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RELATION BETWEEN GROUPS WITH
BASIS PROPERTY AND GROUPS WITH

EXCHANGE PROPERTY

A.Al Khalaf, M. Alkadhi

Abstract

A group G is called a group with basis property if there exists a basis
(minimal generating set) for every subgroup H of G and every two bases
are equivalent. A group G is called a group with exchange property, if
x /∈ 〈X〉 ∧ x ∈ 〈X ∪ {y}〉 , then y ∈ 〈X ∪ {x}〉, for all x, y ∈ G and for
every subset X ⊆ G.

In this research, we proved the following: Every polycyclic group
satisfies the basis property. Every element in a group with the exchange
property has a prime order. Every p-group satisfies the exchange prop-
erty if and only if it is an elementary abelian p-group. Finally, we found
necessary and sufficient condition for every group to satisfy the exchange
property, based on a group with the basis property.

1 Introduction

A generating set X is said to be minimal if it has no proper subset which
forms a generating set. The subset X of a group G is called independent, if
for all x ∈ X, x /∈ 〈X\ {x}〉. Independent set X is called a basis subgroup
〈X〉. In 1978 Jones [5] introduced an initial study of semigroups with the basis
property. Jones [5] states that if G is an inverse semigroup and U ≤ V ≤ G
then a U -basis for V is a subset X of V which is minimal such that 〈U ∪X〉 =
G.
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So a minimal generating set for V is a ∅-basis. A basis property of universal
algebra A means that every two minimal (with respect to inclusion) generating
set ( basis) of an arbitrary subalgebra of A have the same cardinality [1].

2 Basis property

Definition 2.1 A group G is called a group with basis property if there exists
a basis minimal (irreducible) generating sets (with respect to inclusion) for
every subgroup H of G and every two bases are equivalent (i.e. they have the
same cardinality) [1].

Notice that finitely generated vector spaces have the property that all
minimal generating sets have the same cardinality. Jones [5] introduce another
concept which is state for inverse semigroup.

Definition 2.2 An inverse semigroup S has the strong basis property if
for any inverse subsemigroup V of S and inverse subsemigroup U of V any
two U -bases for V have the same cardinality.

Let (Z, +) be an additive abelian group, then we can write Z = 〈1〉 = 〈2, 3〉
even though 2 /∈ 〈3〉 and 3 /∈ 〈2〉. Thus Z does not have the basis property.
Hence free groups do not have the basis property. The first results on the
basis property of groups was in [6]. The author proved that a group with
basis property is periodic, all elements of such a group have prime power
order, and solvable. Therefore by [1] every finite p-group has a basis property,
and the homomorphic image of every finite group with basis property is again
a group with basis property, but in case of infinite group we have the following:

Remark 2.3 Let G =
∑∞

i=1 Zpi be a direct sum of a cyclic p-group P ,
then one of homomorphic image is a quasicyclic group K = Zp∞ , which is not
a group with basis property, but the group G is a group with basis property.

Lemma 2.4 Let G be a group in which every element has prime power
order, let x ∈ G such that |x| = pc and y ∈ G such that |y| = q b, p 6= q are
primes. Then xy 6= yx.

Proof. Suppose that xy = yx , then xy is an element of order pcqb , hence xy
has a composite order in G. This is contradiction with basis property[1], so
xy 6= yx.

Proposition 2.5 Let G be a finite nilpotent group. Then G is a group
with basis property if and only if G is a primary group.

Proof. Suppose that G is a finite nilpotent group with basis property. From
[11] every finite nilpotent group is decomposable in a direct product of Sylow
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subgroups. Then
G = G1 ×G2 × · · · ×Gm,

such that Gi is a pi-group for some primes pi, pi 6= pj if i 6= j. If m > 1, then
in G there exists two commute elements with a prime power order. Hence we
have a contradiction with lemma(2-4). Thus G is a primary group.

Conversely, if G is a primary group, then G is a group with basis property
[5].

