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Some bounds for the relative generalized
Hamming weights of some evaluation codes

Manuel González Sarabia

Abstract

In this paper we find some bounds for the relative generalized Hamm-
ing weights of some codes parameterized by a set of monomials of the
same degree. Also we compare the relative generalized Hamming weights
of the codes CX(d) and CX′(d) when X ′ is embedded in X. We use
these results to obtain some lower bounds for the relative generalized
Hamming weights of the codes parameterized by the edges of any con-
nected bipartite graph with bipartition (V1, V2) and where |V1| = n1,
|V2| = n2, in terms of the relative generalized Hamming weights of the
codes associated to the projective tori Tn1−1 and Tn2−1.

1 Introduction

The relative generalized Hamming weights (RGHW from now on) are intro-
duced in [12]. They are a natural generalization of the generalized Hamming
weights introduced by Wei in [18]. The study of the RGHW is motivated be-
cause of their usefulness to protect messages from an adversary in the wire–tap
channel of type II with illegitimate parties. Some properties of the RGHW of
q–ary codes are described in [10] and they are computed in the cases of almost
all 4–dimensional linear codes and their subcodes. Moreover some equiva-
lences, inequalities and bounds are given in [20]. Recently the behavior of the
RGHW of one point algebraic geometric codes is analyzed in [1]. In the case
of Hermitian codes, the RGHW are often much larger than the corresponding
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generalized Hamming weights. In this paper we consider the case of some
evaluation codes, known as parameterized codes, which are defined in [15].
Parameterized codes have been studied in several cases (see [2], [3], [4], [5],
[6], [11], [13], [14], [16], [17]). In fact in [7] there are some bounds for the ge-
neralized Hamming weights of some parameterized codes. We generalize these
results to the RGHW of this kind of codes. The contents of this paper are as
follows.

In Section 2 we introduce some basic definitions in order to understand the
main results of this work.

In Section 3 we establish some lower bounds for the RGHW of the codes
CX(d) which are parameterized by some monomials of the same degree α.
These bounds depend on the RGHW of codes associated to the projective
torus and the length of the codes CX(d) (see Theorem 3.2).

In Section 4 we describe the relationships among the RGHW of the codes
CX(d) and the RGHW of the codes CX′(d) when X ′ is embedded in X (see
Theorem 4.2). These inequalities are useful because they work when we con-
sider codes parameterized by the edges of a simple graph G and the correspon-
ding codes parameterized by the edges of any subgraph G′. Finally we study
the case of codes parameterized by the edges of any connected bipartite graph.

2 Preliminaries

Let K = Fq be a finite field with q elements and from now on we denote the
cardinality of any set X as |X|. Also let L = K[Z1, . . . , Zn] = ⊕d≥0Ld be a
polynomial ring with n variables and the natural grading. Consider a set of
m monomials of the form

Za1 , . . . ,Zam , (1)

where Zai = Zai11 · · ·Zainn and aij is a non–negative integer for all i = 1, . . . ,m,
j = 1, . . . , n. The set X given by

X = {[(ta1 , . . . , tam)] ∈ Pm−1 : ti ∈ K∗}, (2)

where tai = tai11 · · · tainn for all i = 1, . . . ,m and K∗ := K \ {0}, is a toric
set parameterized by the monomials (1). Moreover let S = K[X1, . . . , Xm] =
⊕d≥0Sd be another polynomial ring also with the natural grading. Let X =
{P1, . . . , P|X|} be the toric set given in (2) and consider the evaluation map

evd : Sd −→ K |X|,

f 7→
(
f(P1)

Xd
1 (P1)

, . . . ,
f(P|X|)

Xd
1 (P|X|)

)
.
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This evaluation map is a linear map between the K–vector spaces Sd and
K |X|. The parameterized code of order d associated to the toric set X, or
the code of order d parameterized by the monomials (1), is the image of the
evaluation map evd, and it is denoted by CX(d). Therefore

CX(d) =

{(
f(P1)

Xd
1 (P1)

, . . . ,
f(P|X|)

Xd
1 (P|X|)

)
: f ∈ Sd

}
. (3)

