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EB lifetime distributions as alternative to the
EP lifetime distributions

Carmen Elena Lupu, Sergiu Lupu, Adina Petcu

Abstract

In this paper we consider lifetime distributions called EB-Max distri-
bution and EB-Min. In the conditions of the Poisson’s Limit Theorem it
is shown that EB-Max distribution may be approximated by its analo-
gous called EP-Max lifetime distribution and EB-Min distribution may
be approximated by its analogous EP-Min lifetime distribution. Fur-
ther, as example, two methods are provided to simulate pseudo random
number for EB-Min distribution and we apply EM algorithm to estimate
parameters of EB-Min distribution. An example with real data is also
presented and the proposed simulation algorithms where implemented
in Maple.

1 Introduction

In paper [6] it was introduced EB-Min distribution compounding exponen-
tially distributed lifetimes with zero truncated binomially distributed r.v. as
alternative to the EP-Min lifetime distribution introduced by Kuş, C. [5] mix-
ing the same lifetime with zero truncated Poisson distributed r.v.. In the both
cases lifetimes are represented as minimum of k exponentially distributed r.v.,
k = 1, 2, .... If we substitute minimum by maximum we abtain EB-Max [4,7]
and EP-max [3] distributions which are a special case of complementary expo-
nential power series (CEPS) distributions introduced in 2012 by Jose Flores
D. et al. The purpose of this paper is to study possible connections between
EP and EP lifetime distributions.
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2 EP and EB lifetime distributions

First of all, we write a general formula [4] for distribution of r.v. max(W1,
W2, ... ,WK) , where (Wi)i≥1 are independent identically distributed random
variables (i.i.d.r.v.) and K is a discrete r.v. such that P(K ∈ {1, 2, ...}) = 1.
So, we consider that distribution function (d.f.) of r.v. Wi is F (x) = P(Wi ≤
x), i ≥ 1. Then, due of independence of r.v. (Wi)i≥1 , the d.f. of r.v.Yk =
max(W1,W2 ,...,Wk) is

FYk(x) = P(Yk ≤ x) = [F (x)]
k
, ∀k = 1, 2, ... .

This means that d.f. of r.v. Y = max(W1,W2 ,...,WK) is a mixture of
d.f. FYk(x) with respect to the distribution of r.v. K. Indeed

FY (x) = P(Y ≤ x) = P(max(W1,W2 , ...,WK) ≤ x) =
∑
k≥1

[F (x)]kP(K = k).(1)

This formula show us that, if (Wi)i≥1 are r.v. of absolutely continuos type,
then Y is a r.v. of the same type and its probability density function (p.d.f.)
is

fY (x) = F
′

Y (x) =
∑
k≥1

kF
′
(x) [F (x)]

k−1
P(K = k).(2)

Similarly, can be write the general formula for distribution of r.v.Z=
min(W1, W2, ... ,WK). So, density function and probability density func-
tion are

FZ(x) = P(Z < x) = 1−P(min(W1,W2 , ...,WK) > x)

= 1− (1−
∑
k≥1

[F (x)])kP(K = k).(3)

fZ(x) = F
′

Z(x) =
∑
k≥1

kF
′
(x) [1− F (x)]

k−1
P(K = k). (4)

Applying formulas (1)− (2), and considering that (Wi)i≥1 are indepen-
dent identically exponentially distributed r.v. with parameter λ, λ > 0, i.e.

F (x) = P(Wi ≤ x) = (1− e−λx) · I[0,+∞)(x), i ≥ 1

and K is a zero truncated binomially distributed r.v., i.e.,

P(K = k) =
1

1− (1− p)n
Ckn pk (1− p)n−k, k = 1.n, p ∈ (0, 1),
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we obtain the distribution called EB-max [4,7] with d.f. of r.v. Y =
max(W1,W2 ,...,WK) given by formula

Umax(x) =
(1− pe−λx)n − (1− p)n

1− (1− p)n
· I[0,+∞)(x) (5)

and p.d.f. of r.v. Y is

umax(x) =
npλe−λx

1− (1− p)n
(1− pe−λx)n · I[0,+∞)(x) , (6)

where

I[0,+∞)(x) =

{
0, if x < 0,
1, if x ≥ 0.