A classification of group with the basis property was announced by Dick-
son and Jones in [5], but as far as we can see this has yet to be published.
However a classification of finite groups with the basis property was given by
Al Khalaf [1] exploiting Higman’s result, this classification requires a technical
condition on the p-group and he proved the following theorem:

Theorem 2.6 [1]. Let a finite group G be a semidirect product of a p-
group P = Fit(G) (Fitting subgroup) of G by a cyclic q− group 〈y〉, of order
qb, where p 6= q (p and q are primes), b ∈ N.Then the group G has basis
property if and only if for any element y ∈ 〈y〉 , y 6= e and for any invariant
subgroup Hof P the automorphism ϕu must define an isotopic representation
on every quotient Frattini subgroup of H.

In [4], the author used some common results from both group and module
theory using Maschke, Clifford and Krull-Schmidt, to classify the group with
basis property.

Finally Jones [7] studied basis property from the point of view exchange
properties.

Theorem 2.7 [3] Let G be a semidirect product of abelian p-group P by
a cyclic q-group 〈y〉, of order qb, where p 6= q (p and q are primes), b ∈ N,
which is defined automorphism ϕ of orderqb and P has an exponent pc , c ∈ N.
Then the group G has basis property if and only if there exists a polynomial
g(x) ∈ Z [x] such that satisfy the following conditions:

1. The polynomial f (x) = θ(g (x)) is irreducible over the field GF (p),

f (x) |x qb − 1 and f (x) - xq
b−1

− 1 .

2. gm (ϕ) = 0.

In this research we study special group with the basis property. The con-
cept of exchange property and continued results as shown in [7] and[8].
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Theorem 2.8 Let G be a finite polycyclic group such that G has a
presentation [9]:

G =
〈
x, y : xp

c

= yq
b

= 1 , y−1xy = xr
〉
, (2− 1)

such that p 6= q (p and q are primes) b, c, r ∈ Z+, (p , r − 1) = 1 and

rq
b

≡ 1 ( mod pc), r 6≡ 1 ( mod p ) , 0 ≤ r ≤ pc. (2− 2)

Then G is a group with the basis property if and only if it satisfies the following
conditions:

p ≡ 1
(
mod qb

)
, (2− 3)

rq
b−1

6≡ 1 ( mod p ) . (2− 4)

Proof. Suppose that G is a group with the basis property. From (2 − 1) we
have that G is a semidirect product of cyclic p-group 〈x〉, |〈x〉| = p

c
by a cyclic

q-group |〈y〉| = q
b
, where p 6= q (p and q are primes) b, c ∈ Z+. Then from [1]

G is a Frobenius group with kernel 〈x〉 and complement 〈y〉. Thus by [3] we
see that p ≡ 1

(
mod qb

)
. Thus (2− 3) holds.

Assume that

rq
b−1

≡ 1 ( mod p ) . (2− 5)

Then rq
b−1

= 1 + mp for some m ∈ Z+.Considering the non trivial elements

xp
c−1

, yq
b−1

and using (2− 1) and (2− 5) then we have:

y−q
b−1

xp
c−1

yq
b−1

=
(
y−q

b−1

xyq
b−1
)pc−1

=
(
y−q

b−1−1 (y−1 xy) yqb−1−1
)pc−1

=
(
y−q

b−1−1xryq
b−1−1

)pc−1

= · · · =
(
xr

qb−1
)pc−1

= xp
c−1(1+mp) =

xp
c−1

( xp
c

)
m

= xp
c−1

.

Hence the p-element xp
c−1

commutes with the q- element in G, so we have a
contradiction with lemma (2-4). Thus (2− 4) holds.