It is a well known fact that the dimension of the code CX(d) is given by
the Hilbert function HX(d) (see [15]) and, by definition, its length is |X|.
A projective torus in Pn−1 is a toric set parameterized by the monomials
Z1, . . . , Zn, that is

Tn−1 = {[(t1, . . . , tn)] ∈ Pn−1 : ti ∈ K∗ for all i}, (4)

and the parameterized code of order d associated to this projective torus is
the subspace of K |Tn−1| given by

CTn−1(d) =

{(
g(R1)

Zd1 (R1)
, . . . ,

g(R|Tn−1|)

Zd1 (R|Tn−1|)

)
: g ∈ Ld

}
, (5)

where Tn−1 = {R1, . . . , R|Tn−1|} and |Tn−1| = (q − 1)n−1.
Furthermore let C be an [s, k] linear code (it means that C is a subspace

of Ks and its dimension is k). Let B be a subset of Ks. The support of this
set is

supp (B) = {i : there exists (b1, . . . , bs) ∈ B such that bi 6= 0}.

Moreover if C1 is a subspace of C with dimC1 = k1, the jth relative generalized
Hamming weight of C and C1 is given by

Mj(C,C1) = min{ |supp (D)| : D is a subspace ofC,

dim(D) = j, D ∩ C1 = {~0}}. (6)

for all j = 1, . . . , k − k1. In the case that C1 = {~0}, we obtain the jth
generalized Hamming weight of C,

dj(C) = min{ |supp (D)| : D is a subspace ofC, dim(D) = j}.

That is, dj(C) = Mj(C, {~0}) for all j = 1, . . . , k. It is worth recalling that
d1(C) is the minimum distance of the linear code C.

On the other hand let G be a connected bipartite graph with a bipartition
of its vertex set given by (V1, V2), where |V1| = n1 and |V2| = n2. If every
vertex in V1 is joined to every vertex in V2, then G is called a complete bipartite
graph and it is denoted by Kn1,n2 . A spanning subgraph of a graph G is a
subgraph containing all the vertices of G.
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3 Comparison with the projective torus

We use the notation introduced in [7]. Let X = {P1, . . . , P|X|} be the toric set
parameterized by the monomials (1), but in this section we consider the case
where all the monomials are of the same degree α. The following two maps
were introduced in [7] and they will be useful in this paper:

µ : Tn−1 −→ X,

[(t1, . . . , tn)] 7→ [(ta1 , . . . , tam)], (7)

and

τ : Sd −→ Lαd,

f(X1, . . . , Xm) 7→ f(Za1 , . . . ,Zam). (8)

We notice that µ is an epimorphism of multiplicative groups and that

| kerµ| = (q−1)n−1

|X| . Also τ is a linear map between the linear spaces Sd and

Lαd. With the help of these maps we define the following function:

θ : CX(d) −→ CTn−1(αd),

Λf 7→ Ωf , (9)

where

Λf :=

(
f(P1)

Xd
1 (P1)

, . . . ,
f(P|X|)

Xd
1 (P|X|)

)
, Ωf :=

(
τ(f)(R1)

Zαd1 (R1)
, . . . ,

τ(f)(R|Tn−1|)

Zαd1 (R|Tn−1|)

)
,

and f ∈ Sd.

Lemma 3.1. Let θ be the map given in (9). θ is an injective linear map and
if B is a subset of CX(d) then

| supp (θ(B))| = | kerµ| · | supp (B)|.

Proof. This is an immediate consequence of [7, Lemma 3.3].

Theorem 3.2. Let X be a toric set parameterized by a set of monomials of
the same degree α. Let C1 be a linear subspace of CX(d) with dimC1 = k1.
Then the jth relative generalized Hamming weight of CX(d) and C1 is bounded
by

Mj(CX(d), C1) ≥
⌈
|X| ·Mj(CTn−1

(αd), θ(C1))

(q − 1)n−1

⌉
,

for all j = 1, . . . ,HX(d)− k1.
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Proof. Let D be a subspace of CX(d) with dimD = j, D∩C1 = {~0} and such
that

Mj(CX(d), C1) = | supp (D)|.
Let D1 = θ(D). D1 is a subspace of CTn−1

(αd) and dimD1 = dimD = j.
Moreover

D1 ∩ θ(C1) = θ(D) ∩ θ(C1) = θ(D ∩ C1) = θ({~0}) = {~0}.