For the same lifetimes (Wi)i≥1, substituting zero truncated binomial dis-
tribution for r.v. K by zero truncated Poisson distribution with parameter µ,
µ > 0, i.e.,

P(K = k) =
1

1− e−µ
µk

k!
e−µ, k = 1, 2, ...,

in [3] it was introduced another new lifetime distribution called EP-Max dis-
tribution given by formula

Vmax(x) =
e−µe

−λx − e−µ

1− e−µ
· I[0,+∞)(x). (7)

In similar way it was introduced EB-Min [6] and EP-Min [5] life time
distributions. According to [6] EB-Min distribution is given by d.f.

Umin(x) =

{
1− 1

1− (1− p)n

{[
1− p(1− e−λx)

]n
− (1− p)n

}}
· I[0,+∞)(x). (8)

and according to[5] EP-Min distribution is given by d.f.

Vmin(x) =
eµe
−λx − eµ

1− eµ
· I[0,+∞)(x). (9)

3 Approximating EB distributions by EP distributions

As we know [2], Poisson’s Limit Theorem show us that, in some conditions,
binomial distribution may by approximated by Poisson distribution. This fact
suggest us that between d.f. Umax(x) and Vmax(x) and, on the other hand,
between d.f. Umin(x) and Vmin(x) does exist the similar connections. Indeed,
it is true the following



EB LIFETIME DISTRIBUTIONS AS ALTERNATIVE TO THE EP LIFETIME
DISTRIBUTIONS 118

Proposition (Poisson’s Limit Theorem for EB an EP distribu-
tions). In the conditions of the Poisson’s Limit Theorem, i.e., if n −→ +∞
and
p −→ 0 in a such way that np −→ µ, µ > 0, then [4,7]

lim
n −→ +∞
p −→ 0

Umax(x) = lim
n −→ +∞
p −→ 0

(1− pe−λx)n − (1− p)n

1− (1− p)n
· I[0,+∞)(x)

= Vmax(x), ∀x ∈ R

and
lim

n −→ +∞
p −→ 0

Umin(x) =

lim
n −→ +∞
p −→ 0

{
1− 1

1− (1− p)n
{[

1− p(1− e−λx)
]n − (1− p)n

}}
· I[0,+∞)(x)

= Vmin(x), ∀x ∈ R.

Remark. Let us observe that the second part of this Proposition will be
confirmed empirically in the Example 2 of our work (see Table 5).

4 On the statistical simulation of EB-Min distribution

We consider, as example, two techniques for statistical simulation for EB-min
distribution [6,7].

The first method is based on the fact that distribution of r.v. X ∼ EB −
Min(λ;n, p) coincide with distribution of r.v. min

16i6Z
Wi, where (Wi)i>1 are

i.i.d.r., Wi ∼ Exp(λ), λ > 0, and r.v.Z is zero truncated binomially distributed
with parameters n, n ∈ {2, 3, ...} and p, p ∈ (0, 1). So, we deduce the following
algorihm

Algorithm MixtEB-Min for statistical generation of number x of
r.v. X ∼ EB −Min(λ;n, p).

Step 1. Simulate value z of r.v. Z ∼ Binomial (n, p) until z become
different of zero;

Step 2. For this z we simulates values wi, i = 1, 2, ...z as a values of z
r.v. i.i.d. Exp (λ);

Step 3. Take x = min
1≤i≤z

wi.
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The second is enveloping procedure, as a particular case of rejection’s
Method, presented in [8], which conduct us to the

Algorithm EnvEB-Min for statistical generation of number x of
r.v. X ∼ EB −Min(λ;n, p).

From (8) we deduce that p.d.f. of r.v. X ∼ EB −Min(λ;n, p) is given by
formula

umin(x) =
npλe−λx

1− (1− p)n
[
1− p(1− e−λx)

]n−1 · I[0,+∞)(x).(10)

For umin(x) we choose as enveloping p.d.f.

h (x) = λe−λx · I[0,+∞)(x).

