rightarrow \infty} S_{b}\left(x_{n}, x_{n}, x\right)=S_{b}(x, x, x)
$$

Now, we give an example of a partial S_{b}-metric space that is not a partial S-metric space.

Example 1.5. Let $X=\mathbb{R}_{+}$, and $p>1$ be a constant and $S_{b}: X \times X \times X \longrightarrow$ \mathbb{R}_{+}defined by $S_{b}(x, y, z)=[\max \{x, y\}]^{p}+|\max \{x, y\}-z|^{p}$ for all $x, y, z \in X$. Then $\left(X, S_{b}\right)$ is a partial S_{b}-metric space with coefficient $s=2 p>1$, but it is not a partial S-metric space. Indeed, for $x=5, y=2, z=1, t=4$ we have $S_{b}(x, y, z)=5^{p}+4^{p}$ and $S_{b}(x, x, t)+S_{b}(y, y, t)+S_{b}(z, z, t)-S_{b}(t, t, t)=$ $5^{p}+1+3^{p}+1+1+3^{p}-4^{p}=5^{p}+2 \times 3^{p}+3-4^{p}$, hence $S_{b}(x, y, z)>$ $S_{b}(x, x, t)+S_{b}(y, y, t)+S_{b}(z, z, t)-S_{b}(t, t, t)$ for all $p>1$; therefore, S_{b} is not a partial S-metric on X.

2 Main result

Theorem 2.1. Let $\left(X, S_{b}\right)$ be a complete partial S_{b}-metric space with coefficient $s \geq 1$ and $T: X \longrightarrow X$ be a mapping satisfying the following condition:

$$
\begin{equation*}
S_{b}(T x, T y, T z) \leq \lambda S_{b}(x, y, z) \quad \forall x, y, z \in X, \quad \lambda \in[0,1) \tag{2.1}
\end{equation*}
$$

Then, T has a unique fixed point $u \in X$ and $S_{b}(u, u, u)=0$.

Proof. Let's start by proving the uniqueness of the fixed point. Let $u, v \in X$ be two distinct fixed point of T, that is, $T u=u$ and $T v=v$. We have

$$
S_{b}(u, u, v)=S_{b}(T u, T u, T v) \leq \lambda S_{b}(u, u, v)<S_{b}(u, u, v)
$$

So, we must have $S_{b}(u, u, v)=0 \Longrightarrow u=v$. Therefore, if T has a fixed point, then it is unique.

Let prove that $S_{b}(u, u, u)=0$.
Suppose that $S_{b}(u, u, u)>0$. From equation (2.1),

$$
S_{b}(u, u, u)=S_{b}(T u, T u, T u) \leq \lambda S_{b}(u, u, u)<S_{b}(u, u, u)
$$

which leads to a contradiction, then $S_{b}(u, u, u)=0$.
For the existence of fixed point, since $\lambda \in[0,1)$, we can choose $n_{0} \in \mathbb{N}$ such that for given $0<\epsilon<1$, we have

$$
\begin{equation*}
\lambda^{n_{0}}<\frac{\epsilon}{8 s} \tag{2.2}
\end{equation*}
$$

Let $T^{n_{0}} \equiv F$ and $F x_{0}^{k}=x_{k} \forall k \in \mathbb{N}$, where $x_{0} \in X$ is arbitrary. Then, $\forall x, y \in X$ we have

$$
S_{b}(F x, F y, F z)=S_{b}\left(T^{n_{0}} x, T^{n_{0}} y, T^{n_{0}} z\right) \leq \lambda^{n_{0}} S_{b}(x, y, z)
$$

For any $k \in \mathbb{N}$, we have

$$
\begin{aligned}
S_{b}\left(x_{k+1}, x_{k+1}, x_{k}\right)=S_{b}\left(F x_{k}, F x_{k},\right. & \left.F x_{k-1}\right) \leq \lambda^{n_{0}} S_{b}\left(x_{k}, x_{k}, x_{k-1}\right) \\
& \leq \lambda^{n_{0}} k S_{b}\left(x_{1}, x_{1}, x_{0}\right) \longrightarrow 0 \text { as } k \rightarrow+\infty
\end{aligned}
$$

