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Abstract

Let Ω be a bounded domain in R4 with smooth boundary, and let
x1, x2, · · · , xm be points in Ω. We are concerned with the singular sta-
tionary non-homogenous q-Kuramoto-Sivashinsky eaquation (q-KSE):

∆2u− γ∆u− λ|∇u|q = ρ4eu

where we use some nonlinear domain decomposition method to give a
sufficient condition to have a positive weak solution u in Ω under the
physical Dirichlet-like boundary conditions u = ∆u = 0 on ∂Ω, which
is singular at each xi as the parameters λ, γ and ρ tend to 0 and where
q ∈ [1, 4] is a real number.
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1 Introduction and statement of the results

A fundamental goal in the study of non-linear initial boundary value problems
involving partial differential equations is to determine whether solutions to a
given equation develop a singularity. Resolving the issue of blow-up is impor-
tant, in part because it can have bearing on the physical relevance and validity
of the underlying model. However, determining the answer to this question is
notoriously difficult for a wide range of equations such fourth order equation
like stationary non homogenous general Kuramoto-Sivashinsky equation with
strong nonlinearity like exponential eu:

∆2u− γ∆u− λ|∇u|q = ρ4eu.

One route is to try to simplify or modify the boundary conditions in an at-
tempt to gain evidence for or against the occurrence of blow-up. A second
route is to modify the equations in some way, and to study the modified equa-
tions with the hope of gaining insight into the blow-up of solutions to the
original equations: see problems (3)-(11) below and the effect of the presence
of the second-order backward diffusion term −γ∆u and the nonlinear term
−λ|∇u|q in (3). The occurrence and type of blow-up depends on the param-
eters λ, γ and the domain. Studying this type of equations, we will answer
for different basic questions. We concentrate next on the analysis of the main
questions raised in the study of blow-up for such equations. This list can be
suitably adapted to other singularity formation problems. We will examine
several case related to such approaches where basic list includes the questions
of, where and how. We propose here an expanded list of three items: (i) Does
blow-up occur? (ii) Where? (iii) How? For the first question, the blow-up
problem is properly formulated only when a suitable class of solutions is cho-
sen for all solutions in the given class or only for some solutions (which should
be identified) or other kinds of generalized solutions can be more natural to
a given problem and which equations and problems do exhibit blow-up. The
second question is where finite number of points, or regional blow-up, are lo-
calized? For the third question, we are only interested on calculate the rate
at which solution diverges as x approaches to the set of blow-up point and to
calculate the blow-up profiles as limits of solution at the non-blowing points.
A major aim of the present work is to provide examples which demonstrate
that one must be extremely cautious in generalizing claims about the blow-up
of problems studied in idealized settings to claims about the blow-up of the
original problem and to the nonlinearity of a problem which can cause the for-
mation of a singularity, where no such singularity is present in the unaltered
equation. However, many such studies have tried to search for singularities
of the solutions of the equations in the setting of different types of boundary
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conditions like periodic boundary conditions related to the solution of gen-
eral Kuramoto-Sivashinsky equation. The question of blow up of solutions of
stationary general Kuramoto-Sivashinsky equation is still an open question in
dimensions fourth and in higher cases.

First, we introduce a model arising in the growth of amorphous surfaces
which is described by the following partial differential equation, called in the
literature the Kuramoto-Sivashinsky equation:

∂tu+ ∆2u− γ∆u− λ|∇u|2 = 0. (1)

on Rd with d ≥ 1, where λ and γ be real parameters. The Kuramoto-
Sivashinsky equation has been independently discovered by Kuramoto and
Tsuzuki [13], and by Sivashinsky [24] in the study of a reaction-diffusion sys-
tem and flame front propagation, respectively, as well as in the study of 2D
Kolmogorov fluid flows [25]. This form of the Kuramoto-Sivashinsky equations
is sometimes called the integrated version of the Kuramoto-Sivashinsky equa-
tions, arises also in several other models for surface growth. This type of ver-
sion equation is suggested in [17], [18] (and some reference therein...) as a phe-
nomenological model for the growth of an amorphous surface (Zr65Al7,5, Cu27,5).

One can also consider a generalization of (1), called in the literature the
hyper-viscous Hamilton Jacobian:

∂tu+ ∆2u− γ∆u− λ|∇u|q = 0 (2)

on the whole Rd, d ≥ 1, where λ and γ be real parameters. This equation
for q > 2 and (γ, λ) = (1, 1

2 ) was considered in [5], where it was shown that
when q > 2, under the boundary conditions u = ∆u = 0 on ∂Ω, a singularity
develops in finite-time, provided that the initial data is sufficiently large in a
certain sense. (In fact, in [5], the authors proved an even stronger result, as
they did not need the destabilizing term ∆u.)

The global regularity for the higher dimensional stationary Kuramoto-
Sivashinsky equations is a remarkable open question in nonlinear analysis.
Inspired by this question, we introduce in this paper a family of stationary
hyper-viscous Hamilton-Jacobi-like equations parameterized by the exponent
in the nonlinear term, q, called in the literature by the general non homogenous
stationary Kuramoto-Sivashinsky equation:

∆2u− γ∆u− λ|∇u|q = f(u)

in Ω ⊂ R4 under the physical Dirichlet-like boundary conditions u = ∆u = 0
on ∂Ω and certain nonlinearity f(u). We refer the reader to [8] where the
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author give some explicit estimates for the L∞-norm of the periodic solutions
of the time-independent non-homogeneous Kuramoto-Sivashinsky equation in
R in case q = 1. In particular, they give an estimate of the Michelson’s
upper bound of all periodic solutions of the time-independent homogeneous
Kuramoto-Sivashinsky equation.

One of the purpose of the present paper is to present a rather efficient
method to solve such singularly perturbed problems of the time-independent
general Kuramoto-Sivashinsky equation. This method has already been used
successfully in geometric context(constant mean curvature surfaces, constant
scalar curvature metrics, extremal Kähler metrics, manifolds with special
holonomy, . . . ) the first time has appeared in the context of partial differ-
ential equations is given in [1]. We felt that, given the interest in singular
perturbation problems, it is worth illustrating this on the non-Homogenous
stationary q-Kuramoto-Sivashinsky equation: ∆2u− γ∆u− λ|∇u|q = f(u) in
Ω ⊂ R4 under the physical Dirichlet-like boundary conditions u = ∆u = 0 on
∂Ω and certain nonlinearity f(u) given by the following problem :

Let Ω ⊂ R4 be a regular bounded open domain in R4. We are interested in
positive solutions of the general stationary q-Kuramoto-Sivashinsky problem: ∆2u− γ∆u− λ|∇u|q = ρ4eu in Ω

u = ∆u = 0 on ∂Ω
(3)

when the parameters ρ, λ and γ tend to 0 and q ∈ [1, 4]. Problem (3)|q=2 has
been treated by first author et al in [4] in context of blow up. For λ = 0, we
refer the reader to [9], where the author consider the problem, without non
linear gradient term: ∆2u+ c∆u = b(eu − 1) in Ω

u = ∆u = 0 on ∂Ω
(4)

where Ω is a bounded and smooth domain of Rn, c ∈ R and b ∈ R . The
author prove some existence and nonexistence results for (4) via variational
techniques. Such equations may occur while studying traveling waves in sus-
pension bridges. For more general problem see [21], for the following Navier
boundary value problem: ∆2u+ c∆u = f(x, u) in Ω

u = ∆u = 0 on ∂Ω
(5)
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in Rn, n ≥ 4 and f is non linear growth function. Using the Sobolev compact
embedding H2(Ω)∩H1

0 (Ω) ↪→ Lq(Ω) (1 ≤ q < p∗, where p∗ = 2n
n−4 ), it is easy

to see that seeking a weak solution of problem (5) is equivalent to finding a
nonzero critical points of the following functional on E := H2(Ω) ∩H1

0 (Ω):

I :=
1

2

∫
Ω

(|∆u|2 − c|∇u|2)d x−
∫

Ω

F (x, u) where F (x, u) =

∫ u

0

F (x, t)d t.

In conformal dimensional a.e n = 4 and f has the subcritical (exponential)
growth on Ω, a.e.,

lim
t−→+∞

|f(x, t)|
exp(αt)

= 0

uniformly on x ∈ Ω for all α > 0 and in some cases and hypothesis and using
Adams inequality, (see [20]), for the fourth-order derivative, namely,

sup
{u∈E,‖u‖≤1}

∫
Ω

e32π2u2

dx ≤ C|Ω|,

where ‖u‖ =:
∫

Ω
(|∆u|2 − c|∇u|2)1/2d x, the authors show that the problem

(5) has at least two nontrivial solutions (for more details see Theorem 1.3 in
[21]) or infinitely many nontrivial solutions (for more details see Theorem 1.4
in [21]).

Problem (3) can be considered as a higher order counterpart of the −∆u− λ|∇u|q = ρ2eu in Ω ⊂ R2

u = 0 on ∂Ω
(6)

when the parameters ρ tends to 0. ρ2 =
8ε2

(ε2 + 1)2
∼ ε2 as ε tends to 0.

This last problem with q ∈ [1, 2], poses as well a number of fundamental
mathematical questions in singularity problem (see for example [3]) where
the authors do not consider any condition like (A) (see below), to solve such
singularity problem. This type of equation is the stationary case of generalized
non homogenous viscous Hamilton-Jacobian equations [22] ∂tu−∆u− λ|∇u|q = f(u) in Ω

u = 0 on ∂Ω

where Ω is a smooth bounded domain in Rq, q ≥ 1.
As observed by Ren and Wei in [19], the problem (6)|q=2, can be reduced

to a problem without gradient term. Indeed, if u is a solution of (6)|q=2, then
the function

w = (λρ2eu)λ,
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satisfies  −∆w = w
λ+1
λ in Ω

w = (λρ2)λ on ∂Ω,
(7)

since the exponent p = λ+1
λ tends to infinity as λ tends to 0, see also [11].

The problem of existence of vε,λ a sequence of solutions of (6)|q=2 which
converges to some singular function as the parameters ε and λ tend to 0 has
studied by Baraket et al. in [2], under the assumption

(A) : If 0 < ε < λ, then λ1+δ/2ε−δ −→ 0 as λ −→ 0, for any δ ∈ (0, 1).

( ρ ∼ ε as ε tends to 0 ). In particular, if we take λ = O(ε2/3), then condition
(A) is satisfied. With assumption (A), problem (6)|q=2, can be treated as a
perturbation of the Liouville equation

−∆u = ρ2eu in Ω ⊂ R2.

The question we would like to study is concerned with the existence of
other branches of solutions of (3) which is singular at each xi, i = 1, · · · ,m as
the parameters λ, γ and ρ tend to 0.
To describe our result, let us denote by G(x, ·) the solution of{

∆2G(x, ·) = 64π2 δx in Ω

G(x, ·) = ∆G(x, ·) = 0 on ∂Ω.
(8)

It is easy to check that the function

R(x, y) := G(x, y) + 8 log |x− y| (9)

is a smooth function.

We define the set of blow-up as

S := {x ∈ Ω : ∃ xn −→ x s.t un(xn) −→ +∞}

and

W (x1, . . . , xm) :=

m∑
j=1

R(xj , xj) +
∑
j 6=`

G(xj , x`). (10)

for x1, x2, · · · , xm m-points in Ω.
Many papers have been devoted to the case (γ, λ) = (0, 0), where the problem
(3) becomes  ∆2u = ρ4eu in Ω

u = ∆u = 0 on ∂Ω
(11)
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when the parameter ρ tends to 0. ( See for example [1]). Semilinear equations
involving fourth order elliptic operator and exponential nonlinearity appear
naturally in conformal geometry and in particular in the prescription of the
so called Q-curvature on 4-dimensional Riemannian manifolds [6], [7]

Qg =
1

12

(
−∆gSg + S2

g − 3 |Ricg|2
)

where Ricg denotes the Ricci tensor and Sg is the scalar curvature of the metric
g. Recall that the Q-curvature changes under a conformal change of metric

gw = e2w g,

according to
Pg w + 2Qg = 2 Q̃gw e

4w (12)

where

Pg := ∆2
g + δ

(
2

3
Sg I − 2 Ricg

)
d (13)

is the Panietz operator, which is an elliptic 4-th order partial differential op-
erator [7] and which transforms according to

e4w Pe2wg = Pg, (14)

under a conformal change of metric gw := e2w g. In the special case where the
manifold is the Euclidean space, the Panietz operator is simply given by

Pgeucl = ∆2

in which case (12) reduces to

∆2 w = Q̃ e4w

the solutions of which give rise to conformal metric gw = e2w geucl whose Q-
curvature is given by Q̃. There is by now an extensive literature about this
problem and we refer to [7] and [10] for references and recent developments.
In dimension 4, Wei in [26], have studied the behavior of solutions to the

following nonlinear eigenvalue problem for the biharmonic operator ∆2 in R4.
More precisely, consider the following problem{

∆2u = λ f(u) in Ω
u = ∆u = 0 on ∂Ω

(15)
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and u∗ the solution of ∆2u∗ = 64π2

m∑
i=1

δxi in Ω

u∗ = ∆u∗ = 0 on ∂Ω.