So, for ∀x ≥ 0,

r (x) =
umin(x)

h (x)
=

np

1− (1− p)n
[
1− p(1− e−λx)

]n−1
,

and

r′ (x) = −λnp
2 (n− 1) e−λx

1− (1− p)n
[
1− p(1− e−λx)

]n−2
,

We observe that r′ (x) < 0, which implies r (x) < r (0) = α = np
1−(1−p)n ,

where α > 1.
Step 1. Generate value u of r.v. U ∼ U([0, 1]);
Step 2. If u < 10−7 then go to Step 1 ;
Step 3. Generate value u1 of r.v. U ∼ U([0, 1]);
Step 4. If u1 > (1− p(1− u))n−1 then go to Step 3 ;

Step.5. Take x = − 1

λ
log (u).

The probability of acceptance in this case is

pa =
1

α
=

1− (1− p)n

np
.

In the following Table 1 we have, as a results, CPU’s time (in seconds)
θ(n, p, λ), executing N = 10000 simulations in the cases of both algorithms:
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Table 1. CPU’s time (in seconds) θ(n, p, λ)

(n, p, λ)
θ(n, p, λ)(sec) for

Algorithm MixtEB-Min
θ(n, p, λ)(sec) for

Algorithm EnvEB-Min
(3, 0.5, 1) 0.330 0.235
(5, 0.5, 1) 0.335 0.362
(3, 0.5, 2) 0.352 0.268
(5, 0.5, 2) 0.386 0.390
(3, 0.9, 1) 0.441 0.413
(3, 0.9, 2) 0.592 0.438
(5, 0.9, 2) 0.607 0.480
(3, 0.2, 1) 0.623 0.206
(3, 0.2, 2) 0.652 0.210
(5, 0.2, 2) 0.599 0.234
(10, 0.5, 7) 0.556 0.507
(15, 0.5, 2) 0.607 0.818

On the base of the same simulations we may see (Table 2 and Table 3)
how look mean value EX, variance DX and corresponding sample mean value
−
x and variance s2 for r.v. X ∼ EB −Min(λ;n, p) in case of each Algorithm.

Table 2. Algorithm MixEB-Min
Case 1: n = 3, p = 0.5, λ = 1 Case 2: n = 5, p = 0.5, λ = 1
EX = 0.690 DX = 0.551 EX = 0.476 DX = 0.289
−
x = 0.676 s2 = 0.577

−
x = 0.467 s2 = 0.315

Case 3: n = 3, p = 0.5, λ = 2 Case 4: n = 5, p = 0.5, λ = 2
EX = 0.345 DX = 0.137 EX = 0.238 DX = 0.072
−
x = 0.324 s2 = 0.145

−
x = 0.234 s2 = 0.078

Table 3. Algorithm EnvEB-Min
Case 1: n = 3, p = 0.5, λ = 1 Case 2: n = 5, p = 0.5, λ = 1
EX = 0.690 DX = 0.551 EX = 0.476 DX = 0.289
−
x = 0.669 s2 = 0.553

−
x = 0.481 s2 = 0.298

Case 3: n = 3, p = 0.5, λ = 2 Case 4: n = 5, p = 0.5, λ = 2
EX = 0.345 DX = 0.137 EX = 0.238 DX = 0.072
−
x = 0.359 s2 = 0.151

−
x = 0.225 s2 = 0.069
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5 EM algorithm and its application to the EB − Min
distribution

If we consider sample of size m from population of r.v. X, i.e., (x1, x2,...,
xm) ∼ X, where X ∼ EB −Min(λ;n, p), then, from (10) we deduce that
maximum likelihood function L(x1, x2,..., xm;n, p, λ) is defined by formula

L(x1, x2, ..., xm;λ, p) =
m

Π
i=1

npλ exp{−λxi}
1− (1− p)n

[1− p(1− exp{−λxi})]n−1 =

(npλ)
m

exp{−λ
m∑
i=1

xi}

[1− (1− p)n]
m

m

Π
i=1

[1− p(1− exp{−λxi})]n−1

In order to obtain equations of Maximum likelihood estimations (MLE) λ̂, p̂

for parameters λ, p we consider

lnL(x1, x2, ..., xm;λ, p) = m(lnn+ ln p+ lnλ)−

λ

m∑
i=1

xi −m ln [1− (1− p)n]− (n− 1)

m∑
i=1

ln[1− p(1− exp{−λxi})].