Conversely, let G be a polycyclic group satisfying conditions (2 − 3), and
(2−4).Then from [9] we see that G is an extension of cyclic p-group 〈x〉 of order
p c by cyclic q-group 〈y〉 of order qb, p 6= q (p and q are primes) b, c ∈ Z+. Thus
(|〈x〉| , |〈y〉| ) = 1 and |G| = |〈x〉| |〈y〉|, then 〈x〉 ∩ 〈y〉 = {1} and G = 〈x〉 〈y〉,
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so G = 〈x〉 o 〈y〉. Since 〈x〉 E G and 〈x〉 is an abelian p-group, then by using
theorem (2-7) we prove that G is a group with the basis property.

Now consider the polynomial g (x) = x− r over the ring Z. Denote that
f (x) = θ(g (x)). Then the polynomial f (x) is an irreducible over the

field GF (p) and has r zeros.Thus by (2 − 2), and (2 − 4) we have rq
b

= 1,

rq
b−1

6= 1, hence by Bezout theorem the polynomial f (x) is divides xq
b−1 and

not divides xq
b−1−1, i.e. the condition 1) in theorem(2-7) holds forg (x). Now

consider the automorphism ϕ, which defines a semidirect product 〈x〉 o 〈y〉
and induced by y element, i.e.

ϕ : a→ y−1ay, ∀ a ∈ 〈x〉 .

From (2− 1) we get
ϕ (a) = ar, ∀ a ∈ 〈x〉 .

Using additive form in 〈x〉, then we have g (ϕ) = 0. Thus the codition 2) of
theorem(2-7) for g (x) holds too. Hence G is a group with the basis property.

3 Exchange property

The fundamental property of generating operator ϕ of subspace of the vector
space V over the field F that this operator satisfies exchange property.

Definition 3.1 Let V be a vector space, then ∀ x, y ∈ V and for every
subset X ⊆ V if x /∈ ϕ(X) and if x ∈ ϕ(X ∪ {y}), then y ∈ ϕ(X ∪ {x}).

Theorem 3.2 LetG be a group with the exchange property, i.e. ∀ x, y ∈ G
and for every subset X ⊆ G,

if x /∈ 〈X〉 ∧x ∈ 〈X ∪ {y}〉 , then y ∈ 〈X ∪ {x}〉 . (3−1)
Then the order of every element a ∈ G, a 6= 1 is a prime.

Proof. First, we prove that every cyclic subgroup of G is simple, i.e. every
cyclic subgroup does not contain non trivial normal subgroup.

Suppose that {1} ≤ 〈x〉 ≤ 〈y〉 for x, y ∈ G. Then x /∈ {1} and x ∈
〈{1} ∪ {y}〉 such that substituting X = {1} in (3−1) we find y ∈ 〈{1} ∪ {x}〉 =
〈x〉 and we get a contradiction with our assumption. ThusO (x) ∈ {p, q } , ∀ x ∈
G\ {1}.

Theorem 3.3 Let G be a p-group such that p is a prime. Then G is
a group with the exchange property if and only if G is elementary abelian
p-group.
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Proof. Suppose that G is a p-group with the exchange property. Then by
theorem (3-2)

x p = 1 , ∀ x ∈ G, (3− 2)

hence Gp = {1} and by [10] Φ(G) = GpG′. Since G is a p-group, then

Φ (G) = G′, Φ2 (G) = G′′, . . . .

If G′ = {1}, then G is an elementary abelian group.
Suppose that G′ 6= {1} . Then there exist elements a, b, c ∈ G such that

[a, b] = a−1b−1ab = c 6= 1. (3− 3)

Now assume that c ∈ 〈a〉, then a ∈ 〈c〉. Let consider the subgroup, which
is generated by two elements a, b, i.e. 〈a, b 〉. If 〈a, b 〉 is a cyclic group, then
it is commutative and we have a contradiction with (3− 3), then a /∈ 〈b 〉 and
b /∈ 〈a 〉. Hence the set {a, b } forms a basis of group 〈a, b 〉. Since 〈a 〉 = 〈c 〉,
so 〈a, b 〉 = 〈c, b 〉 and by the basis property of G [6]. Thus we have that the
set { c, b } forms a basis of G and this is a contradiction with properties of the
Frattini subgroup, i.e.c ∈ Φ (G).