Therefore, we can choose $l \in \mathbb{N}$ such that $S_{b}\left(x_{l+1}, x_{l+1}, x_{l}\right)<\frac{\epsilon}{8 s} .(*)$
Let's define the ball

$$
\begin{equation*}
B_{b}\left(x_{l}, \frac{\epsilon}{2}\right):=\left\{y \in X / S_{b}\left(x_{l}, x_{l}, y\right)<\frac{\epsilon}{2}+S_{b}\left(x_{l}, x_{l}, x_{l}\right)\right\} \tag{2.3}
\end{equation*}
$$

Now, we shall show that F maps $B_{b}\left(x_{l}, \frac{\epsilon}{2}\right)$ into itself.
We have $B_{b}\left(x_{l}, \frac{\epsilon}{2}\right) \neq \emptyset$ since $x_{l} \in B_{b}\left(x_{l}, \frac{\epsilon}{2}\right)$. Let $x_{z} \in B_{b}\left(x_{l}, \frac{\epsilon}{2}\right)$, then

$$
\begin{align*}
S_{b}\left(F x_{z}, F x_{z}, F x_{l}\right) & \leq \lambda^{n_{0}} S_{b}\left(x_{z}, x_{z}, x_{l}\right) \\
& \leq \frac{\epsilon}{8 s} S_{b}\left(x_{z}, x_{z}, x_{l}\right) \\
& \leq \frac{\epsilon}{8 s}\left[\frac{\epsilon}{2}+S_{b}\left(x_{l}, x_{l}, x_{l}\right)\right] \\
& \leq \frac{\epsilon}{8 s}\left[1+S_{b}\left(x_{l}, x_{l}, x_{l}\right)\right] \tag{2.4}
\end{align*}
$$

Using the definition of the partial S_{b}-metric space, we obtain

$$
\begin{aligned}
S_{b}\left(F x_{z}, F x_{l}, F x_{l}\right) \leq & s\left[S_{b}\left(F x_{z}, F x_{z}, F x_{l}\right)+S_{b}\left(F x_{l}, F x_{l}, F x_{l}\right)+S_{b}\left(F x_{l}, F x_{l}, F x_{l}\right)\right] \\
& -S_{b}\left(F x_{l}, F x_{l}, F x_{l}\right) \\
& \leq s\left[\frac{\epsilon}{8 s}\left(1+S_{b}\left(x_{l}, x_{l}, x_{l}\right)\right)+2 S_{b}\left(x_{l}, x_{l}, F x_{l}\right)\right] \\
& \leq s\left[\frac{\epsilon}{8 s}\left(1+S_{b}\left(x_{l}, x_{l}, x_{l}\right)\right)+2 S_{b}\left(x_{l}, x_{l}, x_{l+1}\right)\right] \\
& \leq s\left[\frac{\epsilon}{8 s}\left(1+S_{b}\left(x_{l}, x_{l}, x_{l}\right)\right)+2 \frac{\epsilon}{8 s}\right] \\
& \leq \frac{\epsilon}{8}+\frac{\epsilon}{8} S_{b}\left(x_{l}, x_{l}, x_{l}\right)+\frac{\epsilon}{4} \\
& \leq \frac{3 \epsilon}{8}+\frac{\epsilon}{8} S_{b}\left(x_{l}, x_{l}, x_{l}\right) \\
& \leq \frac{\epsilon}{2}+S_{b}\left(x_{l}, x_{l}, x_{l}\right)
\end{aligned}
$$

Then, $F x_{z} \in B_{b}\left(x_{l}, \frac{\epsilon}{2}\right)$. Thus F maps $B_{b}\left(x_{l}, \frac{\epsilon}{2}\right)$ to itself.
We note that $x_{l} \in B_{b}\left(x_{l}, \frac{\epsilon}{2}\right)$, therefore $F x_{l} \in B_{b}\left(x_{l}, \frac{\epsilon}{2}\right)$. By repeating this process, we obtain $F^{n} x_{l} \in B_{b}\left(x_{l}, \frac{\epsilon}{2}\right) \forall n \in \mathbb{N}$, that is $x_{m} \in B_{b}\left(x_{l}, \frac{\epsilon}{2}\right) \forall m \geq l$. Therefore, we obtain for all $m>n \geq l$; let $n=l+i \Longrightarrow i=n-l$

$$
\begin{aligned}
S_{b}\left(x_{n}, x_{n}, x_{m}\right) & =S_{b}\left(T x_{n-1}, T x_{n-1}, T x_{m-1}\right) \\
& \leq \lambda S_{b}\left(x_{n-1}, x_{n-1}, x_{m-1}\right) \\
& \leq \lambda^{2} S_{b}\left(x_{n-2}, x_{n-2}, x_{m-2}\right) \\
& \vdots \\
& \leq \lambda^{i} S_{b}\left(x_{l}, x_{l}, x_{m-l}\right) \\
& <S_{b}\left(x_{l}, x_{l}, x_{m-l}\right) \\
& <\frac{\epsilon}{2}+S_{b}\left(x_{l}, x_{l}, x_{l}\right) .
\end{aligned}
$$