By using Lemma 3.1 we obtain that

| supp (D1)| = | supp (θ(D))| = | kerµ| · | supp (D)|.

Therefore

Mj(CTn−1
(αd), θ(C1)) ≤ | supp (D1)| = | kerµ| · | supp (D)|,

and due to the fact that | kerµ| = (q−1)n−1

|X| then

Mj(CX(d), C1) = | supp (D)| ≥
|X| ·Mj(CTn−1

(αd), θ(C1))

(q − 1)n−1
,

and the claim follows.

4 Comparison between embedded sets

Let X ⊆ Pm−1 and X ′ ⊆ Ps−1, with s < m, be two toric sets parameterized
by some monomials in such a way that X ′ is embedded in X and |X| = η · |X ′|.
We know that η = kerπ where π is the map

π : X −→ X ′,

[(ta1 , . . . , tam)] 7→ [(ta1 , . . . , tas)].

We also use the notation introduced in [7]. As in the last section, let
X = {P1, . . . , P|X|}. Also let X ′ = {Q1, . . . , Q|X′|}. If f is an element of
K[X1, . . . , Xs]d then we define ∆f ∈ CX′(d) as

∆f :=

(
f(Q1)

Xd
1 (Q1)

, . . . ,
f(Q|X′|)

Xd
1 (Q|X′|)

)
.

Now consider the map

Φ : CX′(d) −→ CX(d),

∆f 7→ Λf , (10)

where Λf was defined in Section 3.
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Lemma 4.1. Let Φ be the map given by (10). Φ is an injective linear map
and if S′ is a subset of CX′(d) then

| supp (Φ(S′))| = η · | supp (S′)|.

Proof. The claim follows immediately from [7, Lemma 4.1].

Theorem 4.2. Let X ⊆ Pm−1 and X ′ ⊆ Ps−1, with s < m, be two toric sets
parameterized by some monomials in such a way that X ′ is embedded in X
and |X| = η|X ′|. Let C ′ be a subspace of CX′(d) with dimC ′ = k′. Therefore
the jth relative generalized Hamming weight of CX′(d) and C ′ is bounded by

Mj(CX′(d), C ′) ≥
⌈

1

η
·Mj(CX(d),Φ(C ′))

⌉
,

for all j = 1, . . . ,HX′(d)− k′.

Proof. Let E be a subspace of CX′(d) with dimE = j, E ∩C ′ = {~0} and such
that

Mj(CX′(d), C ′) = | supp (E)|.

Notice that Φ(E) is a subspace of CX(d), dim Φ(E) = dimE = j and

Φ(E) ∩ Φ(C ′) = Φ(E ∩ C ′) = Φ({~0}) = {~0}.

Then, by using Lemma 4.1, we obtain that

Mj(CX(d),Φ(C ′)) ≤ | supp (Φ(E))| = η · | supp (E)|.

Therefore

Mj(CX′(d), C ′) = | supp (E)| ≥ 1

η
·Mj(CX(d),Φ(C ′)),

and the claim follows.

Remark 4.3. Theorem 3.2 recovers [7, Theorem 3.4] if we take C1 = {~0}.
Analogously when we take C ′ = {~0} in Theorem 4.2, we get [7, Theorem 4.2].

Corollary 4.4. Let G be a connected bipartite graph with bipartition (V1, V2),
where |V1| = n1 and |V2| = n2. Let X ′ be the toric set parameterized by its
edges. If C ′ is a subspace of CX′(d) then

Mj(CX′(d), C ′) ≥Mj(CTn1−1(d)⊗ CTn2−1(d),Φ(C ′)),

for all j = 1, . . . ,HX′(d)− k′ and where ⊗ means the tensor product of linear
spaces.
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Proof. If G is a connected bipartite graph with bipartition (V1, V2), and where
|V1| = n1, |V2| = n2 then it is a spanning subgraph of the complete bipartite
graph Kn1,n2

(see [9]). If X is the toric set parameterized by the edges of
Kn1,n2

then X ′ is embedded in X and (see [15, Corollary 3.8]) |X| = |X ′|.
Moreover it is known that (see [2])

CX(d) = CTn1−1 ⊗ CTn2−1 .