Hence c /∈ 〈a〉 and c ∈ 〈a, b 〉, and by the exchange property we have
b ∈ 〈a, c 〉. But then 〈a, b 〉 = 〈a, c 〉. So by the basis property for G and since
a /∈ 〈b〉, b /∈ 〈a〉 we conclude that the set {a, c} forms a basis for G. Hence
this is a contradiction with properties of the the Frattini subgroup Φ (G), i.e.
c ∈ Φ (G). Thus [a, b] = 1 and the group G is an elementary abelian p-group.

Conversely, suppose that a group G is an elementary abelian p-group, then
we consider G as an additive group of a vector space over the field GF (p).

Hence the exchange property is satisfied for a group G.

4 Intersection between the basis property and the ex-
change property

Example 4.1 Let S be the semilattice { a, b, 0 }, where a, b are incompa-
rable and ab = 0. Then S has unique basis, so S has basis property. But
0 ∈ 〈〈a〉 ∪ {b}〉 and 0 /∈ 〈〈a〉〉, b /∈ 〈〈a〉 ∪ {0}〉. Hence S does not satisfy the
exchange property.

Example 4.2 Let G = 〈a〉 be a cyclic group such that |G | = p2, p is a
prime. Then G is a group with the basis property, because it is a p-group, but
it does not satisfy the exchange property.
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Theorem 4.3 Let G be a finite group. Then G is a group with the
exchange property if and only if one of the following conditions hold:

1. G is an elementary abelian p-group, p is a prime.

2. G is a semidirect product of an elementary abelian p-group P by a cyclic
q-group 〈y〉, of order q, where p 6= q (p and q are primes).Therefore G
must satisfy the following relations:

p ≡ 1 ( mod q) , y−1ay = ar , r ∈ Z+,

r 6≡ 1 ( mod p ) , rq ≡ 1 ( mod p ) .

Proof. Suppose that G is a group with the exchange property. Then we
consider two cases:

Firstly, if G is a primary group( p-group), p is a prime, then by theorem(3-
3) G is an elementary abelian p-group for a prime p.

Secondly, if G is not primary group, then from the basis property in
theorem(2-6), we see that G is a semidirect product (i.e. G = P o 〈y〉) of
p-group P by a cyclic q-group 〈y〉, where p 6= q (p and q are primes). Since P
is a group with the exchange property, then by theorem(3-3) P is an elemen-
tary abelian p− group. Therefore by theorm(3-1) the group 〈y〉 has order q, q
is a prime.

Suppose that |P | = ps, s ∈ Z+. Since the element y is regular operator
on P, i.e. the operator ϕ inducing by element y is a regular, then

ps ≡ 1 ( mod q) .

Assume that a ∈ P , a 6= 1. Consider the element b = y−1ay , since
the operator ϕ induced by element y is regular, then b 6= a. Assume that
b ∈ 〈a〉, hence b = ar, r 6≡ 1 ( mod p ). From yq = 1 we have ar

q

= 1 , i.e.
rq ≡ 1 ( mod p ).

Now let b /∈ 〈a〉, so by the exchange property if b ∈ 〈y, a〉, then y ∈
〈a, b〉 ≤ P . We get a contradiction with y /∈ P . Thus the automorphism
ϕy : P → P is regular and act on a group 〈a〉 of order p , hence p ≡ 1 ( mod q)
and p > q. Since G is a group with the basis property, then by theorem(2-6)
the representation y → ϕy is an isotopic with dimension 1, i.e. the matrix A of
linear operator ϕy in some basis of vector space P which contains s elements
has the following form:

A =

 r 0 . . . 0
0 r . . . 0
0 0 r

 ,
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such that r is an image of the element r under the conical homomorphism
θ:Z→ Z/pZ, then

r 6≡ 1 ( mod p ), and
rq ≡ 1 ( mod p ) .