But, $S_{b}\left(x_{l}, x_{l}, x_{l}\right)<S_{b}\left(x_{l}, x_{l}, x_{l+1}\right)<\frac{\epsilon}{8 s}$.
Hence,

$$
S_{b}\left(x_{n}, x_{n}, x_{m}\right)<\frac{\epsilon}{2}+\frac{\epsilon}{8 s}<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
$$

Thus, $\left\{x_{n}\right\}$ is a Cauchy sequence.
Since X is a complete partial S_{b}-metric sapce, there exists $u \in X$ such that:

$$
\lim _{n \rightarrow \infty} S_{b}\left(x_{n}, x_{n}, u\right)=\lim _{n \rightarrow \infty} S_{b}\left(x_{n}, x_{n}, x_{m}\right)=S_{b}(u, u, u)=0
$$

Let's prove that u is a fixed point of T. For all $n \in \mathbb{N}$, we have

$$
\begin{aligned}
S_{b}(u, u, T u) \leq & s\left[S_{b}\left(u, u, x_{n+1}\right)+S_{b}\left(u, u, x_{n+1}\right)+S_{b}\left(T u, T u, x_{n+1}\right)\right] \\
& -S_{b}\left(x_{n+1}, x_{n+1}, x_{n+1}\right) \\
\leq & s\left[2 S_{b}\left(u, u, x_{n+1}\right)+S_{b}\left(T u, T u, T x_{n}\right)\right] \\
\leq & s\left[2 S_{b}\left(u, u, x_{n+1}\right)+S_{b}\left(T u, T u, T x_{n}\right)\right] \\
\leq & s\left[2 S_{b}\left(u, u, x_{n+1}\right)+\lambda S_{b}\left(u, u, x_{n}\right)\right] \\
\leq & \left(2 s S_{b}\left(u, u, x_{n+1}\right)+s \lambda S_{b}\left(u, u, x_{n}\right)\right) \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Thus, $S_{b}(u, u, T u)=0$, that is $T u=u$. Hence, u is a unique fixed point of T.

Theorem 2.2. Let $\left(X, S_{b}\right)$ be a complete partial S_{b}-metric space with coefficient $s \geq 1$ and $T: X \longrightarrow X$ be a mapping satisfying the following condition:

$$
\begin{equation*}
S_{b}(T x, T y, T z) \leq \lambda\left[S_{b}(x, x, T x)+S_{b}(y, y, T y)+S_{b}(z, z, T z)\right] \quad \forall x, y, z \in X \tag{2.5}
\end{equation*}
$$

where $\lambda \in\left[0, \frac{1}{3}\right), \lambda \neq \frac{1}{3 s}$ Then, T has a unique fixed point $u \in X$ and $S_{b}(u, u, u)=0$.

Proof. We first prove the uniqueness of the fixed point of T if it has. We must show that, if $u \in X$ is a fixed point of T, that is $T u=u$ then $S_{b}(u, u, u)=0$.
From(2.5), we obtain

$$
\begin{aligned}
S_{b}(u, u, u)=S_{b}(T u, T u, T u) & \leq \lambda\left[S_{b}(u, u, T u)+S_{b}(u, u, T u)+S_{b}(u, u, T u)\right] \\
& =3 \lambda S_{b}(u, u, T u) \text { since } \lambda \in\left[0, \frac{1}{3}\right), \text { we have } \\
& <S_{b}(u, u, u),
\end{aligned}
$$

which implies that we must have $S_{b}(u, u, u)=0$
Suppose $u, v \in X$ be two fixed point, that is $T u=u$ and $T v=v$. Then we have $S_{b}(u, u, u)=S_{b}(v, v, v)=0$.
Equation (2.5) gives

$$
\begin{aligned}
S_{b}(u, u, v) & =S_{b}(T u, T u, T v) \\
& \leq \lambda\left[S_{b}(u, u, T u)+S_{b}(u, u, T u)+S_{b}(v, v, T v)\right] \\
& =2 \lambda S_{b}(u, u, u)+\lambda S_{b}(v, v, v) \\
& =0
\end{aligned}
$$

Therefore, $u=v$. Thereby, the uniqueness of the fixed point if it exists.