Parameter n considered be known, equations of MLE are
∂ lnL
∂λ = m

λ −
m∑
i=1

xi + (n− 1)
m∑
i=1

pxi exp{−λxi}
1−p(1−exp{−λxi}) = 0,

∂ lnL
∂p = m

p −
mn(1−p)n−1

1−(1−p)n − (n− 1)
m∑
i=1

exp{−λxi}−1
1−p(1−exp{−λxi}) = 0.

But this equations, with respect to the parameters λ and p, it is very difficult
to solve by means of existing methods. So, EM Algorithm proposed in [1],
is more preferable. In this case r.v. Z it is interpreted as missing or latent
variable.

Let’s consider a sample ((x1, z1), (x2, z2), ... , (xm, zm)) of n observations
on the r.v. (X,Z). That means ((x1, z1), (x2, z2), ... , (xm, zm)) may be
interpreted as complete data and (x1, x2,..., xm) as incomplete data’s obser-
vations.

To formulate EM algorithm we need to know conditional mean value E(Z
| X; θ), where parameter θ = (λ, p). P.d.f. umin(x; θ) of r.v. X, corresponding
to the incomplete data, is given by formula (10). But p.d.f. of r.v. (X,Z),
corresponding to the complete data, is given by formula

u(x, z; θ) =
zλ exp{−λzx}
1− (1− p)n

Cznpz(1− p)n−z · I[0,+∞)(x).
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So, p.d.f. of r.v. Z for given (known) X, i.e., p.d.f. of r.v. Z conditioned
by r.v. X, my by expressed, for x > 0, as

u(z | x; θ) = u(x, z; θ) / umin(x; θ) =

zλ exp{−λzx}
1−(1−p)n Cknpk(1− p)n−k

npλ exp{−λx}
1−(1−p)n [1− p(1− exp{−λx})]n−1

=

zλ exp{−λ(z − 1)x}Cznpz−1(1− p)n−z

np [1− p(1− exp{−λx})]n−1
.

In this way, on the base of u(z | x; θ), we may calculate conditional mean value

E(Z | X; θ)
def
=

n∑
z=1

z · u(z | x; θ) =

1− p(1− n exp{−λx})
1− p(1− exp{−λx})

. (11)

Now, we may describe EM algorithm as iterative approximation of un-
known parameter θ = (λ, p) by θ(h) = (λ(h), p(h)) calculated at the same step
h > 1 such that the condition

max(
∣∣∣λ(h) − λ(h−1)∣∣∣ , ∣∣∣p(h) − p(h−1)∣∣∣) 6 ε or h = N (12)

was satisfied, where ε > 0 is given error and N is pre-established number of
iterations.

1. Take λ = λ(0), p = p(0) for some λ(0) > 0 and p(0) ∈ (0, 1);
2. Step E (Expectation): for iteration h, h > 1, calculate expected values

z
(h−1)
i , i = 1,m, according to the formula (11)

z
(h−1)
i =

1− p(h−1)(1− n exp{−λ(h−1)xi})
1− p(h−1)(1− exp{−λ(h−1)xi})

;

3. Step M (Maximization): by means of MLE (maximum likelihood esti-
mation) method, taking as sample size ((x1, z

h−1
1 ), (x2, z

h−1
2 ), ... , (xm, z

h−1
m ))

with likelihood function

L(x1, x2, , ..., xm, z
h−1
1 , zh−12 , ..., zh−1m ; θ(h−1)) =

m

Π
i=1

zh−1i λ(h−1) exp{−λ(h−1)zh−1i x}
1− (1− p(h−1))n

Cz
h−1
i
n (p(h−1))z

h−1
i (1− p(h−1))n−z

h−1
i ,
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find the next iteration θ(h) of estimation
∧
θ for parameter θ = (λ, p);

4. Check the condition (12). If NOT, then GO TO 2, ELSE
∧
θ := θ(h),

STOP.

Example 1. Let’s consider as a statistical data observations, results of
m = 10000 simulations of r.v. X ∼ EB−Min(λ;n, p) and results λ(h), p(h) of
estimation of parameters λ, p by means of EM algorithm for different values
of error ε and maximal number of iterations K.