Conversely, If G is an elementary abelian p-group for a prime p, then G
is a group with basis property. Using theorem(3-3), then it remains to prove
that if P is an elementary abelian, and 〈y〉 has order q, where p 6= q (p and
q are primes), and if the following conditions hold

y−1xy = xr , ∀x ∈ P,

p ≡ 1 ( mod q) ,

r 6≡ 1 ( mod p ) ,

rq ≡ 1 ( mod p ) . (4− 1)

Then G is a group with the exchange property. Suppose that the set
X ⊆ G and a, b ∈ G such that a /∈ 〈X〉 and a ∈ 〈X ∪ {b} 〉. Now we prove
that b ∈ 〈X ∪ {a} 〉.

Let G1 = 〈X ∪ {b} 〉 and we study the following cases:
If 〈X ∪ {b} 〉 ≤ P , then G1 ≤ P , G1 satisfies the exchange property,

because it is an elementary abelian p-group (by theorem(3-3)), hence b ∈
〈X ∪ {a} 〉.

If 〈X ∪ {b} 〉 � P , then suppose that the set X ∪ {b} contains element of
order q. Now ifX contains elements of order q, and since G is a semidirect
product of p-group by cyclic 〈y 〉. Then we can prove that the set X contains
only one element of order q, (because if there exist two elements as ys1a1 ,
ys2a2 in X of order q, then for some w ∈ Z there exists c ∈ P such that

ys2a2 = (ys1a1)
w
c.

Then 〈ys1a1, c〉 = 〈ys1a1, ys2a2〉, hence we consider element ys2a2 as c ∈
P ). Now suppose that the set X = {x1, x2, . . . , xn} such that x2, . . . , xn ∈ P ,
x1 /∈ P . Then the Fitting subgroup F (〈X 〉) of group 〈X 〉 is generated by
the set {x2, . . . , xn} and the image of this set under the automorphism ϕm

x1
,

m ∈ Z.
Since the group P is an abelian group, then the Fitting subgroup F (〈X 〉) is

generated by the set {x2, . . . , xn} and the image of this set under the automor-
phism ϕm

y and by (4−1) this is the power of the same elements x2, . . . , xn. In
another words, the group F (〈X 〉)is generated by x2, . . . , xn if these elements
are exists. So by our assumptiona ∈ 〈X ∪ {b} 〉. Then there exists a word
u(x1, x2, . . . , xn) such that a = u(x1, x2, . . . , xn, b) and by (4− 1) we have

a = v(x1, x2, . . . , xn)bw, (4− 2)
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such that v(x1, x2, . . . , xn) is a word. If bw = e, then by (4− 2) we have

a = v(x1, x2, . . . , xn) ∈ 〈X 〉 .

Thus we get a contradiction with our assumption for a, so we assume that
bw 6= e. Since a group P is an elementary abelian p-group, then 〈bw〉 = 〈b〉, so
by (4-2) we have

b ∈ 〈bw〉 =
〈
v(x1, x2, . . . , xn)

−1
a
〉
⊆ 〈X ∪ {a}〉 .

Finally, let X ⊆ P . Since X ∪{b} * P , then b is element of order q. Suppose
that G1 = 〈X ∪ {b} 〉 is a semidirect product of a group 〈X 〉 by 〈b 〉. Then
from a ∈ 〈X ∪ {b} 〉 we have the following for w ∈ Z and c ∈ 〈X 〉

a = bwc. (4− 3)

If an element a is a q-element, then bw 6= e and since 〈b〉 = 〈bw〉 we get

b ∈ 〈bw〉 =
〈
c−1a

〉
⊆ 〈X ∪ {a}〉 .

If a is p−element, then by (4 − 3) we have bw = e and a = c ∈ 〈X〉 which is
a contradiction with a /∈ 〈X〉. Thus we study all cases. Hence G is a group
with change property.
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