For the existence of the fixed point, let $x_{0} \in X$ arbitrary, set $x_{n}=T^{n} x_{0}$ and $S_{b_{n}}=S\left(x_{n}, x_{n}, x_{n+1}\right)$.
We can assume $S_{b_{n}}>0$ for all $n \in \mathbb{N}$ otherwise x_{n} is a fixed point of T for at least one $n \geq 0$. For all n, we obtain from (2.5)

$$
\begin{aligned}
S_{b_{n}} & =S_{b}\left(x_{n}, x_{n}, x_{n+1}\right)=S_{b}\left(T x_{n-1}, T x_{n-1}, T x_{n}\right) \\
& \leq \lambda\left[2 S_{b}\left(x_{n-1}, x_{n-1}, T x_{n-1}\right)+S_{b}\left(x_{n}, x_{n}, T x_{n}\right)\right] \\
& =\lambda\left[2 S_{b}\left(x_{n-1}, x_{n-1}, x_{n}\right)+S_{b}\left(x_{n}, x_{n}, x_{n+1}\right)\right] \\
& =\lambda\left[2 S_{b_{n-1}}+S_{b_{n}}\right] .
\end{aligned}
$$

Therefore $(1-\lambda) S_{b_{n}} \leq 2 \lambda S_{b_{n-1}}$. Thus

$$
\begin{equation*}
S_{b_{n}} \leq \frac{2 \lambda}{1-\lambda} S_{b_{n-1}}, \quad \lambda \in\left[0, \frac{1}{3}\right) \tag{2.6}
\end{equation*}
$$

Let $\beta=\frac{2 \lambda}{1-\lambda}<1$. By repeating this process we obtain

$$
S_{b_{n}} \leq \beta^{n} b_{0}
$$

Therefore, $\lim _{n \rightarrow \infty} S_{b_{n}}=0$. Let prove that $\left\{x_{n}\right\}$ is a Cauchy sequence. It follows from (2.5) that for $n, m \in \mathbb{N}$:

$$
\begin{aligned}
S_{b}\left(x_{n}, x_{n}, x_{m}\right) & =S_{b}\left(T^{n} x_{0}, T^{n} x_{0}, T^{m} x_{0}\right) \\
& =S_{b}\left(T x_{n-1}, T x_{n-1}, T x_{m-1}\right) \\
& \leq \lambda\left[2 S_{b}\left(x_{n-1}, x_{n-1}, T x_{n-1}\right)+S_{b}\left(x_{m-1}, x_{m-1}, T x_{m-1}\right)\right] \\
& =\lambda\left[2 S_{b}\left(x_{n-1}, x_{n-1}, x_{n}\right)+S_{b}\left(x_{m-1}, x_{m-1}, x_{m}\right)\right] \\
& =\lambda\left[2 S_{b_{n-1}}+S_{b_{m-1}}\right] .
\end{aligned}
$$

So, for every $\epsilon>0$, as $\lim _{n \rightarrow \infty} S_{b_{n}}=0$, we can find $n_{0} \in \mathbb{N}$ such that $S_{b_{n-1}}<\frac{\epsilon}{4}$ and $S_{b_{m-1}}<\frac{\epsilon}{2}$ for all $n, m>n_{0}$. Then, we obtain $2 S_{b_{n-1}}+S_{b_{m-1}} \leq 2 \frac{\epsilon}{4}+\frac{\epsilon}{2}=$ ϵ.