(16)

The author proved the following result

Theorem 1.1. [26] Let Ω be a smooth bounded domain in R4 and f a smooth
nonnegative increasing function such that

e−uf(u) and e−u
∫ u

0

f(s)ds tend to 1, as u −→ +∞. (17)

For uλ solution of (15), denote by Σλ = λ

∫
Ω

f(uλ)dx. Then many cases occur:

i) Σλ −→ 0 therefore, ‖uλ‖L∞(Ω) −→ 0 as λ −→ 0.

ii) Σλ −→ +∞ then uλ −→ +∞ as λ −→ 0.

iii) Σλ −→ 64π2m, for some positive integer m. Then the limiting function
u∗ = limλ−→0 uλ has m blow-up points, {x1, ..., xm}, where uλ(xi) −→
+∞ as λ −→ 0. Moreover, (x1, ..., xm) is a critical point of W .

In the following, we denote by ε the smallest positive parameter satisfying

ρ4 =
384ε4

(1 + ε2)4
.

Remark that ρ ∼ ε as ε −→ 0.

Denote by σλ,γ = max(λ, γ) and assume that ε, λ and γ satisfy

(Aε,λ,γ) : If 0 < ε < σλ,γ , then σ
1+δ/2
λ,γ ε−δ −→ 0 as σλ,γ −→ 0, for any δ ∈ (0, 1).

Our main results reads :

Theorem 1.2. Let q ∈ [1, 4) and α ∈ (0, 1). Let Ω be an open smooth bounded
domain in R4 and S = {x1, . . . , xm} ⊂ Ω be a non empty set. Assume that
(x1, . . . , xm) is a nondegenerate critical point of W , then there exist ρ0 >

0, λ0 > 0, γ0 > 0 and
{
uρ,λ,γ

}
0<ρ<ρ0
0<λ<λ0
0<γ<γ0

a family of solutions of (3), such that

lim
ρ−→0
λ−→0
γ−→0

uρ,λ,γ =

m∑
j=1

G(xj , ·)

in C
4,α
loc (Ω− {x1, . . . , xm} ).
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Theorem 1.3. Let q = 4 and α ∈ (0, 1). Let Ω be an open smooth bounded
domain in R4 and S = {x1, . . . , xm} ⊂ Ω be a non empty set. Assume that
ε, λ and γ satisfy the condition (Aε,λ,γ) and (x1, . . . , xm) is a nondegenerate

critical point of W , then there exist ρ0 > 0, λ0 > 0, γ0 > 0 and
{
uρ,λ,γ

}
0<ρ<ρ0
0<λ<λ0
0<γ<γ0

a family of solutions of (3), such that

lim
ρ−→0
λ−→0
γ−→0

uρ,λ,γ =

m∑
j=1

G(xj , ·)

in C
4,α
loc (Ω− {x1, . . . , xm} ).

Our result reduces the study of nontrivial branches of solutions of (3) to
the search for critical points of the function W defined in (10). Observe that
the assumption of the nondegeneracy of the critical point is a rather mild
assumption since it is certainly fulfilled for generic choice of the open domain
Ω.

We briefly describe the plan of the paper : In Section 2 we discuss rotation-
ally symmetric solutions of (3). In Section 3 we study the linearized operator
about the radially symmetric solution defined in the previous section. In Sec-
tion 4, we recall some Known results about the analysis of the bi-Laplace
operator in weighted spaces. Both section strongly use the b-operator which
has been developed by Melrose [15] in the context of weighted Sobolev spaces
and by Mazzeo [14] in the context of weighted Hölder spaces (see also [16]).

A first nonlinear problem is studied in Section 5 where the existence of
an infinite dimensional family of solutions of (3) which are defined on a large
ball and which are close to the rotationally symmetric solution is proven. In
Section 6, we prove the existence of an infinite dimensional family of solutions
of (3) which are defined on Ω with small ball removed. Finally, in Section 7, we
show how elements of these infinite dimensional families can be connected to
produce solutions of (3) described in Theorem 1.2 and Theorem 1.3. This last
section borrows ideas from applied mathematics were domain decomposition
methods are of common use. Throughout the paper, the symbol cκ > 0 (which
can depend only on κ) denotes always a positive constant independent of ε, λ
and γ which might change from one line to another.

2 Rotationally symmetric solutions

We first describe the rotationally symmetric approximate solutions of

∆2u− γ∆u− λ|∇u|q = ρ4eu (18)
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in R4 for q ∈ [1, 4], which will play a central role in our analysis. For this
reason given ε > 0, we define

uε(x) := 4 log(1 + ε2)− 4 log(ε2 + |x|2).

which is clearly a solution of

∆2u− ρ4eu = 0, (19)

when

ρ4 =
384 ε4

(1 + ε2)4
. (20)

Let us notice that equation (19) is invariant under some dilation in the
following sense : If u is a solution of (19) and if τ > 0, then u(τ ·) + 4 log τ is
also a solution of (19). With this observation in mind, we define, for all τ > 0

uε,τ (x) := 4 log (1 + ε2) + 4 log τ − 4 log (ε2 + τ2 |x|2). (21)

3 A linear fourth order elliptic operator on R4

We define the linear fourth order elliptic operator

L := ∆2 − 384

(1 + |x|2)4
(22)

which corresponds to the linearization of (19) about the solution u1(= uε=1)
which has been defined in the previous section.

We are interested in the classification of bounded solutions of Lw = 0 in
R4. Some solutions are easy to find. For example, we can define

φ0(x) := r ∂ru1(x) + 4 = 4
1− r2

1 + r2
,

where r = |x|. Clearly Lφ0 = 0 and this reflects the fact that (19) is invariant
under the group of dilations τ −→ u(τ ·) + 4 log τ . We also define, for i =
1, . . . , 4

φi(x) := −∂xiu1(x) =
8xi

1 + |x|2
,

which are also solutions of Lφj = 0 since these solutions correspond to the
invariance of the equation under the group of translations a −→ u(·+ a).

The following result classifies all bounded solutions of Lw = 0 which are
defined in R4.
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Lemma 3.1. [1] Any bounded solution of Lw = 0 defined in R4 is a linear
combination of φi for i = 0, 1, . . . , 4.

Let Br denote the ball of radius r centered at the origin in R4.

Definition 3.1. Given k ∈ N, α ∈ (0, 1) and µ ∈ R, we introduce the Hölder

weighted spaces Ck,αµ (R4) as the space of functions w ∈ C
k,α
loc (R4) for which the

following norm

‖w‖
C
k,α
µ (R4) := ‖w‖Ck,α(B̄1) + sup

r≥1

(
(1 + r2)−µ/2 ‖w(r ·)‖Ck,α(B̄1−B1/2)

)
,

is finite.

More details about these spaces and their use in nonlinear problems can
be found in [16]. Roughly speaking, functions in Ck,αµ (R4) are bounded by a

constant times (1 + r2)µ/2 and have their ` − th partial derivatives that are
bounded by (1 + r2)µ/2, for ` = 1, · · · , k + α. We also define

C
k,α
rad,µ(R4) = {f ∈ Ck,αµ (R4); f(x) = f(|x|),∀ x ∈ R4}.

As a consequence of the result of Lemma 3.1, we have the :

Proposition 3.1. [1] i) Assume that µ > 1 and µ 6∈ N, then

Lµ : C4,α
µ (R4) −→ C

0,α
µ−4(R4)

w 7−→ Lw

is surjective.
ii) Assume that δ > 0 and δ 6∈ N then

Lrad,δ : C
4,α
rad,δ(R4) −→ C

0,α
rad,δ−4(R4)

w 7−→ Lw

is surjective.

We set B̄∗1 = B̄1 − {0}.

Definition 3.2. Given k ∈ N, α ∈ (0, 1) and µ ∈ R, we introduce the Hölder

weighted space Ck,αµ (B̄∗1) as the space of functions in C
k,α
loc (B̄∗1) for which the

following norm

‖u‖
C
k,α
µ (B̄∗1 ) = sup

r≤1/2

(
r−µ ‖u(r ·)‖Ck,α(B̄2−B1)

)
is finite.
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Then we define the subspace of radial functions in C
k,α
rad,δ(B̄

∗
1) by

C
k,α
rad,δ(B̄

∗
1) = {f ∈ C

k,α
δ (R4); f(x) = f(|x|),∀ x ∈ B̄∗1}.

For all ε, τ, λ > 0, we define

Rε,λ,γ := τrε,λ,γ /ε

where
rε,λ,γ := max(

√
ε,
√
λ,
√
γ). (23)

We would like to find a solution u of

∆2u− γ∆u− λ|∇u|q − ρ4eu = 0 (24)

in B̄rε,λ,γ . Using the transformation

v(x) = u
( ε
τ
x
)

+ 8 log ε− 4 log
(
τ(1 + ε2)/2

)
,

then equation (24) is equivalent to

∆2v − γ
( ε
τ

)2

∆v − λ
( ε
τ

)4−q
|∇v|q − 24ev = 0 (25)

in B̄Rε,λ,γ . Now we look for a solution of (25) of the form

v(x) = u1(x) + h(x),

this amounts to solve

L h= 384

(1 + |x|2)4
(eh − h− 1) + γ

( ε
τ

)2

∆(u1 + h) + λ
( ε
τ

)4−q
|∇(u1 + h)|q (26)

in B̄Rε,λ,γ .
We will need the following definition.

Definition 3.3. Given r̄ ≥ 1, k ∈ N, α ∈ (0, 1) and µ ∈ R, the weighted space
Ck,αµ (Br̄) is defined to be the space of functions w ∈ Ck,α(Br̄) endowed with
the norm

‖w‖
C
k,α
µ (B̄r̄) := ‖w‖Ck,α(B1) + sup

1≤r≤r̄

(
r−µ ‖w(r ·)‖Ck,α(B̄1−B1/2)

)
.
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For all σ ≥ 1, we denote by

Eσ : C0,α
µ (B̄σ) −→ C0,α

µ (R4)

the extension operator defined by

Eσ (f)(x) =


f(x) for |x| ≤ σ

χ
(
|x|
σ

)
f
(
σ x
|x|

)
for |x| ≥ σ,

(27)

where t 7−→ χ(t) is a smooth nonnegative cutoff function identically equal to
1 for t ≤ 1 and identically equal to 0 for t ≥ 2. It is easy to check that there
exists a constant c = c(µ) > 0, independent of σ ≥ 1, such that

‖Eσ(w)‖C0,α
µ (R4) ≤ c ‖w‖C0,α

µ (B̄σ). (28)

We fix
δ ∈

(
0,min(1, 4− q)

)
for q ∈ [1, 4)

and
δ ∈ (0, 1) for q = 4.

Denote by Gδ to be a right inverse of Lrad,δ provided by Proposition 3.1. To
find a solution of (26) it is enough to find a fixed point h, in a small ball of
C

4,α
rad,δ(R4), solution of

h = ℵ(h) (29)

where
ℵ(h) := Gδ ◦ Eδ ◦R(h)

with

R(h) =
384

(1 + |x|2)4
(eh − h− 1) + γ

( ε
τ

)2

∆(u1 + h) + λ
( ε
τ

)4−q
|∇(u1 + h)|q.

For |x| = r, we have

R(0) = γ
( ε
τ

)2

∆u1 + λ
( ε
τ

)4−q
|∇u1|q

= −16γ
( ε
τ

)2 2 + r2

(1 + r2)2
+ 8qλ

( ε
τ

)4−q rq

(1 + r2)q
.