The claim follows immediately from Theorem 4.2.

Remark 4.5. If we take C ′ as the zero subspace and j = 1 in Corollary 4.4, we
recover the lower bound for the minimum distance given in [17, Theorem 3.6]:
Let G be a connected bipartite graph with bipartition (V1, V2), where |V1| = n1
and |V2| = n2. Let X ′ be the toric set parameterized by its edges. Then

d1(CX′(d)) ≥ d1(CTn1−1
(d)) · d1(CTn2−1

(d)),

and the minimum distances of the right side can be computed by using [16,
Theorem 3.5]. If we take C ′ as the zero subspace, j = 2 in Corollary 4.4, and
the formula for the second generalized Hamming weight of product codes (see
[19, Theorem 3]) we obtain the following lower bound: Let G be a connected
bipartite graph with bipartition (V1, V2), where |V1| = n1 and |V2| = n2. Let
X ′ be the toric set parameterized by its edges. Then

d2(CX′(d)) ≥ min{d1(CTn1−1
(d)) · d2(CTn2−1

(d)),

d2(CTn1−1
(d)) · d1(CTn2−1

(d))}.

Example 4.6. Consider the cycle C6, which is a connected bipartite graph.
It can be seen as a spanning subgraph of the complete bipartite graph K3,3

(see Figure 1). Let K = Fq a finite field with q elements and let X be the
toric set associated to the edges of the complete bipartite graph K3,3. Then

X = {[(t1t2, t2t3, t3t4, t4t5, t5t6, t6t1, t1t4, t3t6, t5t2)] ∈ P8 : ti ∈ K∗}.

Moreover if X ′ is the toric set associated to the edges of the cycle C6 then

X ′ = {[(t1t2, t2t3, t3t4, t4t5, t5t6, t6t1)] ∈ P5 : ti ∈ K∗}.

Therefore X ′ is embedded in X and |X| = |X ′| = (q − 1)4 (because C6 and
K3,3 are connected bipartite graphs and by using [15, Corollary 3.8]).

If we use Remark 4.5 we obtain that

d1(CX′(d)) ≥ (d1(CT2
(d)))2.

With the help of Macaulay2 (see [8]) we compute the following results.
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Figure 1: C6 as a spanning subgraph of the complete bipartite graph K3,3.

• If q = 3, d1(CX′(1)) ≥ 4. The exact value of the minimum distance is 6.

• If q = 5, d1(CX′(1)) ≥ 144. The exact value of the minimum distance is
186.

• If q = 5, d1(CX′(2)) ≥ 64.

On the other hand, by using again the Remark 4.5, we obtain that

d2(CX′(d)) ≥ d1(CT2
(d)) · d2(CT2

(d)).

Also with the help of Macaulay2 we notice that some lower bounds are as
follows.

• If q = 3, d2(CX′(1)) ≥ 6 and d2(CX′(2)) ≥ 2.

• If q = 5, d2(CX′(1)) ≥ 180 and d2(CX′(2)) ≥ 88.

• If q = 7, d2(CX′(1)) ≥ 1050 and d2(CX′(2)) ≥ 696.
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[6] M. González Sarabia, C. Renteŕıa Márquez, and E. Sarmiento Rosales,
Projective parameterized linear codes, An. Stiint. Univ. Ovidius Con-
stanta Ser. Mat. 23 (2) (2015).

[7] M. González Sarabia, and C. Renteŕıa Márquez, Generalized Hamming
weights and some parameterized codes. Submitted for publication (2015).

[8] D.R. Grayson, M. Stillman: Macaulay2 (Available via anonymous ftp
from math.uiuc.edu 1996).

[9] F. Harary, Graph Theory (Addison–Wesley, 1971).

[10] Z. Liu, W. Chen, and Y. Luo, The relative generalized Hamming weight
of linear q–ary codes and their subcodes, Des. Codes Cryptogr. 48 (2)
(2008) 111–123.
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