As $\lambda<1$ it follows that $S_{b}\left(x_{n}, x_{n}, x_{m}\right)<\epsilon \forall n, m>n_{0}$.
Thus, $\left\{x_{n}\right\}$ is a Cauchy sequence in X and $\lim _{n \rightarrow \infty} S_{b}\left(x_{n}, x_{n}, x_{m}\right)=0$.
By completeness of X, there exists $u \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S_{b}\left(x_{n}, x_{n}, u\right)=\lim _{n, m \rightarrow \infty} S_{b}\left(x_{n}, x_{n}, u\right)=S_{b}(u, u, u)=0 \tag{2.7}
\end{equation*}
$$

Now, we shall prove that $T u=u$. For any $n \in \mathbb{N}$

$$
\begin{aligned}
S_{b}(u, u, T u) & \leq s\left[2 S_{b}\left(u, u, x_{n+1}\right)+S_{b}\left(T u, T u, x_{n+1}\right)\right]-S_{b}\left(x_{n+1}, x_{n+1}, x_{n+1}\right) \\
& \leq s\left[2 S_{b}\left(u, u, x_{n+1}\right)+S_{b}\left(T u, T u, T x_{n}\right)\right] \\
& \leq s\left[2 S_{b}\left(u, u, x_{n+1}\right)+\lambda\left[2 S_{b}(u, u, T u)+S_{b}\left(x_{n}, x_{n}, T x_{n}\right)\right]\right.
\end{aligned}
$$

Therefore, $(1-2 s \lambda) S_{b}(u, u, T u) \leq 2 s S_{b}\left(u, u, x_{n+1}\right)+s \lambda S_{b}\left(x_{n}, x_{n}, T x_{n}\right)$ giving

$$
S_{b}(u, u, T u) \leq \frac{2 s}{1-2 s \lambda} S_{b}\left(u, u, x_{n+1}\right)+\frac{s \lambda}{1-2 s \lambda} S_{b}\left(x_{n}, x_{n}, T x_{n}\right)
$$

Since $S_{b}\left(x_{n}, x_{n}, T x_{n}\right) \longrightarrow S_{b}(u, u, T u), n \longrightarrow \infty$, we obtain

$$
\begin{aligned}
S_{b}(u, u, T u) & \leq \frac{2 s}{1-2 s \lambda} S_{b}\left(u, u, x_{n+1}\right)+\frac{s \lambda}{1-2 s \lambda} S_{b}(u, u, T u) \\
\left(1-\frac{s \lambda}{1-2 s \lambda}\right) S_{b}(u, u, T u) & \leq \frac{2 s}{1-2 s \lambda} S_{b}\left(u, u, x_{n+1}\right) \\
S_{b}(u, u, T u) & \leq \frac{2 s}{1-3 s \lambda} S_{b}\left(u, u, x_{n+1}\right)
\end{aligned}
$$

As $\lambda \neq \frac{1}{3 s}$ and from (2.7), we obtain $S_{b}(u, u, T u)=0$ and then $T u=u$.
Theorem 2.3. Let $\left(X, S_{b}\right)$ be a complete partial S_{b}-metric space with coefficient $s>1$ and $T: X \longrightarrow X$ be a mapping satisfying the following condition:
$S_{b}(T x, T y, T z) \leq \lambda \max \left[S_{b}(x, y, z), S_{b}(x, x, T x), S_{b}(y, y, T y), S_{b}(z, z, T z)\right] \forall x, y, z \in X$.
where $\lambda \in\left[0, \frac{1}{2 s}\right)$. Then, T has a unique fixed point $u \in X$ and $S_{b}(u, u, u)=0$.

Proof. Let us prove that if a fixed point of T exists, then it is unique. Let $u, v \in X$ be two fixed points of $T, u \neq v$, that is $T u=u$ and $T v=v$. It follows from (2.8):

$$
\begin{aligned}
S_{b}(u, u, v)= & S_{b}(T u, T u, T v) \leq \lambda \max \left[S_{b}(u, u, v), S_{b}(u, u, T u), S_{b}(u, u, T u), S_{b}(v, v, T v)\right] \\
& =\lambda \max \left[S_{b}(u, u, v), S_{b}(u, u, u), S_{b}(v, v, v)\right] \\
& =\lambda S_{b}(u, u, v) \\
& <S_{b}(u, u, v) \text { since } \lambda<1
\end{aligned}
$$

We obtain $S_{b}(u, u, v)<S_{b}(u, u, v)$ which gives $S_{b}(u, u, v)=0$, then $u=v$. Therefore, if a fixed point of T exists, then it is unique.