∗ For q ∈ [1, 4).
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Given κ > 0, there exist cκ > 0 (which can depend only on κ), such that for

δ ∈
(

0,min(1, 4− q)
)

and q ∈ [1, 4) , we have

sup
r≤Rε,λ,γ

r4−δ |R(0)| ≤ cκγ
( ε
τ

)2

sup
r≤Rε,λ,γ

r4−δ∆u1 + cκλ
( ε
τ

)4−q
sup

r≤Rε,λ,γ
r4−δ|∇u1|q

≤ cκγ
( ε
τ

)2

sup
r≤Rε,λ,γ

r4−δ 2 + r2

(1 + r2)2
+ cκλ

( ε
τ

)4−q
sup

r≤Rε,λ,γ
r4−δ rq

(1 + r2)q

≤ cκγ
( ε
τ

)2

sup
r≤Rε,λ,γ

r4−δ 2

(1 + r2)2
+ cκγ

( ε
τ

)2

sup
r≤Rε,λ,γ

r4−δ r2

(1 + r2)2

+cκλ
( ε
τ

)4−q
sup

r≤Rε,λ,γ
r4−δ rq

(1 + r2)q
.

Taking into account that for r very large we have (1 + r2)−β ∼ r−2β , we
obtain

sup
r≤Rε,λ,γ

r4−δ |R(0)| ≤ cκγε2 + cκγε
2R2−δ

ε,λ,γ + cκλε
4−qR4−δ−q

ε,λ,γ

≤ cκγε2 + cκγε
δr2−δ
ε,λ,γ + cκλε

δr4−q−δ
ε,λ,γ

≤ cκεδr2
ε,λ,γ .

Recall that ℵ(h) := Gδ ◦ Eδ ◦R(h), then there exist cκ > 0 (which can depend
only on κ), such that

‖ℵ(0)‖C4,α
rad,δ(R4) ≤ cκ ε

δr2
ε,λ,γ . (30)

Making use of Proposition 3.1 together with (28), hence there exist c̄κ > 0
(which can depend only on κ), such that

‖h‖C4,α
rad,δ(R4) ≤ 2c̄κ ε

δr2
ε,λ,γ . (31)

Now, we recall an important result which play a center role in our estimates,
see for example [23] and some references therein :

Lemma 3.2. [23] Given x and y two real numbers, x > 0, q ≥ 1 and for any
small η ∈ R there exists a positive constant Cη such that∣∣∣|x+ y|q − xq

∣∣∣ ≤ (1 + η)qxq−1|y| + Cη|y|q.

Now, let h1, h2 in B(0, 2c εδr2
ε,λ,γ) of C4,α

rad,δ(R4), then given κ > 0, there exist

cκ > 0 (which can depend only on κ), such that for δ ∈
(

0,min(1, 4− q)
)

, we
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have
sup

r≤Rε,λ,γ
r4−δ |R(h2)−R(h1)|

≤ cκ sup
r≤Rε,λ,γ

r4−δ(1 + |x|2)−4
∣∣eh2 − eh1 + h1 − h2

∣∣
+cκλε

4−q sup
r≤Rε,λ,γ

r4−δ(|∇(u1 + h2)|q − |∇(u1 + h1)|q)

+cκγε
2 sup
r≤Rε,λ,γ

r4−δ
∣∣∣∆(u1 + h2)−∆(u1 + h1)

∣∣∣
Again, making use of Lemma 3.2 and recall that a functions w in C

k,α
rad,δ(R4)

are bounded by a constant times (1 + r2)δ/2 and have their ` − th partial
derivatives that are bounded by (1 + r2)(δ−`)/2, for ` = 1, · · · , k + α (a.e
|∇`w| ≤ cκr

δ−` ‖w‖C4,α
rad,δ(R4), (1 + r2)(δ−`)/2 ∼ rδ−` for r very large), then

there exist cκ > 0 (only depend on κ) such that

sup
r≤Rε,λ,γ

r4−δ |R(h2)−R(h1)|

≤ cκ sup
r≤Rε,λ,γ

r−4−δ|h2 − h1||h2 + h1|

+cκλε
4−q sup

r≤Rε,λ,γ
r4−δ

[
|∇(u1 + h1)|q−1 + |∇(h2 − h1)|q−1

]
|∇(h2 − h1)|

+cκγε
2 sup
r≤Rε,λ,γ

r4−δ
∣∣∣∆(h2 − h1)

∣∣∣
≤ cκ

2∑
i=1

‖hi‖C4,α
rad,δ(R4)‖h2 − h1‖C4,α

rad,δ(R4) + cκγε
2R2

ε,λ,γ‖h2 − h1‖C4,α
rad,δ(R4)

+cκλε
4−q sup

r≤Rε,λ,γ
r4−δ

[
|∇u1|q−1 + |∇h1|q−1 + |∇h2|q−1

]
|∇(h2 − h1)|

≤ cκ
2∑
i=1

‖hi‖C4,α
rad,δ(R4)‖h2 − h1‖C4,α

rad,δ(R4) + cκγε
2R2

ε,λ,γ‖h2 − h1‖C4,α
rad,δ(R4)

+cκλε
4−q
[
R4−q
ε,λ,γ +R4+δq−δ−q

ε,λ,γ

2∑
i=1

‖hi‖q−1

C
4,α
rad,δ(R4)

]
‖h2 − h1‖C4,α

rad,δ(R4).

Provided hi ∈ C
4,α
rad,δ(R4) satisfies ‖hi‖C4,α

rad,δ(R4) ≤ 2 cκ ε
δr2
ε,λ,γ , then the last

estimate, is given by

sup
r≤Rε,λ,γ

r4−δ|R(h2)−R(h1)| ≤ cκεδr2
ε,λ,γ‖h2 − h1‖C4,α

rad,δ
(R4)

+ cκγr
2
ε,λ,γ‖h2 − h1‖C4,α

rad,δ
(R4)

+cκλ
[
r4−q
ε,λ,γ + r

2+δ(q−1)+q
ε,λ,γ

]
‖h2 − h1‖C4,α

rad,δ
(R4)

.

Similarly, making use of Proposition 3.1 together with (28), we conclude that
given κ > 0, there exist εκ, λκ, γκ and c̄κ > 0 (only depend on κ) such that

‖ℵ(h2)− ℵ(h1)‖C4,α
rad,δ(R4) ≤ c̄κr2

ε,λ,γ‖h2 − h1‖C4,α
rad,δ(R4). (32)
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Reducing εκ, λκ and γκ if necessary, we can assume that,

c̄κ r
2
ε,λ,γ ≤

1

2

for all ε ∈ (0, εκ), λ ∈ (0, λκ) and γ ∈ (0, γκ) . Then, (31) and (32) are enough
to show that

h 7−→ ℵ(h)

is a contraction from the ball

{h ∈ C
4,α
rad,δ(R

4) : ‖h‖C4,α
rad,δ(R4) ≤ 2cκ ε

δr2
ε,λ,γ}

into itself and hence has a unique fixed point h in this set. This fixed point is
a solution of (29) in B̄Rε,λ,γ .

We summarize this in the following proposition.

Proposition 3.2. Let q ∈ [1, 4) and δ ∈
(

0,min(1, 4 − q)
)

. Given κ > 0,

there exist εκ > 0, λκ > 0, γκ > 0 and cκ > 0 (which can depend only on κ)
such that for all for all ε ∈ (0, εκ), λ ∈ (0, λκ) and γ ∈ (0, γκ), there exists a
unique solution h ∈ C

4,α
rad,δ(R4) of (29) such that

v(x) = u1(x) + h(x)

solves (25) in B̄Rε,λ,γ . In addition

‖h‖C4,α
rad,δ(R4) ≤ 2cκ ε

δr2
ε,λ,γ .

�

∗ For q = 4

Recall that

sup
r≤Rε,λ,γ

r4−δ |R(0)| ≤ cκγ
( ε
τ

)2

sup
r≤Rε,λ,γ

r4−δ∆u1 + cκλ sup
r≤Rε,λ,γ

r4−δ|∇u1|4.

Since

λ sup
r≤Rε,λ,γ

r4−δ|∇u1|4 = λ sup
r≤Rε,λ,γ

r4−δ r4

(1 + r2)4
,

taking into account that for r very large, we have (1+r2)−4 ∼ r−8 then, there
exist cκ > 0 (which can depend only on κ), such that
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sup
r≤Rε,λ,γ

r4−δ |R(0)| ≤ cκγε2 + cκγε
δr2−δ
ε,λ,γ + cκλ

≤ cκr2
ε,λ,γ .

Then there exist cκ > 0 (which can depend only on κ), such that

‖ℵ(0)‖C4,α
rad,δ(R4) ≤ cκ r

2
ε,λ,γ .

Making use of Proposition 3.1 together with (28), we conclude that there exists
a unique solution ~ ∈ C

4,α
rad,δ(R4) of (29) such that

‖~‖C4,α
rad,δ(R4) ≤ 2cκ r

2
ε,λ,γ . (33)

Let, let ~1, ~2 in B(0, 2cκ r
2
ε,λ,γ) of C

4,α
rad,δ(R4), satisfying for each x ∈

B̄Rε,λ,γ

|~i(x)| ≤ cκ r2+δ
ε,λ,γε

−δ ≤


cκ ε

1−δ/2 for ε ≥ max(λ, γ)
cκ λ

1+δ/2ε−δ for λ > max(ε, γ)
cκ γ

1+δ/2ε−δ for γ > max(ε, λ)

then using condition (Aε,λ,γ), we prove that |~(x)| −→ 0 as ε, λ and γ tend
to 0.

Now, given κ > 0, there exist cκ > 0 (which can depend only on κ), such
that for δ ∈ (0, 1), we have

sup
r≤Rε,λ,γ

r4−δ |R(~2)−R(~1)|

≤ cκ sup
r≤Rε,λ,γ

r4−δ(1 + |x|2)−4
∣∣e~2 − e~1 + ~1 − ~2

∣∣
+cκλ sup

r≤Rε,λ,γ
r4−δ(|∇(u1 + ~2)|4 − |∇(u1 + ~1)|4)

+cκγε
2 sup
r≤Rε,λ,γ

r4−δ
∣∣∣∆(u1 + ~2)−∆(u1 + ~1)

∣∣∣
Again, making use of Lemma 3.2 for q = 4 and recall that a functions w in

C
k,α
rad,δ(R4) are bounded by a constant times (1 + r2)δ/2 and have their `− th

partial derivatives that are bounded by (1 + r2)(δ−`)/2, for ` = 1, · · · , k + α
(a.e |∇`w| ≤ cκr

δ−` ‖w‖C4,α
rad,δ(R4), (1+r2)(δ−`)/2 ∼ rδ−` for r very large), then
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there exist cκ > 0 (only depend on κ) such that

sup
r≤Rε,λ,γ

r4−δ |R(~2)−R(~1)|

≤ cκ sup
r≤Rε,λ,γ

r−4−δ|~2 − ~1||~2 + ~1|

+cκλ sup
r≤Rε,λ,γ

r4−δ
[
|∇(u1 + ~1)|3 + |∇(~2 − ~1)|3

]
|∇(~2 − ~1)|

+cκγε
2 sup
r≤Rε,λ,γ

r4−δ
∣∣∣∆(~2 − ~1)

∣∣∣
≤ cκ

2∑
i=1

‖~i‖C4,α
rad,δ(R4)‖~2 − ~1‖C4,α

rad,δ(R4) + cκγε
2R2

ε,λ,γ‖~2 − ~1‖C4,α
rad,δ(R4)

+cκλ sup
r≤Rε,λ,γ

r4−δ
[
|∇u1|3 + |∇~1|3 + |∇~2|3

]
|∇(~2 − ~1)|

≤ cκ
2∑
i=1

‖~i‖C4,α
rad,δ(R4)‖~2 − ~1‖C4,α

rad,δ(R4) + cκγε
2R2

ε,λ,γ‖~2 − ~1‖C4,α
rad,δ(R4)

+cκλ
[
1 +R3δ

ε,λ,γ

2∑
i=1

‖~i‖3C4,α
rad,δ(R4)

]
‖~2 − ~1‖C4,α

rad,δ(R4).