Case a) λ = 4, p = 0.25, n = 5, ε = 10−4,K = 400 : For initial values
λ(0) = EX, p(0) = DX we have: h = 400, λ(h) = 4.102892, p(h) = 0.22659;

Case b) λ = 4, p = 0.25, n = 2, ε = 10−4,K = 500 : For initial values
λ(0) = EX, p(0) = DX we have: h = 500, λ(h) = 4.037867, p(h) = 0.2724457.

Example 2. Let’s consider the data about life time intervals between two
successive strong earthquakes used in [5], see Table 4:

Table 4. Earthquakes in North Anatolia fault zones
Date Longitude Latitude Magnitude (Mw)
04.12.1905 39 39 6.8
09.02.1909 38 40 6.3
25.06.1910 34 41 6.2
24.01.1916 36.83 40.27 7.1
18.05.1929 37.9 40.2 6.1
19.04.1938 33.79 39.44 6.6
26.12.1939 39.51 39.8 7.9
30.07.1940 35.25 39.64 6.2
20.12.1940 39.2 39.11 6
08.11.1941 39.5 39.74 6
11.12.1942 34.83 40.76 6.1
20.12.1942 36.8 40.7 7
20.06.1943 30.51 40.85 6.5
26.11.1943 33.72 41.05 7.2
01.02.1944 32.69 41.41 7.2
26.10.1945 33.29 41.54 6
13.08.1951 32.87 40.88 6.9
07.09.1953 33.01 41.09 6.4
20.02.1956 30.49 39.89 6.4
26.05.1957 31 40.67 7.1
22.07.1967 30.69 40.67 7.2
03.09.1968 32.39 41.81 6.5
13.03.1992 39.63 39.72 6.1
08.03.1997 35.44 40.78 6
12.11.1999 31.21 40.74 7.2
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After fitting EB-Min distribution to the above mentioned sample of size
m = 25, using Kolmogorov-Smirnov (K-S) statistics we may compare our
results (see the first row of Table 5) with results from [5] (see the last for rows
of Table 5).

Table 5. Parameter estimates, Kolmogorov-Smirnov Statistics and p-values from the fit of

the each of the 5 distributions
Distribution EM Estimates K-S statistics p− values

EB −Min(λ; 3, p)
θ̂ = (λ̂, p̂)

= (4.68 × 10−4, 0.585596)
0.125 0.9942

EP −Min(λ, µ)
θ̂ = (λ̂, µ̂)

= (2.6377, 3.56 × 10−4)
0.0972 0.9772

EG(λ, p)
θ̂ = (λ̂, p̂)

= (6.995 × 10−4, 1.154 × 10−5)
0.1839 0.3914

Weibull(λ, µ)
θ̂ = (λ̂, µ̂)

= (8.12 × 10−4, 0.7854)
0.1004 0.969

Gamma(λ, µ)
θ̂ = (λ̂, µ̂)

= (4.98 × 10−4, 0.7117)
0.1239 0.8551

6 Conclusions

This paper shows that EB-Min distribution is a good alternative to the EP-
Min distribution, even to the EG (compounding exponentially distributed life-
times with zero truncated geometrically distributed r.v.), Weibull or Gamma
distributions.

References

[1] Dempster, A.P., Laird, N.M. and Rubin, D.B.(1977). Maximum-
likelihood from incomplete data via the em algorithm, ,J. Royal Statist.
Soc. Ser. B. 39: 1-38.

[2] Feller, W. (1965). An introduction to probability theory and its applica-
tions. Vol 1, John Wiley&Sons, New York.

[3] Gonzales, L.A.P., Vaduva, I. (2010). Simulation of some mixed lifetime
distributions. The 13-rd Conference of Romanian Society of Probability
and Statistics, Technical University of Civil Engineering, Bucharest,
April, 16-17.

[4] Jose Flores D., Patrick Borges, Vicente G. Cancho, Francisco Louzada, The
Complementary exponential power series distribution, Brazilian Journal of
Probability and Statistics (to apear)



EB LIFETIME DISTRIBUTIONS AS ALTERNATIVE TO THE EP LIFETIME
DISTRIBUTIONS 125
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