Let $x_{0} \in X$ and define a sequence $\left\{x_{n}\right\}$ by $x_{n+1}=T x_{n} \forall n \geq 0$. For any n, we obtain from (2.8)

$$
\begin{aligned}
& S_{b}\left(x_{n+1}, x_{n+1}, x_{n}\right)=S_{b}\left(T x_{n}, T x_{n}, T x_{n-1}\right) \\
& \quad \leq \lambda \max \left[S_{b}\left(x_{n}, x_{n}, x_{n-1}\right), S_{b}\left(x_{n}, x_{n}, T x_{n}\right), S_{b}\left(x_{n}, x_{n}, T x_{n}\right), S_{b}\left(x_{n-1}, x_{n-1}, T x_{n-1}\right)\right] \\
& \quad=\lambda \max \left[S_{b}\left(x_{n}, x_{n}, x_{n-1}\right), S_{b}\left(x_{n}, x_{n}, T x_{n}\right), S_{b}\left(x_{n-1}, x_{n-1}, T x_{n-1}\right)\right] .
\end{aligned}
$$

Since $S_{b}\left(x_{n-1}, x_{n-1}, T x_{n-1}\right)=S_{b}\left(x_{n-1}, x_{n-1}, x_{n}\right)$ and by symmetry we have $S_{b}\left(x_{n-1}, x_{n-1}, x_{n}\right)=S_{b}\left(x_{n}, x_{n}, x_{n-1}\right)$, thus

$$
S_{b}\left(x_{n+1}, x_{n+1}, x_{n}\right) \leq \lambda \max \left[S_{b}\left(x_{n}, x_{n}, x_{n-1}\right), S_{b}\left(x_{n}, x_{n}, x_{n+1}\right)\right]
$$

If $\max \left[S_{b}\left(x_{n}, x_{n}, x_{n-1}\right), S_{b}\left(x_{n}, x_{n}, x_{n+1}\right)\right]=S_{b}\left(x_{n}, x_{n}, x_{n+1}\right)$, then we obtain

$$
\begin{aligned}
S_{b}\left(x_{n+1}, x_{n+1}, x_{n}\right) & \leq \lambda S_{b}\left(x_{n}, x_{n}, x_{n+1}\right) \\
& =\lambda S_{b}\left(x_{n+1}, x_{n+1}, x_{n}\right) \\
& <S_{b}\left(x_{n+1}, x_{n+1}, x_{n}\right) \text { absurd. }
\end{aligned}
$$

Therefore, $\max \left[S_{b}\left(x_{n}, x_{n}, x_{n-1}\right), S_{b}\left(x_{n}, x_{n}, x_{n+1}\right)\right]=S_{b}\left(x_{n}, x_{n}, x_{n-1}\right)$ and

$$
\begin{equation*}
S_{b}\left(x_{n+1}, x_{n+1}, x_{n}\right) \leq \lambda S_{b}\left(x_{n}, x_{n}, x_{n-1}\right) \tag{2.9}
\end{equation*}
$$

that is

$$
\begin{equation*}
S_{b}\left(T x_{n}, T x_{n}, T x_{n-1}\right) \leq \lambda S_{b}\left(x_{n}, x_{n}, x_{n-1}\right) \tag{2.10}
\end{equation*}
$$

By repeating this process, we obtain

$$
\begin{equation*}
S_{b}\left(x_{n+1}, x_{n+1}, x_{n}\right) \leq \lambda^{n} S_{b}\left(x_{1}, x_{1}, x_{0}\right) \tag{2.11}
\end{equation*}
$$