Provided ~i ∈ C
4,α
rad,δ(R4) satisfies ‖~i‖C4,α

rad,δ(R4) ≤ 2 cκ r
2
ε,λ,γ , then the last

estimate, is given by

sup
r≤Rε,λ,γ

r4−δ |R(~2)−R(~1)| ≤ cκr2
ε,λ,γ‖~2 − ~1‖C4,α

rad,δ
(R4)

+ cκγr
2
ε,λ,γ‖~2 − ~1‖C4,α

rad,δ
(R4)

+cκλ
[
1 + (r2+δ

ε,λ,γε
−δ)3

]
‖~2 − ~1‖C4,α

rad,δ
(R4)

.

Similarly, making use of Proposition 3.1 together with (28), using the condi-
tion (Aε,λ,γ) we conclude that given κ > 0, there exist εκ, λκ, γκ and c̄κ > 0
(only depend on κ) such that

‖ℵ(~2)− ℵ(~1)‖C4,α
rad,δ(R4) ≤ c̄κr2

ε,λ,γ‖~2 − ~1‖C4,α
rad,δ(R4). (34)

Reducing εκ, λκ and γκ if necessary, we can assume that,

c̄κ r
2
ε,λ,γ ≤

1

2

for all ε ∈ (0, εκ), λ ∈ (0, λκ) and γ ∈ (0, γκ) satisfying (Aε,λ,γ) . Then, (33)
and (34) are enough to show that

~ 7−→ ℵ(~)

is a contraction from the ball

{~ ∈ C
4,α
rad,δ(R

4) : ‖~‖C4,α
rad,δ(R4) ≤ 2cκ r

2
ε,λ,γ}
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into itself and hence has a unique fixed point ~ in this set. This fixed point is
a solution of (29) in B̄Rε,λ,γ .

We summarize this in the following proposition.

Proposition 3.3. Let q = 4 and δ ∈ (0, 1). Given κ > 0, there exist εκ > 0,
λκ > 0, γκ > 0 (which can depend only on κ) and c > 0 such that for all for
all ε ∈ (0, εκ), λ ∈ (0, λκ) and γ ∈ (0, γκ) satisfying (Aε,λ,γ), there exists a

unique solution ~ ∈ C
4,α
rad,δ(R4) of (29) such that

v(x) = u1(x) + ~(x)

solves (25) in B̄Rε,λ,γ . In addition

‖~‖C4,α
rad,δ(R4) ≤ 2cκ r

2
ε,λ,γ .

�

4 Known results [1]

4.1 Analysis of the bi-Laplace operator in weighted spaces

Given x1, . . . , xm ∈ Ω we define X := (x1, . . . , xm) and

Ω̄∗ (X) := Ω̄− {x1, . . . , xm},

and we choose r0 > 0 so that the balls Br0(xi) of center xi and radius r0 are
mutually disjoint and included in Ω. For all r ∈ (0, r0) we define

Ω̄r (X) := Ω̄− ∪mj=1Br(x
j)

With these notations, we have the :

Definition 4.1. Given k ∈ R, α ∈ (0, 1) and ν ∈ R, we introduce the Hölder

weighted space Ck,αν (Ω̄∗ (X)) as the space of functions w ∈ C
k,α
loc (Ω̄∗ (X)) which

is endowed with the norm

‖w‖
C
k,α
ν (Ω̄∗ (X))

:= ‖w‖Ck,α(Ω̄r0/2 (X))+

m∑
j=1

sup
r∈(0,r0/2)

(
r−ν ‖w(xj + r ·)‖Ck,α(B̄2−B1)

)
,

is finite.

Again, these spaces have already been used many times in nonlinear con-
texts and we refer to [16]. Roughly speaking, functions in Ck,αν (Ω̄∗ (X)) re
bounded by a constant times the distance to X to the power ν and have their
` − th partial derivatives that are bounded by a constant times the distance
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to X to the power ν − `, for ` = 1, · · · , k + α.

When k ≥ 2, we denote by [Ck,αν (Ω̄∗ (X))]0 be the subspace of functions
w ∈ Ck,αν (Ω̄∗ (X)) satisfying w = ∆w = 0 on ∂Ω.

We will use the following :

Proposition 4.1. [1] Assume that ν < 0 and ν 6∈ Z, then

Lν : [C4,α
ν (Ω̄∗ (X))]0 −→ C

0,α
ν−4(Ω̄∗ (X))

w 7−→ ∆2 w

is surjective.

4.2 Bi-harmonic extensions

Given ϕ ∈ C4,α(S3) and ψ ∈ C2,α(S3) we define Hi(= Hi(ϕ,ψ ; ·)) to be the
solution of 

∆2Hi = 0 in B1

Hi = ϕ on ∂B1

∆Hi = ψ on ∂B1,

(35)

where, as already mentioned, B1 denotes the unit ball in R4.

We set B∗1 = B1 − {0}. As in the previous section, we define :

Definition 4.2. Given k ∈ N, α ∈ (0, 1) and µ ∈ R, we introduce the Hölder

weighted spaces Ck,αµ (B̄∗1) as the space of function in C
k,α
loc (B̄∗1) for which the

following norm

‖u‖
C
k,α
µ (B̄∗1 ) = sup

r≤1/2

(
r−µ ‖u(r ·)‖Ck,α(B̄2−B1)

)
,

is finite.

This corresponds to the space and norm already defined in the previous
section when Ω = B1, m = 1 and x1 = 0.

Let e1, . . . , e4 be the coordinate functions on S3. In [1] is proved that :

Lemma 4.1. [1] Assume that∫
S3

(8ϕ− ψ) dvS3 = 0 and also that

∫
S3

(12ϕ− ψ) e` dvS3 = 0 (36)
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for ` = 1, . . . , 4. Then there exists c > 0 such that

‖Hi(ϕ,ψ ; ·)‖C4,α
2 (B̄∗1 ) ≤ c (‖ϕ‖C4,α(S3) + ‖ψ‖C2,α(S3)).

Observe that, under the hypothesis (36), the coefficients of r0 and r1 van-
ish and hence, at least formally, the expansion of Hi only involves powers of
r that are greater than or equal to 2.

Given ϕ ∈ C4,α(S3) and ψ ∈ C2,α(S3) we define (when it exists !) He(=
He(ϕ,ψ ; ·)) to be the solution of

∆2He = 0 in R4 −B1

He = ϕ on ∂B1

∆He = ψ on ∂B1,

(37)

which decays at infinity.

Definition 4.3. Given k ∈ N, α ∈ (0, 1) and ν ∈ R, we define the space

Ck,αν (R4 − B1) as the space of functions w ∈ C
k,α
loc (R4 − B1) for which the

following norm

‖w‖
C
k,α
ν (R4−B1) = sup

r≥1

(
r−ν ‖w(r ·)‖

C
k,α
ν (B̄2−B1)

)
,

is finite.

We recall the :

Lemma 4.2. [1] Assume that ∫
S3

ψ dvS3 = 0. (38)

Then there exists c > 0 such that

‖He(ϕ,ψ ; ·)‖C4,α
−1 (R4−B1) ≤ c (‖ϕ‖C4,α(S3) + ‖ψ‖C2,α(S3)).

Observe that (38) implies that the expansion of He only involves powers
of r that are lower than or equal to −1.

We will need the :
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Lemma 4.3. [1] The mapping

P : C4,α(S3)⊥ × C4,α(S3)⊥ −→ C3,α(S3)⊥ × C1,α(S3)⊥

(ϕ,ψ ) 7−→ (∂rH
i − ∂rHe , ∂r ∆Hi − ∂r ∆He )

where Hi = Hi(ϕ,ψ ; ·) := Hi
ϕ,ψ(·) and He = He(ϕ,ψ ; ·) := He

ϕ,ψ(·), is an
isomorphism.

5 The first nonlinear Dirichlet problem

Recall that for all ε, τ, λ, γ > 0, we have previously defined

Rε,λ,γ := τrε,λ,γ /ε

where
rε,λ,γ := max(

√
ε,
√
λ,
√
γ)

and
q ∈ [1, 4].

Given ϕ ∈ C4,α(S3) and ψ ∈ C2,α(S3) satisfying (36), we define

u := u1 + h+Hi(ϕ,ψ ; (·/Rε,λ,γ))

where, for q ∈ [1, 4) and δ ∈
(

0,min(1, 4− q)
)

,

‖h‖C4,α
rad,δ(R4) ≤ 2 cκ ε

δr2
ε,λ,γ

and for q = 4, h := ~ and δ ∈ (0, 1),

‖~‖C4,α
rad,δ(R4) ≤ 2 cκ r

2
ε,λ,γ .

We would like to find a solution u of

∆2 u− γ
( ε
τ

)2

∆u− λ
( ε
τ

)4−q
|∇u|q − 24 eu = 0 (39)

which is defined in BRε,λ,γ and which is a perturbation of u. Writing u = u+v,
this amounts to solve the equation

L v =
384

(1 + r2)4
eh(eH

i(ϕ,ψ ; (·/Rε,λ,γ))+v − 1− v) +
384

(1 + r2)4
(eh − 1)v

+γ
( ε
τ

)2

∆
(
u1 + h+Hi(ϕ,ψ ; (·/Rε,λ,γ)) + v

)
− γ
( ε
τ

)2

∆(u1 + h)

+λ
( ε
τ

)4−q∣∣∣∇(u1 + h+Hi(ϕ,ψ ; (·/Rε,λ,γ)) + v
)∣∣∣q − λ( ε

τ

)4−q∣∣∣∇(u1 + h)
∣∣∣q,

(40)
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since Hi is bi-harmonic. In the following, we will denote by K(v) the right
hand side of (40).

We fix
µ ∈ (1, 2)

and denote by Gµ a right inverse provided by Proposition 3.1. To find a
solution of (40), it is enough to find v ∈ C4,α

µ (R4) solution of

v = N(ε, λ, γ, τ, ϕ, ψ ; v) (41)

where we have defined

N(ε, λ, γ, τ, ϕ, ψ ; v) := Gµ ◦ ERε,λ,γ (K(v))

Given κ > 1 (whose value will be fixed later on), we now further assume
that the functions ϕ ∈ C4,α(S3), ψ ∈ C2,α(S3) and the constant τ > 0 satisfy

1

log 1/r2
ε,λ,γ

| log(τ/τ∗)| ≤ κ r2
ε,λ,γ , ‖ϕ‖C4,α(S3) ≤ κ r

2
ε,λ,γ and ‖ψ‖C2,α(S3) ≤ κ r

2
ε,λ,γ ,

(42)

where τ∗ > 0 is fixed later.

We have the following technical :

Lemma 5.1. Let q ∈ [1, 4]. Given κ > 0, µ ∈ (1, 2) and δ ∈ (0,min(1, q−4)),
there exist εκ > 0, λκ > 0, γκ > 0, cκ > 0 and c̄κ > 0 such that, for all
ε ∈ (0, εκ), λ ∈ (0, λκ) and γ ∈ (0, γκ) (satisfying the condition (Aε,λ,γ) in
case q = 4), then

‖N(ε, λ, γ, τ, ϕ, ψ ; 0)‖C4,α
µ (R4) ≤ cκ ε

µr2
ε,λ,γ . (43)

Moreover,

‖N(ε, λ, γ, τ, ϕ, ψ ; v2)−N(ε, λ, γ, τ, ϕ, ψ ; v1)‖C4,α
µ (R4) ≤ c̄κ r

2
ε,λ,γ ‖v2−v1‖C4,α

µ (R4)

(44)
provided ṽ = v1, v2 ∈ C4,α

µ (R4), ϕ ∈ C4,α(S3), ψ ∈ C4,α(S3) satisfy

‖ṽ‖C4,α
µ (R4) ≤ 2 cκ ε

µr2
ε,λ,γ , ‖ϕ‖C4,α(S3) ≤ κ r2

ε,λ,γ , ‖ψ‖C2,α(S3) ≤ κ r2
ε,λ,γ ,

and | log(τ/τ∗)| ≤ κ r2
ε,λ,γ log 1/r2

ε,λ,γ .

Proof : The proof of these estimates follows from the result of Lemma 4.1
together with the assumption on the norms of ϕ and ψ and recall that a
functions in Ck,αµ (R4) are bounded by a constant times (1 + r2)µ/2 and have

their ` − th partial derivatives that are bounded by (1 + r2)(µ−`)/2, for ` =
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1, · · · , k + α.