For $n, m \in \mathbb{N}, m>n$, we obtain

$$
\begin{aligned}
& S_{b}\left(x_{n}, x_{n}, x_{m}\right) \leq s\left[S_{b}\left(x_{n}, x_{n}, x_{n+1}\right)+S_{b}\left(x_{n}, x_{n}, x_{n+1}\right)+S_{b}\left(x_{m}, x_{m}, x_{n+1}\right)\right] \\
& \quad-S_{b}\left(x_{n+1}, x_{n+1}, x_{n+1}\right) \\
& \quad \leq 2 s S_{b}\left(x_{n}, x_{n}, x_{n+1}\right)+s S_{b}\left(x_{m}, x_{m}, x_{n+1}\right) \\
& \quad \leq 2 s S_{b}\left(x_{n}, x_{n}, x_{n+1}\right)+s\left[s \left(S_{b}\left(x_{m}, x_{m}, x_{n+2}\right)+S_{b}\left(x_{m}, x_{m}, x_{n+2}\right)\right.\right. \\
& \left.\left.\quad+S_{b}\left(x_{n+1}, x_{n+1}, x_{n+2}\right)\right)-S_{b}\left(x_{n+2}, x_{n+2}, x_{n+2}\right)\right] \\
& \quad \leq 2 s S_{b}\left(x_{n}, x_{n}, x_{n+1}\right)+s\left[s\left(2 S_{b}\left(x_{m}, x_{m}, x_{n+2}\right)+S_{b}\left(x_{n+1}, x_{n+1}, x_{n+2}\right)\right)\right] \\
& \quad \leq 2 s S_{b}\left(x_{n}, x_{n}, x_{n+1}\right)+s^{2} S_{b}\left(x_{n+1}, x_{n+1}, x_{n+2}\right)+2 s^{2} S_{b}\left(x_{m}, x_{m}, x_{n+2}\right) \\
& \quad \leq 2 s S_{b}\left(x_{n}, x_{n}, x_{n+1}\right)+s^{2} S_{b}\left(x_{n+1}, x_{n+1}, x_{n+2}\right)+2 s^{2}\left[s \left(2 S_{b}\left(x_{m}, x_{m}, x_{n+3}\right)+\right.\right. \\
& \left.\left.\quad+S_{b}\left(x_{n+2}, x_{n+2}, x_{n+3}\right)\right)\right] \\
& \quad \leq 2 s S_{b}\left(x_{n}, x_{n}, x_{n+1}\right)+s^{2} S_{b}\left(x_{n+1}, x_{n+1}, x_{n+2}\right)+2 s^{3} S_{b}\left(x_{n+2}, x_{n+2}, x_{n+3}\right) \\
& \quad+2^{2} s^{3} S_{b}\left(x_{m}, x_{m}, x_{n+3}\right) \\
& \quad \leq 2 s S_{b}\left(x_{n}, x_{n}, x_{n+1}\right)+s^{2} S_{b}\left(x_{n+1}, x_{n+1}, x_{n+2}\right)+\ldots+ \\
& \quad+2^{m-n-2} s^{m-n} S_{b}\left(x_{m}, x_{m}, x_{m-1}\right) . \\
& \quad=2 s S_{b}\left(x_{n+1}, x_{n+1}, x_{n}\right)+s^{2} S_{b}\left(x_{n+2}, x_{n+2}, x_{n+1}\right)+\ldots+ \\
& \quad+2^{m-n-2} s^{m-n} S_{b}\left(x_{m}, x_{m}, x_{m-1}\right) .
\end{aligned}
$$

Now, using (2.11), we obtain

$$
\begin{aligned}
& S_{b}\left(x_{n}, x_{n}, x_{m}\right) \\
& \leq 2 s \lambda^{n} S_{b}\left(x_{1}, x_{1}, x_{0}\right)+s^{2} \lambda^{n+1} S_{b}\left(x_{1}, x_{1}, x_{0}\right)+2 s^{3} \lambda^{n+2} S_{b}\left(x_{1}, x_{1}, x_{0}\right)+\ldots+ \\
& +2^{m-n-2} s^{m-n} \lambda^{m-1} S_{b}\left(x_{1}, x_{1}, x_{0}\right) \\
& \leq s \lambda^{n}\left[2+s \lambda+2 s^{2} \lambda^{2}+2 s^{3} \lambda^{3}+\ldots+2^{m-n-2} s^{m-n-1} \lambda^{m-n-1}\right] S_{b}\left(x_{1}, x_{1}, x_{0}\right) \\
& \leq 2 s \lambda^{n}\left[1+\frac{1}{2} s \lambda+s^{2} \lambda^{2}+s^{3} \lambda^{3}+\ldots+2^{m-n-3} s^{m-n-1} \lambda^{m-n-1}\right] S_{b}\left(x_{1}, x_{1}, x_{0}\right) \\
& <2 s \lambda^{n}\left[1+2 s \lambda+(2 s \lambda)^{2}+(2 s \lambda)^{3}+\ldots+(2 s \lambda)^{m-n-1}\right] S_{b}\left(x_{1}, x_{1}, x_{0}\right) \\
& \leq 2 s \lambda^{n} \frac{1-(2 s \lambda)^{m-n}}{1-2 s \lambda} S_{b}\left(x_{1}, x_{1}, x_{0}\right) \\
& <2 s \lambda^{n} \frac{1}{1-2 s \lambda} S_{b}\left(x_{1}, x_{1}, x_{0}\right) \longrightarrow 0 \text { as } n \longrightarrow \infty .
\end{aligned}
$$

Hence, $\lim _{n \longrightarrow \infty} S_{b}\left(x_{n}, x_{n}, x_{m}\right)=0$.
Thus, $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Since X is a complete partial metric
space, then there exists $u \in X$ such that

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} S_{b}\left(x_{n}, x_{n}, u\right)=\lim _{n \longrightarrow \infty} S_{b}\left(x_{n}, x_{n}, x_{m}\right)=S_{b}(u, u, u)=0 . \tag{2.12}
\end{equation*}
$$

Let's prove that u is a fixed point of $T . \forall n \in \mathbb{N}$, we have

$$
\begin{aligned}
S_{b}(u, u, T u) & \leq s\left[2 S_{b}\left(u, u, x_{n+1}\right)+S_{b}\left(T u, T u, x_{n+1}\right)\right]-S_{b}\left(x_{n+1}, x_{n+1}, x_{n+1}\right) \\
& \leq s\left[2 S_{b}\left(u, u, x_{n+1}\right)+S_{b}\left(T u, T u, T x_{n}\right)\right]
\end{aligned}
$$

Using (2.10), we obtain $S_{b}\left(T u, T u, T x_{n}\right) \leq \lambda S_{b}\left(u, u, x_{n}\right)$, then

$$
\begin{aligned}
S_{b}(u, u, T u) & \leq 2 s S_{b}\left(u, u, x_{n+1}\right)+s \lambda S_{b}\left(u, u, x_{n}\right) \\
& =2 s S_{b}\left(x_{n+1}, x_{n+1}, u\right)+s \lambda S_{b}\left(x_{n}, x_{n}, u\right) .
\end{aligned}
$$

Using (2.12) in the above inequality, we obtain $S_{b}(u, u, T u)=0$, then $T u=u$. Therefore, u is a fixed point of T and it is unique.

Acknowledgement. This project was supported by King Saud University, Deanship of Scientific Research, Community College Research Unit.

References

[1] T. Abeljawad, K. Abodayeh, N. Mlaiki, On fixed point generalizations to partial b-metric spaces, Journal of Computational Analysis \& Applications 19 (2015), 883-891.
[2] I.A. Bakhtin, The contraction principle in quasimetric spaces, Func. An., Ulianowsk, Gos. Ped. Ins. 30 (1989), 26-37.
[3] M. Bota, A. Molnar, C. Varga, On Ekeland's variational principle in bmetric spaces, Fixed Point Theory 12 (2011), 21-28.
[4] S. Czerwik, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis 1 (1993), 5-11.
[5] M. Kir, H. Kiziltunc, On Some Well Known Fixed Point Theorems in bMetric Spaces, Turkish Journal of Analysis and Number Theory 1 (2013), 13-16.
[6] C. Li, R.P. Agarwal, C.-L. Tang, Infinitely many periodic solutions for ordinary p-Laplacian systems, Adv. Nonlinear Anal. 4 (2015), 251-261.
[7] N. Mlaiki, $\alpha-\psi$-Contractive Mapping on S-Metric Space, Mathematical Sciences Letters 4 (2015), 9-12.
[8] N. Mlaiki, Common fixed points in complex S-metric space, Advances in Fixed Point Theory 4 (2014), 509-524.
[9] N. Mlaiki, A contraction principle in partial S-metric space, Universal Journal of Mathematics and Mathematical Sciences 5 (2014), 109-119.
[10] R. Precup, Nash-type equilibria and periodic solutions to nonvariational systems, Adv. Nonlinear Anal. 3 (2014), no. 4, 197-207.
[11] D. Repovš, A two-parameter control for contractive-like multivalued mappings. Topology Appl. 159 (2012), no. 7, 18991905.
[12] D. Repovš, P.V. Semenov, Continuous Selections of Multivalued Mappings, Mathematics and its Applications, Vol. 455, Kluwer Academic Publishers, Dordrecht, 1998.
[13] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik. 64 (2012), 258-266.
[14] S. Sedghi, N. Shobe, A Common unique random fixed point theorems in S-metric spaces, Journal of Prime Research in Mathematics 7 (2011), 25-34.
[15] S. Shukla, Partial b-Metric Spaces and Fixed Point Theorems, Mediterranean Journal of Mathematics 11 (2014), 703-711.

Nizar Souayah
Department of Natural Sciences, Community College of Riyadh,
King Saud University, Riyadh, Saudi Arabia
E-mail: nizar.souayah@yahoo.fr