Indeed, let cκ denote constants which only depend on κ (provided ε, λ and
γ are chosen small enough), it follows from Lemma 4.1 and the estimates given
by (42) and under the hypothesis (36), the coefficients of r0 and r1 vanish and
hence, at least formally, the expansion of Hi only involves powers of r that
are greater than or equal to 2, then

‖Hi(ϕ,ψ ; ·/Rε,λ,γ)‖C4,α
2 (B̄Rε,λ,γ ) ≤ cκ R

−2
ε,λ,γ (‖ϕ‖C4,α(S3)+‖ψ‖C2,α(S3)) ≤ cκ ε2.

(45)

∗ For q ∈ [1, 4).

Using the fact that ‖h‖C4,α
rad,δ(R4) ≤ 2 cκ ε

δr2
ε,λ,γ , then for all x ∈ B̄Rε,λ,γ ,

|h(x)| ≤ cκ r
2+δ
ε,λ,γ tends to 0 as ε, λ and γ tend to 0 and from the asymptotic

behavior of Hi given by the estimate (45) then we get∥∥∥(1 + | · |2)−4eh
(
eH

i(ϕ,ψ ; ·/Rε,λ,γ) − 1
)∥∥∥

C
0,α
µ−4(B̄Rε,λ,γ )

≤ cκ ε2,

Again, using the fact that a function w in Ck,αµ (R4) are bounded by a constant

times (1 + r2)µ/2 and have their ` − th partial derivatives that are bounded
by (1 + r2)(µ−`)/2, for ` = 1, · · · , k + α (a.e |∇`w| ≤ cκr

µ−` ‖w‖C4,α
rad,δ(R4),

(1 + r2)(µ−`)/2 ∼ rµ−` for r very large) and provided h ∈ C
4,α
rad,δ(R4) satisfy

‖h‖C4,α
rad,δ(R4) ≤ 2 cκ ε

δr2
ε,λ,γ and from the asymptotic behavior of Hi given by

the estimate (45), µ ∈ (1, 2), q ∈ [1, 4) and δ ∈
(

0,min(1, 4 − q)
)

, we deduce

that∥∥∥|λε4−q
(
|∇
(
u1 + h+Hi(ϕ,ψ ; ·/Rε,λ,γ)

)
|q − |∇ (u1 + h) |q

)∥∥∥
C

0,α
µ−4(B̄Rε,λ,γ

)

≤ cκλε4−q sup
r≤Rε,λ,γ

r4−µ
(
|∇u1|q−1 + |∇h|q−1 + |∇Hi(ϕ, ·/Rε,λ,γ)|q−1

)
|∇Hi(ϕ, ·/Rε,λ,γ)|

≤ cκλε6−q
[
R6−µ−q
ε,λ,γ

+R6−µ+δq−δ−q
ε,λ,γ ‖h‖q−1

C
4,α
rad,δ

(R4)
+R4−µ+q

ε,λ,γ ‖H
i(ϕ,ψ ; ·/Rε,λ,γ)‖q−1

C
4,α
2 (B̄Rε,λ,γ

)

]
≤ cκλε6−q

[
ε−6+µ+qr6−µ−q

ε,λ,γ + r6−µ+δq−δ−q
ε,λ,γ ε−6+µ−δq+δ+q‖h‖q−1

C
4,α
rad,δ

(R4)

+ε−4+µ−qr4−µ+q
ε,λ,γ ‖H

i(ϕ,ψ ; ·/Rε,λ,γ)‖q−1

C
4,α
2 (B̄Rε,λ,γ

)

]
≤ cκλ

[
εµr6−µ−q

ε,λ,γ + r6−µ+δq−δ−q
ε,λ,γ εµ+δ(1−q)‖h‖q−1

C
4,α
rad,δ

(R4)

+r4−µ+q
ε,λ,γ εµ+2(1−q)‖Hi(ϕ,ψ ; ·/Rε,λ,γ)‖q−1

C
4,α
2 (B̄Rε,λ,γ

)

]
≤ cκ λ

(
εµr6−µ−q

ε,λ,γ + εµr4−µ+δq−δ+q
ε,λ,γ + εµr4−µ+q

ε,λ,γ

)
≤ cκ εµr2

ε,λ,γ .
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Using the asymptotic behavior of Hi given by the estimate (45) and µ ∈ (1, 2),
we get

∥∥| ε2∆
(
Hi(ϕ,ψ ; ·/Rε,λ,γ)

)∥∥
C

0,α
µ−4(B̄Rε,λ,γ )

≤ cκ εµr4−µ
ε,λ,γ ≤ cκ ε

µr2
ε,λ,γ .

Making use of Proposition 3.1 together with (28) and the fact that µ ∈
(1, 2), we conclude that

‖N(ε, λ, γ, τ, ϕ, ψ ; 0)‖C4,α
µ (R4) ≤ cκ ε

µr2
ε,λ,γ .

To derive the second estimate, we use the fact that∥∥∥(1 + | · |2)−4 eH
i(ϕ,ψ;·/Rε,λ,γ)+h (ev2 − ev1 − v2 + v1)

∥∥∥
C

0,α
µ−4(B̄Rε,λ,γ )

≤

cκε
µr2
ε,λ,γ ‖v2 − v1‖C4,α

µ (R4)

and ∥∥∥(1 + | · |2)−4 eh
(
eH

i(ϕ,ψ ; ·/Rε,λ,γ) − 1
)

(v2 − v1)
∥∥∥
C

0,α
µ−4(B̄Rε,λ,γ )

≤

cκ ε
2 ‖v2 − v1‖C4,α

µ (R4),

and ∥∥ ε2∆(v2 − v1)
∥∥
C

0,α
µ−4(B̄Rε,λ,γ )

≤ cκ r2
ε,λ,γ‖v2 − v1‖C4,α

µ (R4).

Provided h ∈ C
4,α
rad,δ(R4) satisfy ‖h‖C4,α

rad,δ(R4) ≤ 2 cκ ε
δr2
ε,λ,γ , the fact that

|h(x)| ≤ cκ r2+δ
ε,λ,γ tends to 0 as ε, λ and γ tend to 0, we deduce that∥∥(1 + | · |2)−4 (eh − 1) (v2 − v1)

∥∥
C

0,α
µ−4(B̄Rε,λ,γ )

≤ cκ ‖h‖C4,α
rad,δ(R4) ‖v2 − v1‖C4,α

µ (R4)

≤ cκ εδr2
ε,λ,γ ‖v2 − v1‖C4,α

µ (R4).

Using the fact that a functions in Ck,αµ (R4) are bounded by a constant times

(1 + r2)µ/2 and have their ` − th partial derivatives that are bounded by
(1 + r2)(µ−`)/2, for ` = 1, · · · , k + α, (a.e |∇`w| ≤ cκr

µ−` ‖w‖C4,α
µ (R4), (1 +

r2)(µ−`)/2 ∼ rµ−` for r very large) and provided h ∈ C
4,α
rad,δ(R4) satisfy

‖h‖C4,α
rad,δ(R4) ≤ 2 cκ ε

δr2
ε,λ,γ for δ ∈

(
0,min(1, 4−q)

)
and making use of Lemma

3.2 we deduce that
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∥∥∥|λ ε4−q
(∣∣∣∇(u1 + h+Hi(ϕ,ψ ; ·/Rε,λ,γ + v2)

∣∣∣q
−
∣∣∣∇(u1 + h+Hi(ϕ,ψ ; ·/Rε,λ,γ + v1)

∣∣∣q)∥∥∥
C

0,α
µ−4(B̄Rε,λ,γ

)

≤ cκλ ε4−q sup
r≤Rε,λ,γ

r4−µ
[
|∇(u1 + h+Hi(ϕ,ψ ; ·/Rε,λ,γ) + v1)|q−1

+|∇(v2 − v1)|q−1
]
|∇(v2 − v1)|

≤ cκλ ε4−q sup
r≤Rε,λ,γ

r4−µ
[
|∇u1|q−1 + |∇h|q−1 + |∇(Hi(ϕ,ψ ; ·/Rε,λ,γ)|q−1

+|∇v1|q−1 + |∇v2|q−1
]
|∇(v2 − v1)|

≤ cκλ ε4−q
[
R4−q
ε,λ,γ +R4+δq−δ−q

ε,λ,γ ‖h‖q−1

C
4,α
rad,δ

(R4)

+Rq+2
ε,λ,γ‖H

i(ϕ,ψ ; ·/Rε,λ,γ)‖q−1

C
4,α
2 (B̄Rε,λ,γ

)

+R4+µq−µ−q
ε,λ,γ

2∑
i=1

‖vi‖q−1

C
4,α
µ (R4)

]
‖v2 − v1‖C4,α

µ (R4)

≤ cκλ
(
r4−q
ε,λ,γ + r4+δq−δ−q

ε,λ,γ εδ(1−q)‖h‖q−1

C
4,α
rad,δ

(R4)

+rq+2
ε,λ,γε

2(1−q)‖Hi(ϕ,ψ ; ·/Rε,λ,γ)‖q−1

C
4,α
2 (B̄Rε,λ,γ

)

+r4+µq−µ−q
ε,λ,γ εµ(1−q)∑2

i=1 ‖vi‖
q−1

C
4,α
µ (R4)

)
‖v2 − v1‖C4,α

µ (R4)
.

Provided v1, v2 ∈ C4,α
µ (R4) satisfy ‖vi‖C4,α

µ (R4) ≤ 2 cκ ε
µr2
ε,λ,γ , the fact

that ‖h‖C4,α
rad,δ(R4) ≤ 2 cκ ε

δr2
ε,λ,γ , the asymptotic behavior of Hi given by the

estimate (45) and for µ ∈ (1, 2) and q ∈ [1, 4), using Proposition 3.1 and (28)
we derive the desired estimate. �

Reducing εκ, λκ and γκ if necessary, we can assume that,

c̄κ r
2
ε,λ,γ ≤

1

2

for all ε ∈ (0, εκ), λ ∈ (0, λκ) and γ ∈ (0, γκ). Then, (43) and (44) in
Lemma 5.1 are enough to show that

v 7−→ N(ε, λ, γ, τ, ϕ, ψ ; v)

is a contraction from

{v ∈ C4,α
µ (R4) : ‖v‖C4,α

µ (R4) ≤ 2 cκ ε
µr2
ε,λ,γ}

into itself and hence has a unique fixed point v(ε, λ, γ, τ, ϕ, ψ ; ·) in this set.
This fixed point is a solution of (41) in BRε,λ,γ . �
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∗ For q = 4.

Recall that for ‖~‖C4,α
rad,δ(R4) ≤ 2 cκ r

2
ε,λ,γ then for each x ∈ B̄Rε,λ,γ

|~(x)| ≤ cκ r2+δ
ε,λ,γε

−δ ≤


cκ ε

1+δ/2 for ε ≥ max(λ, γ)
cκ λ

1+δ/2ε−δ for λ > max(ε, γ)
cκγ

1+δ/2ε−δ for γ > max(ε, λ)

which tends to 0 as ε, λ and γ tend to 0, using the condition (Aε,λ,γ). Then∥∥∥(1 + | · |2)−4e~
(
eH

i(ϕ,ψ ; ·/Rε,λ,γ) − 1
)∥∥∥

C
0,α
µ−4(B̄Rε,λ,γ )

≤ cκ ε2,

Again, using the fact that a functions w in Ck,αµ (R4) are bounded by a constant

times (1 + r2)µ/2 and have their ` − th partial derivatives that are bounded
by (1 + r2)(µ−`)/2, for ` = 1, · · · , k + α (a.e |∇`w| ≤ cκr

µ−` ‖w‖C4,α
rad,δ(R4),

(1 + r2)(µ−`)/2 ∼ rµ−` for r very large) and provided ~ ∈ C
4,α
rad,δ(R4) satisfy

‖~‖C4,α
rad,δ(R4) ≤ 2 cκ r

2
ε,λ,γ and from the asymptotic behavior of Hi given by

the estimate (45), µ ∈ (1, 2), q = 4, δ ∈ (0, 1) and using condition (Aε,λ,γ), we
deduce that∥∥∥|λ(|∇ (u1 + ~ +Hi(ϕ,ψ ; ·/Rε,λ,γ)

)
|4 − |∇ (u1 + ~) |4

)∥∥∥
C

0,α
µ−4(B̄Rε,λ,γ )

≤ cκλ sup
r≤Rε,λ,γ

r4−µ
(
|∇u1|3 + |∇~|3 + |∇Hi(ϕ, ·/Rε,λ,γ)|3

)
|∇Hi(ϕ, ·/Rε,λ,γ)|

≤ cκλε2
[
R2−µ
ε,λ,γ+R2−µ+3δ

ε,λ,γ ‖~‖3
C

4,α
rad,δ(R4)

+R8−µ
ε,λ,γ‖Hi(ϕ,ψ ; ·/Rε,λ,γ)‖3

C
4,α
2 (B̄Rε,λ,γ )

]
≤ cκλε2

[
ε−2+µr2−µ

ε,λ,γ + r2−µ+3δ
ε,λ,γ ε−2+µ−3δ‖~‖3

C
4,α
rad,δ(R4)

+ε−8+µr8−µ
ε,λ,γ‖Hi(ϕ,ψ ; ·/Rε,λ,γ)‖3

C
4,α
2 (B̄Rε,λ,γ )

]
≤ cκλ

[
εµr2−µ

ε,λ,γ + r2−µ+3δ
ε,λ,γ εµ−3δ‖~‖3

C
4,α
rad,δ(R4)

+r8−µ
ε,λ,γε

µ−6‖Hi(ϕ,ψ ; ·/Rε,λ,γ)‖3
C

4,α
2 (B̄Rε,λ,γ )

]
≤ cκ λ

(
εµr2−µ

ε,λ,γ + εµr2−µ
ε,λ,γ

(
r2+δ
ε,λ,γε

−δ
)3

+ εµr8−µ
ε,λ,γ

)
≤ cκ εµr2

ε,λ,γ

(
r2−µ
ε,λ,γ + r2−µ

ε,λ,γ

(
r2+δ
ε,λ,γε

−δ
)3

+ r8−µ
ε,λ,γ

)
≤ cκ εµr2

ε,λ,γ .

Again, using the asymptotic behavior of Hi given by the estimate (45) and
µ ∈ (1, 2), we get

∥∥| ε2∆
(
Hi(ϕ,ψ ; ·/Rε,λ,γ)

)∥∥
C

0,α
µ−4(B̄Rε,λ,γ )

≤ cκ εµr4−µ
ε,λ,γ ≤ cκ ε

µr2
ε,λ,γ .
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Making use of Proposition 3.1 together with (28), we conclude that

‖N(ε, λ, γ, τ, ϕ, ψ ; 0)‖C4,α
µ (R4) ≤ cκ ε

µr2
ε,λ,γ .

To derive the second estimate, we use the fact that |~(x)| −→ 0 as ε, λ
and γ tend to 0 under the condition (Aε,λ,γ) and then∥∥∥(1 + | · |2)−4 eH

i(ϕ,ψ;·/Rε,λ,γ)+~ (ev2 − ev1 − v2 + v1)
∥∥∥
C

0,α
µ−4(B̄Rε,λ,γ )

≤ cκεµr2
ε,λ,γ ‖v2 − v1‖C4,α

µ (R4),

∥∥∥(1 + | · |2)−4 e~
(
eH

i(ϕ,ψ ; ·/Rε,λ,γ) − 1
)

(v2 − v1)
∥∥∥
C

0,α
µ−4(B̄Rε,λ,γ )

≤ cκ ε2 ‖v2 − v1‖C4,α
µ (R4),

and ∥∥ ε2∆(v2 − v1)
∥∥
C

0,α
µ−4(B̄Rε,λ,γ )

≤ cκ r2
ε,λ,γ‖v2 − v1‖C4,α

µ (R4).

Provided h ∈ C
4,α
rad,δ(R4) satisfy ‖~‖C4,α

rad,δ(R4) ≤ 2 cκ r
2
ε,λ,γ and |~(x)| −→ 0 as

ε, λ and γ tend to 0, under the condition (Aε,λ,γ), we deduce that∥∥(1 + | · |2)−4 (e~ − 1) (v2 − v1)
∥∥
C

0,α
µ−4(B̄Rε,λ,γ

)
≤ cκ ‖~‖C4,α

rad,δ
(R4)
‖v2 − v1‖C4,α

µ (R4)

≤ cκ r2
ε,λ,γ ‖v2 − v1‖C4,α

µ (R4)
.

Using the fact that a functions in Ck,αµ (R4) are bounded by a constant

times (1 + r2)µ/2 and have their ` − th partial derivatives that are bounded
by (1 + r2)(µ−`)/2, for ` = 1, · · · , k + α, (a.e |∇`w| ≤ cκr

µ−` ‖w‖C4,α
µ (R4),

(1 + r2)(µ−`)/2 ∼ rµ−` for r very large) and provided ~ ∈ C
4,α
rad,δ(R4) satisfy

‖~‖C4,α
rad,δ(R4) ≤ 2 cκ r

2
ε,λ,γ for δ ∈ (0, 1) and making use of Lemma 3.2, we

deduce that
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∥∥∥∥|λ(∣∣∣∇(u1 + h+Hi(ϕ,ψ ; ·/Rε,λ,γ + v2)
∣∣∣4

−
∣∣∣∇(u1 + h+Hi(ϕ,ψ ; ·/Rε,λ,γ + v1)

∣∣∣4)∥∥∥∥
C

0,α
µ−4(B̄Rε,λ,γ

)

≤ cκλ sup
r≤Rε,λ,γ

r4−µ
[
|∇(u1 + h+Hi(ϕ,ψ ; ·/Rε,λ,γ) + v1)|3 + |∇(v2 − v1)|3

]
|∇(v2 − v1)|

≤ cκλ sup
r≤Rε,λ,γ

r4−µ
[
|∇u1|3 + |∇h|3 + |∇(Hi(ϕ,ψ ; ·/Rε,λ,γ)|3

+|∇v1|q−1 + |∇v2|3
]
|∇(v2 − v1)|

≤ cκλ
[
1 +R3δ

ε,λ,γ‖h‖3C4,α
rad,δ

(R4)
+R6

ε,λ,γ‖Hi(ϕ,ψ ; ·/Rε,λ,γ)‖3
C

4,α
2 (B̄Rε,λ,γ

)

+R3µ
ε,λ,γ

2∑
i=1

‖vi‖3C4,α
µ (R4)

]
‖v2 − v1‖C4,α

µ (R4)

≤ cκλ
(

1 + r3δ
ε,λ,γε

−3δ‖h‖3
C

4,α
rad,δ

(R4)
+ r6

ε,λ,γε
−6‖Hi(ϕ,ψ ; ·/Rε,λ,γ)‖3

C
4,α
2 (B̄Rε,λ,γ

)

+r3µ
ε,λ,γε

−3µ∑2
i=1 ‖vi‖

3

C
4,α
µ (R4)

)
‖v2 − v1‖C4,α

µ (R4)
.

Provided v1, v2 ∈ C4,α
µ (R4) satisfy ‖vi‖C4,α

µ (R4) ≤ 2 cκ ε
µr2
ε,λ,γ , the fact that

‖h‖C4,α
rad,δ(R4) ≤ 2 cκ r

2
ε,λ,γ and |~(x)| ≤ cκr

2+δ
ε,λ,γε

−δ −→ 0 as ε, λ and γ tend

to 0 under the condition (Aε,λ,γ), the asymptotic behavior of Hi given by the
estimate (45) and for µ ∈ (1, 2) and q = 4, using Proposition 3.1 and (28) we
derive the desired estimate. �

Reducing εκ, λκ and γκ if necessary, we can assume that,

c̄κ r
2
ε,λ,γ ≤

1

2

for all ε ∈ (0, εκ), λ ∈ (0, λκ) and γ ∈ (0, γκ) satisfying (Aε,λ,γ). Then, (43)
and (44) in Lemma 5.1 are enough to show that

v 7−→ N(ε, λ, γ, τ, ϕ, ψ ; v)

is a contraction from

{v ∈ C4,α
µ (R4) : ‖v‖C4,α

µ (R4) ≤ 2 cκ ε
µr2
ε,λ,γ}

into itself and hence has a unique fixed point v(ε, λ, γ, τ, ϕ, ψ ; ·) in this set.
This fixed point is a solution of (41) in BRε,λ,γ .

�
We summarize this in the :
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Proposition 5.1. Given κ > 1, there exist cκ > 0 (only depending on κ) such
that given ϕ ∈ C4,α(S3), ψ ∈ C2,α(S3) satisfying (36) and τ > 0 satisfying

| log(τ/τ∗)| ≤ κ r2
ε,λ,γ log 1/r2

ε,λ,γ , ‖ϕ‖C4,α(S3) ≤ κ r
2
ε,λ,γ and ‖ψ‖C2,α(S3) ≤ κ r

2
ε,λ,γ ,

then
i) for q ∈ [1, 4), there exist εκ > 0, λκ > 0, γκ > 0 and cκ > 0 (only

depending on κ) such that for all ε ∈ (0, εκ), λ ∈ (0, λκ) and γ ∈ (0, γκ), the
function

u(ε, λ, γ, τ, ϕ, ψ ; ·) := u1 + h+Hi(ϕ,ψ ; ·/Rε,λ,γ) + v(ε, λ, γ, τ, ϕ, ψ ; ·),

solves (39) in B̄Rε,λ,γ . In addition

‖v(ε, λ, γ, τ, ϕ, ψ ; ·)‖C4,α
µ (R4) ≤ 2 cκ ε

µr2
ε,λ,γ (46)

and
‖h‖C4,α

rad,δ(R4) ≤ 2 cκ ε
δr2
ε,λ,γ

ii) for q = 4, there exist εκ > 0, λκ > 0, γκ > 0 and cκ > 0 such that for
all ε ∈ (0, εκ), λ ∈ (0, λκ) and γ ∈ (0, γκ) satisfying (Aε,λ,γ), the function

u(ε, λ, γ, τ, ϕ, ψ ; ·) := u1 + ~ +Hi(ϕ,ψ ; ·/Rε,λ,γ) + v(ε, λ, γ, τ, ϕ, ψ ; ·),

solves (39) in B̄Rε,λ,γ . In addition

‖v(ε, λ, γ, τ, ϕ, ψ ; ·)‖C4,α
µ (R4) ≤ 2 cκ ε

µr2
ε,λ,γ

and
‖~‖C4,α

rad,δ(R4) ≤ 2 cκ r
2
ε,λ,γ

Observe that the function v(ε, λ, γ, τ, ϕ, ψ ; ·) being obtained as a fixed
point for contraction mapping, it depends continuously on the parameters τ .

6 The second nonlinear Dirichlet problem

For all (ε, λ, γ) ∈ (0, r2
0)3, we recall that

rε,λ,γ := max(
√
ε,
√
λ,
√
γ).

Recall that G(x, ·) denotes the unique solution of

∆2G(x, ·) = 64π2 δx
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in Ω, with G(x, ·) = ∆G(x, ·) = 0 on ∂Ω. In addition, the following decompo-
sition holds

G(x, y) = −8 log |x− y|+R(x, y)

where y 7−→ R(x, y) is a smooth function.

Lemma 6.1. There exists C > 0 such that for all x, y ∈ Ω, x 6= y, we have
that

|∇iG(x, y)| ≤ C|x− y|−i, i ≥ 1.

Proof. This estimate is originally due to Krasovskĭi [12] and some
reference therein.

Given x1, . . . , xm ∈ Ω. The data we will need are the following :

(i) Points Y := (y1, . . . , ym) ∈ Ωm close enough to X := (x1, . . . , xm).

(ii) Parameters η̃ := (η̃1, . . . , η̃m) ∈ Rm close to 0.

(iii) Boundary data Φ := (ϕ1, . . . , ϕm) ∈ (C4,α(S3))m and Ψ := (ψ1, . . . , ψm) ∈
(C2,α(S3))m each of which satisfies (38).

With all these data, we define

ũ :=

m∑
j=1

(1 + η̃j)G(yj , · ) +

m∑
j=1

χr0(· − yj)He(ϕj , ψj ; (· − yj)/rε,λ,γ) (47)

where χr0 is a cutoff function identically equal to 1 in Br0/2 and identically
equal to 0 outside Br0 .

Recall that we have defined ρ > 0 by

ρ4 =
384 ε4

(1 + ε2)4
.

We fix
q ∈ [1, 4].

We would like to find a solution of the equation

∆2 u− γ∆u− λ|∇u|q − ρ4 eu = 0, (48)

which is defined in Ω̄rε,λ,γ (Y ) and which is a perturbation of ũ. Writing
u = ũ + ṽ, this amounts to solve

∆2 ṽ = ρ4 eũ+ṽ −∆2 ũ + γ∆(ũ + ṽ) + λ|∇(ũ + ṽ)|q. (49)

We need to define an auxiliary weighted space :
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Definition 6.1. Given r̄ ∈ (0, r0/2), k ∈ R, α ∈ (0, 1) and ν ∈ R, we
define the Hölder weighted space Ck,αν (Ω̄r̄ (X)) as the space of functions w ∈
Ck,α(Ω̄r̄ (X)) which is endowed with the norm

‖w‖
C
k,α
ν (Ω̄r̄ (X))

:= ‖w‖Ck,α(Ω̄r0/2 (X))+

m∑
j=1

sup
r∈[r̄,r0/2)

(
r−ν ‖w(xj + r ·)‖Ck,α(B̄2−B1)

)
.

For all σ ∈ (0, r0/2) and all Y ∈ Ωm such that ‖X −Y ‖ ≤ r0/2, we denote
by

Ẽσ,Y : C0,α
ν (Ω̄σ (Y )) −→ C0,α

ν (Ω̄∗ (Y )),

the extension operator defined by Ẽσ,Y (f) = f in Ω̄σ (Y )

Ẽσ,Y (f) (yi + x) = χ̃

(
|x|
σ

)
f

(
yi + σ

x

|x|

)
for each j = 1, . . . ,m and Ẽσ,Y (f) = 0 in each Bσ/2(yj), where t 7−→ χ̃(t) is
a cutoff function identically equal to 1 for t ≥ 1 and identically equal to 0 for
t ≤ 1/2. It is easy to check that there exists a constant c = c(ν) > 0 only
depending on ν such that

‖Ẽσ,Y (w)‖C0,α
ν (Ω̄∗ (X)) ≤ c ‖w‖C0,α

ν (Ω̄σ (X)). (50)

We fix
ν ∈ (−1, 0),

and denote by G̃ν,Y the right inverse provided by Proposition 4.1. Clearly, it
is enough to find ṽ ∈ C4,α

ν (Ω∗ (Y )) solution of

ṽ = Ñ(ε, λ, γ, η̃, Y,Φ,Ψ ; ṽ) (51)

where we have defined

Ñ(ṽ) := Ñ(ε, λ, γ, η̃, Y,Φ,Ψ ; ṽ)

:= G̃ν,Y ◦ Ẽrε,λ,γ ,Y
(
ρ4 eũ+ṽ −∆2 ũ + γ∆(ũ + ṽ) + λ|∇(ũ + ṽ)|q

)
.

:= G̃ν,Y ◦ Ẽrε,λ,γ ,Y
(
S̃(v)

)
Given κ > 0 (whose value will be fixed later on), we further assume that

Φ and Ψ satisfy

‖Φ‖(C4,α(S3))m ≤ κ r2
ε,λ,γ , and ‖Ψ‖(C2,α(S3))m ≤ κ r2

ε,λ,γ . (52)
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Moreover, we assume that the parameters η̃ and the points Y are chosen to
satisfy

|η̃| ≤ κ r2
ε,λ,γ , and ‖Y −X‖ ≤ κ rε,λ,γ . (53)

Then, the following result holds :

Lemma 6.2. Given κ > 1. There exist εκ > 0, λκ > 0, γκ > 0, cκ > 0 and
c̄κ > 0 such that, for all ε ∈ (0, εκ), λ ∈ (0, λκ) and γ ∈ (0, γκ), we have

‖Ñ(ε, λ, γ, η̃, Y,Φ,Ψ ; 0)‖C4,α
ν (Ω̄∗ (Y )) ≤ cκ r

2
ε,λ,γ . (54)

Moreover,

‖Ñ(ε, λ, γ, η̃, Y,Φ,Ψ ; ṽ2)− Ñ(ε, λ, γ, η̃, Y,Φ,Ψ ; ṽ1)‖C4,α
ν (Ω̄∗ (Y ))

≤ c̄κ r2
ε,λ,γ ‖ṽ2 − ṽ1‖C4,α

ν (Ω̄∗ (Y )) (55)

provided ṽ = v1, v2 ∈ C4,α
ν (Ω̄∗ (Y )), Φ̃ = Φ1,Φ2 ∈ (C4,α(S3))m, Ψ̃ =

Ψ1,Ψ2 ∈ (C2,α(S3))m satisfy

‖ṽ‖
C

4,α
ν (Ω̄∗ (Y ))

≤ 2 cκ r
2
ε,λ,γ , ‖Φ̃‖(C4,α(S3))m ≤ κ r

2
ε,λ,γ , ‖Ψ̃‖(C2,α(S3))m ≤ κ r

2
ε,λ,γ ,

and |η̃| ≤ κ r2
ε,λ,γ , ‖Y −X‖ ≤ κ rε,λ,γ .

Proof. The proof of the first estimate follows from the asymptotic
behavior of He together with the assumption on the norm of boundary data
ϕ̃i given by (52). Recall that a functions in Ck,αν (Ω̄∗ (X)) are bounded by a
constant times the distance to X to the power ν and have their `− th partial
derivatives that are bounded by a constant times the distance to X to the
power ν − `, for ` = 1, · · · , k + α.

Indeed, let cκ be a constant depending only on κ (provided ε, λ and γ are
chosen small enough) it follows from the estimate of He := He

ϕ̃j ,ψ̃j
(Observe

that (38) implies that the expansion of He only involves powers of r that are
lower than or equal to −1.), given by lemma 4.2, then

|He
ϕ̃j ,ψ̃j

((x− yj)/rε,λ,γ)| ≤ cκr3
ε,λ,γr

−1. (56)

Recall that Ñ(ṽ) = G̃ν,Y ◦ Ẽrε,λ,γ ,Y
(
S̃(v)

)
, we will estimate Ñ(0) in dif-

ferent subregions of Ω̄∗.
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• In Br0/2(yj) for 1 ≤ j ≤ m, we have χr0(x− yj) = 1 and ∆2ũ = 0, using
Lemma 6.1, so that

|S̃(0)| ≤ cκε
4
m∏
j=1

[
e

(1+η̃j)G
yj

(x)+He
ϕ̃j ,ψ̃j

((x−yj)/rε,λ,γ)
]

+ γ|∆ũ|+ λ|∇ũ|q

≤ cκε
4
m∏
j=1

|x− yj |−8(1+η̃j) + γ|∆(ũ)|+ λ|∇(ũ)|q

≤ cκε
4|x− yj |−8(1+η̃j)

m∏
`=1, 6̀=j

|x− y`|−8(1+η̃j)

+cκγ

m∑
j=1

(1 + η̃j)|∆G(x, yj)|+ cκγ

m∑
j=1

∣∣∣[∆, χr0(· − yj)]
(
He(ϕj , ψj ; (· − yj)/rε,λ,γ)

)∣∣∣
+cκλ

m∑
j=1

(1 + η̃j)|∇G(x, yj)|q + cκλ

m∑
j=1

∣∣∣[∇, χr0(· − yj)]
(
He(ϕj , ψj ; (· − yj)/rε,λ,γ)

)∣∣∣q
≤ cκε

4|x− yj |−8(1+η̃j)
m∏

`=1,` 6=j

|x− y`|−8(1+η̃`) + cκγ(1 + η̃j)|x− yj |−2

+ cκγr
3
ε,λ,γ |x− yj |−3 + cκλ(1 + η̃j)|x− yj |−q + cκλr

3q
ε,λ,γ |x− y

j |−2q.

Here
[∇, χr0 ]w = ∇χr0 · w + χr0 · ∇w

and
[∆, χr0 ]w = w∆χr0 + χr0∆w + 2∇χr0 · ∇w

Hence, for ν ∈ (−1, 0), q ∈ [1, 4] and η̃j small enough, we get

‖Ñ(0)‖C4,α
ν (

⋃m
j=1 B(yj ,r0/2)) ≤ sup

rε,λ,γ≤r≤r0/2
r4−ν |Ñ(0)|

≤ cκε
4r−4
ε,λ,γ + cκγ + cκγr

3
ε,λ,γ + cκλ+ cκλr

4+q
ε,λ,γ

≤ cκr
2
ε,λ,γ .

• In Ωr0,yj (recall that Ωr0,yj = Ω \ ∪jBr0(yj)), we have χr0(x− yj) = 0 and

∆2ũ = 0, then

|S̃(0)| ≤ cκε
4|x− yj |−8(1+η̃j)

m∏
`=1, 6̀=j

|x− y`|−8(1+η̃j)

+ cκγ

m∑
j=1

(1 + η̃j)|∆G(x, yj)|+ cκλ

m∑
j=1

(1 + η̃j)|∇G(x, yj)|q

≤ cκε
4|x− yj |−8(1+η̃j) + cκγ(1 + η̃j)|x− yj |−2 + cκλ(1 + η̃j)|x− yj |−q.
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Thus
‖Ñ(0)‖C4,α

ν (Ωr0,x̃) ≤ cκ sup
r≥r0

r4−ν |S̃(0)| ≤ cκε4 + cκγ + cκλ.

• In Br0(yj) − Br0/2(yj), for j = 1, . . . ,m, taking into account that
∆2G(x, yj) = 0, we have

|S̃(0)| ≤ cκε
4

∣∣∣∣∣
m∏
j=1

e
(1+η̃j)G

yj e
χr0 (x−yj)He

ϕ̃j ,ψ̃j
((x−yj)/rε,λ,γ) −∆2ũ + γ∆ũ + λ|∇ũ|q

∣∣∣∣∣
≤ cκε

4|x− yj |−8(1+η̃j)
m∏

`=1,` 6=1

|x− y`|−8(1+η̃`)

+cκ

m∑
j=1

(1 + η̃j)|∆2G(x, yj)|+ cκ

m∑
j=1

∣∣∣[∆2, χr0(x− yj)]
(
He
ϕ̃j ,ψ̃j

((x− yj)/rε,λ,γ)
)∣∣∣

+cκγ

m∑
j=1

(1 + η̃j)|∆G(x, yj)|+ cκγ

m∑
j=1

∣∣∣[∆, χr0(· − yj)]
(
He(ϕj , ψj ; (· − yj)/rε,λ,γ)

)∣∣∣
+cκλ

m∑
j=1

(1 + η̃j)|∇G(x, yj)|q + cκλ

m∑
j=1

∣∣∣[∇, χr0(· − yj)]
(
He(ϕj , ψj ; (· − yj)/rε,λ,γ)

)∣∣∣q
≤ cκε

4|x− yj |−8(1+η̃j)
m∏

`=1,` 6=j

|x− y`|−8(1+η̃`) + cκγ(1 + η̃j)|x− yj |−2

+ cκγr
3
ε,λ,γ |x− yj |−3 + cκλ(1 + η̃j)|x− yj |−q + cκλr

3q
ε,λ,γ |x− y

j |−2q.

Here

[∆2, χr0 ]w = 2∆χr0∆w+w∆2χr0+4∇χr0 ·∇(∆w)+4∇w·∇(∆χr0)+4∇2χr0 ·∇2w.

So, for |x− yj | = r, we have r0/2 ≤ r ≤ r0 then all quantity of type |x− yj |`,
which appear to estimate |S̃(0)| are bounded, then using(50) and Proposi-
tion 4.1, we derive

‖Ñ(0)‖C4,α
ν (B(yj ,r0)−B(yj ,r0/2)) ≤ cκ sup

r0/2≤r≤r0
r4−ν |Ñ(0)|

≤ cκε4 + cκγ + cκγr
3
ε,λ,γ + cκλ+ cκλr

3q
ε,λ,γ ≤ cκr

2
ε,λ,γ .

Finally in each subregions of Ω̄∗, we conclude that

‖Ñ(0)‖C4,α
ν (Ω−

⋃m
j=1 B(yj ,rε,λ,γ)) ≤ cκr

2
ε,λ,γ .
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To derive the second estimate, we use the fact that for ‖ṽi‖C4,α
ν (Ω̄∗) ≤

cκr
2
ε,λ,γ for i = 1, 2 in different subregions of Ω̄∗, we derive the following

estimates

‖ρ4 (eũ+v2 − eũ+v1)‖C0,α
ν−4(Ω̄rε,λ,γ (Y ))

= ρ4 sup
r∈Ω̄rε,λ,γ (Y )

r4−ν (eũ+ṽ2 − eũ+ṽ1)

≤ cκε
4

∣∣∣∣∣∣
m∏
j=1

e(1+η̃j)Gyj e
χr0 (x−yj)He

ϕ̃j ,ψ̃j
((x−yj)/rε,λ,γ)

(eṽ1 − eṽ2)

∣∣∣∣∣∣
≤ cκ max(ε4r−4

ε,λ,γ , ε
4) ‖ṽ2 − ṽ1‖C4,α

ν (Ω̄∗ (Y ))

≤ cκε
2 ‖ṽ2 − ṽ1‖C4,α

ν (Ω̄∗ (Y ))

and the fact that for all w ∈ C4,α
ν (Ω̄∗ (Y )), there exist c > 0 such that |∆w| ≤

c rν−2‖w‖C4,α
ν (Ω̄∗ (Y )), then

‖γ(∆(ũ + ṽ1)−∆(ũ + ṽ2))‖C4,α
ν (Ω̄∗ (Y )) = cκγ sup

r∈Ω̄rε,λ,γ (Y )

r4−ν |∆(ṽ1 − ṽ2)|

≤ cκγ sup
r∈Ω̄rε,λ,γ (Y )

r2‖ṽ1 − ṽ2‖C4,α
ν (Ω̄∗)

≤ cκγ ‖ṽ1 − ṽ2‖C4,α
ν (Ω̄∗)

Again, making use of Lemma 3.2 and lemma 6.1 and the fact that for all
w ∈ C4,α

ν (Ω̄∗ (Y )), there exist c > 0 such that |∇w| ≤ c rν−1‖w‖C4,α
ν (Ω̄∗ (Y )),

we get

‖λ|∇(ũ + ṽ1)|q − λ|∇(ũ + ṽ2)|q‖
C

4,α
ν (Ω̄∗ (Y ))

=λ sup
r∈Ω̄rε,λ,γ

r4−ν
[
|∇(ũ + v1)|q−1 + |∇(v1 − v2)|q−1

]
|∇(v2 − v1)|

=λ sup
r∈Ω̄rε,λ,γ

r4−ν
[
|∇ũ|q−1 + |∇v1|q−1 + |∇v2|q−1

]
|∇(v2 − v1)|

≤cκλ sup
r∈Ω̄rε,λ,γ

r4−ν
∣∣∣∇( m∑

j=1

(1 + η̃j)G(yj , · )

+

m∑
j=1

χr0(· − yj)He(ϕj , ψj ; (· − yj)/rε,λ,γ))
)∣∣∣q−1

|∇(v2 − v1)|
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+ cκλ sup
r∈Ω̄rε,λ,γ

r4−ν
2∑
i=1

‖ṽi‖q−1

C
4,α
ν (Ω̄∗)

|∇(v2 − v1)|

≤ cκλ (1 + η̃j)cκ sup
r∈Ω̄rε,λ,γ

r3
m∑
j=1

|∇G(yj , · )|q−1‖ṽ2 − ṽ1‖C4,α
ν (Ω̄∗)

+λ sup
r∈Ω̄rε,λ,γ

r3
m∑
j=1

∣∣∣[∇, χr0(x− yj)]
(
He
ϕ̃j ,ψ̃j

((x− yj)/rε,λ,γ)
)∣∣∣q−1

‖ṽ2 − ṽ1‖C4,α
ν (Ω̄∗)

+ cκ λ sup
r∈Ω̄rε,λ,γ

r3
2∑
i=1

‖ṽi‖q−1

C
4,α
ν (Ω̄∗)

‖ṽ2 − ṽ1‖C4,α
ν (Ω̄∗)

≤ cκλ (1 + η̃j)cκ sup
r∈Ω̄rε,λ,γ

r3r1−q‖ṽ2 − ṽ1‖C4,α
ν (Ω̄∗)

+ cκλ sup
r∈Ω̄rε,λ,γ

r3r
3(q−1)
ε,λ,γ r−2(q−1)‖ṽ2 − ṽ1‖C4,α

ν (Ω̄∗)

+ 2cκλ r
2(q−1)
ε,λ,γ sup

r∈Ω̄rε,λ,γ

r3‖ṽ2 − ṽ1‖C4,α
ν (Ω̄∗)

≤ cκλ cκ sup
r∈Ω̄rε,λ,γ

r4−q‖ṽ2 − ṽ1‖C4,α
ν (Ω̄∗) + cκλ r

3(q−1)
ε,λ,γ sup

r∈Ω̄rε,λ,γ

r5−2q‖ṽ2 − ṽ1‖C4,α
ν (Ω̄∗)

+ 2cκλ r
2(q−1)
ε,λ,γ sup

r∈Ω̄rε,λ,γ

r3‖ṽ2 − ṽ1‖C4,α
ν (Ω̄∗)

≤ cκλ
(

1 + r
3(q−1)
ε,λ,γ + max

(
r

3(q−1)
ε,λ,γ , rq+2

ε,λ,γ

)
+ r

2(q−1)
ε,λ,γ

)
‖ṽ2 − ṽ1‖C4,α

ν (Ω̄∗)

≤ cκ‖ṽ2 − ṽ1‖C4,α
ν (Ω̄∗).

Using(50) and Proposition 4.1, we conclude that

‖Ñ(ṽ1)− Ñ(ṽ2)‖C4,α
ν (Ωrε,λ,γ ,yj

) ≤ cκr
2
ε,λ,γ‖ṽ1 − ṽ2‖C4,α

ν (Ω̄∗). �

Reducing εκ, λκ and γκ if necessary, we can assume that

c̄κ r
2
ε,λ,γ ≤

1

2

for all ε ∈ (0, εκ), λ ∈ (0, λκ) and γ ∈ (0, γκ) . Then, (54) and (55) are enough
to show that

ṽ 7−→ Ñ(ε, λ, γ, η̃, Y,Φ,Ψ ṽ)

is a contraction from

{ṽ ∈ C4,α
ν (Ω̄∗ (Y )) : ‖ṽ‖C4,α

ν (Ω̄∗ (Y )) ≤ 2 cκ r
2
ε,λ,γ}

into itself and hence has a unique fixed point ṽ(ε, η̃, Y,Φ,Ψ ; ·) in this set. This
fixed point is a solution of (49).

We summarize this in the :
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Proposition 6.1. Given κ > 0, there exists εκ > 0, λκ > 0, γκ > 0, and cκ >
0 (only depending on κ) such that for all ε ∈ (0, εκ), λ ∈ (0, λκ), γ ∈ (0, γκ)
(satisfying condition (Aε,λ,γ), when q = 4) and for all set of parameters η̃,
points Y satisfying

|η̃| ≤ κ r2
ε,λ,γ , and ‖Y −X‖ ≤ κ rε,λ,γ

and boundary functions Φ and Ψ satisfying (38) and

‖Φ‖(C4,α(S3))m ≤ κ r2
ε,λ,γ , and ‖Ψ‖(C2,α(S3))m ≤ κ r2

ε,λ,γ .

the function

ũ(ε, λ, γ, η̃, Y,Φ,Ψ ; ·) :=

m∑
j=1

(1 + η̃j)Gyj +

m∑
j=1

χr0(· − yj)He(ϕj , ψj ; (· − yj)/rε,λ,γ)

+ ṽ(ε, λ, γ, η̃, Y,Φ,Ψ ; ·),

solves (48) in Ω̄rε,λ,γ (Y ). In addition

‖ṽ(ε, λ, γ, η̃, Y,Φ,Ψ ; ·)‖C4,α
ν (Ω̄∗) ≤ 2 cκ r

2
ε,λ,γ . (57)

Observe that the function ṽε,λ,γ,η̃,Y,Φ,Ψ being obtained as a fixed point for
contraction mapping, it depends continuously on the parameters η̃ and the
points Y .

7 The nonlinear Cauchy-data matching

Keeping the notations of the previous sections, we gather the results of the
Proposition 5.1 and Proposition 6.1. From now let κ > 1 is fixed large enough
(we will shortly see how) and assume that ε ∈ (0, εκ), λ ∈ (0, λκ) and γ ∈
(0, γκ) (satisfying condition (Aε,λ,γ), when q = 4).

Assume that X = (x1, . . . , xm) ∈ Ωm is a nondegenerate critical point of
the function W defined in the introduction. For all j = 1, . . . ,m, we define
τ j∗ > 0 by

−4 log τ j∗ = R(xj , xj) +
∑
` 6=j

G(x`, xj). (58)

We assume that we are given :

(i) points Y := (y1, . . . , ym) ∈ Ωm close to X := (x1, . . . , xm) satisfying
(53).
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(ii) parameters η̃ := (η̃1, . . . , η̃m) ∈ Rm satisfying (53).

(iii) parameters T := (τ1, . . . , τm) ∈ (0,∞)m satisfying (42) (where, for each
j = 1, . . . ,m, τ∗ is replaced by τ j∗ ).

We set
Rjε,λ,γ := τ j/rε,λ,γ

First, we consider some set of boundary data

Φ := (ϕ1, . . . , ϕm) ∈ (C4,α(S3))m and Ψ := (ψ1, . . . , ψm) ∈ (C2,α(S3))m

satisfying (36) and (42).

Thanks to the result of Proposition 5.1, we can find uint a solution of

∆2 u− γ∆u− λ|∇u|q − ρ4 eu = 0

in each Brε,λ,γ (yj), which can be decomposed as

uint(ε, λ, γ, T, Y,Φ,Ψ ; x) :=uε,τj (x− yj) + h(Rjε,λ,γ(x− yj)/rε,λ,γ)

+ Hi(ϕj , ψj ; (x− yj)/rε,λ,γ)

+ v(ε, λ, γ, τ j , ϕj , ψj ; Rjε,λ,γ(x− yj)/rε,λ,γ)

in Brε,λ,γ (yj) where, for q ∈ [1, 4) and δ ∈
(

0,min(1, 4− q)
)

,

‖h‖C4,α
rad,δ(R4) ≤ 2 cκ ε

δr2
ε,λ,γ

and for q = 4, h := ~ and δ ∈ (0, 1),

‖~‖C4,α
rad,δ(R4) ≤ 2 cκ r

2
ε,λ,γ .

Similarly, given some boundary data

Φ̃ := (ϕ̃1, . . . , ϕ̃m) ∈ (C4,α(S3))m and Ψ̃ := (ψ̃1, . . . , ψ̃m) ∈ (C2,α(S3))m

satisfying (38) and (52), we use the result of Proposition 6.1, to find uext a
solution of

∆2u− λ∆u− γ|∇u|q − ρ4 eu = 0
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in Ω̄rε,λ,γ (Y ), which can be decomposed as

uext(ε, λ, γ, η̃, Φ̃, Ψ̃ ; x) :=

m∑
j=1

(1 + η̃j)G(yj , x)

+

m∑
j=1

χr0(x− yj)He(ϕ̃j , ψ̃j ; (x− yj)/rε,λ,γ)

+ ṽ(ε, λ, γ, η̃, Y, Φ̃, Ψ̃ ; x).

It remains to determine the parameters and the boundary functions in such
a way that the function which is equal to uint in ∪j Brε,λ,γ (yj) and which is
equal to uext in Ω̄rε,λ,γ (Y ) is a smooth function. This amounts to find the
boundary data and the parameters so that, for each j = 1, . . . ,m

uint = uext, ∂ruint = ∂ruext, ∆uint = ∆uext, ∂r∆uint = ∂r∆uext,
(59)

on ∂Brε,λ,γ (yj). Assuming we have already done so, this provides for each
ε, λ and γ are small enough, a function wε,λ,γ ∈ C4,α(Ω̄) (which is obtained
by patching together the function uint and the function uext) solution of
∆2 u − γ∆u − λ|∇u|q − ρ4 eu = 0 and elliptic regularity theory implies that
this solution is in fact smooth. This will complete the proof of our result since,
as ε, λ and γ tend to 0, the sequence of solutions we have obtained satisfies
the required properties, namely, away from the points xj the sequence wε,λ,γ
converges to

∑
j G(xj , · ). This completes the proof of Theorem 1.2 and The-

orem 1.3. We leave the details to the reader (For more details see [1]).
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