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Abstract

The theory of maximal set-valued monotone operators provides a
powerful general framework for the study of convex programming and
variational inequalities. A fundamental algorithm for finding a root of
a monotone operator is the proximal point algorithm.

A lot of papers have been dedicated to this subject. Two princi-
pal classes of splitting methods are Peaceman-Rachford, and Douglas-
Rachford algorithms. Eckstein has presented a generalized form of the
proximal point algorithm – created by synthesizing the work of Rockafel-
lar with that of Golshtein and Tretyakov – and has shown how it gives
rise to a new method, generalized Douglas-Rachford splitting. Some re-
sults, about a connection between the proximal algorithm and Douglas-
Rachford splitting will be given.

We give a proof that Douglas-Rachford splitting is an application of
the proximal point algorithm. Using this fact we prove that Peaceman-
Rachford splitting is equivalent to applying the generalized proximal
point algorithm.

2000 Mathematics Subject Classification: 46T99, 47J25, 49J40.

Introduction.
For many maximal monotone operators T , the evaluation of inverses for

operators of the form I + λT , where λ > 0, may be difficult. Now suppose
that we can choose two maximal monotone operators W and V such that
W + V = T , but Jλ

W and Jλ
V are easier to evaluate than Jλ

T . A splitting
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algorithm is a method that employs the resolvents Jλ
W , Jλ

V of W and V , but
does not use the resolvent Jλ

T of the original operator T . Here we consider
theDouglas -Rachford scheme of Lions and Mercier [9].

We shall present a result, which establishes a relation between two well-
known algorithms: proximal point algorithm and Douglas-Rachford splitting
algorithm.

Preliminary results.

We enumerate some concepts and main results, which will be used to get
our results.

Let H be a real Hilbert space with inner product (·, ·) and associated norm
|| · ||. We consider a multi-valued operator T : H → 2H . First we recall some
properties of the monotone and maximal monotone operators.

Theorem 1 (Minty [10]). A monotone operator T : H → 2His maximal if
and only if R(I + T ) = H.

For alternative proofs of Theorem 1,or stronger related theorems, see [12],[2]
or [7].

Given any operator A, let JA denote the operator (I + A)−1. Given any
positive scalar λ and an operatorT , Jλ

T = (I +λT )−1 is called the resolvent of
T . An operator B : H → 2H is said to be nonexpansive if

||y′ − y|| ≤ ||x′ − x|| for all [x, y], [x′, y′] ∈ G(B).

Note that nonexpansive operators are necessarily single-valued and Lips-
chitz continuous (see [11]).

An operator C : H → 2H is said to be firmly nonexpansive if

||y′ − y|| ≤ (x′ − x, y′ − y) for all [x, y], [x′, y′] ∈ G(C).

The following lemma summarizes some well-known properties of firmly
nonexpansive operators.

Lemma 2 (Rockafellar [13]). Let T : H → 2H be an operator. The
following statements are hold:

(i) All firmly nonexpansive operators are nonexpansive.
(ii) T is firmly nonexpansive if and only if 2T − I is nonexpansive.
(iii) T is firmly nonexpansive if and only if it is of the form 1

2 (U +I), where
U is nonexpansive.

(iv) T is firmly nonexpansive if and only if I − T is firmly nonexpansive.

We now give a critical theorem. The “only if” part of the following theorem
has been well-known for some time (see [13]), but the “if” part has appeared in
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[4]. The purpose here is to stress the complete symmetry that exists between
(maximal) monotone operators and (full-domained) firmly nonexpansive op-
erators over any Hilbert space.

Theorem 3 (Eckstein [5]). Let λ be any positive scalar. An operator
T : H → 2H is monotone if and only if its resolvent Jλ

T = (I + λT )−1 is
firmly nonexpansive. Furthermore, T is maximal monotone if and only if Jλ

T

is firmly nonexpansive and D(Jλ
T ) = H.

Corollary 4. An operator T is firmly nonexpansive if and only if T−1− I
is monotone. T is firmly nonexpansive with full domain if and only if T−1−I
is maximal monotone.

Corollary 5. For any λ > 0, the resolvent Jλ
T of a monotone operator T

is single-valued. If T is also maximal, then Jλ
T is defined on all of H .

Corollary 6 (The Representation Lemma). Let λ >0 and let T : H → 2H

be monotone. Then every element z ∈ H can be written in at most one way
as x + λy, where y ∈ Tx. If T is maximal, then every element z ∈ H can be
written in exactly one way as x + λy, where y ∈ Tx.

Corollary 7. The correspondence from an operator T into (I + T )−1 is a
bijection between the collection of maximal monotone operators on H and the
collection of firmly nonexpansive operators on H .

Remark 8. Corollary 7 reminds us a result of Minty [10], but it is not
identical (Minty did not use the concept of firm nonexpansiveness; see also
[6]).

A root or zero of an operator T is a point x such that

0 ∈ Tx.

Let zer(T ) = T−1(0) denote the set of all such points. The zeroes of a
monotone operator are precisely the fixed points of its resolvents. In other
words the following result is true:

Lemma 9. Given any maximal monotone operator T, real number λ >0,
and x ∈ H, we have 0 ∈ Tx if and only if Jλ

T (x) = x.

Decomposition: Douglas-Rachford splitting methods
We shall consider the Douglas-Rachford scheme of Lions and Mercier [9].
Let us fix someλ > 0 and two maximal monotone operators W and V . The

sequence {zk} is said to obey the Douglas-Rachford recursion for λ,W and V
if
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zk+1 = Jλ
W (2Jλ

V − I)zk + (I − Jλ
V )zk.

Let [xk, vk] ∈ G(V ) be, for all k ≥ 0, the unique element such that xk +
λvk = zk(by Corollary 6). Then, for all k, one has

(I − Jλ
V )zk = xk + λvk − xk = λvk,

(2Jλ
V − I)zk = 2xk − (xk + λvk) = xk − λvk.

Similarly, if [yk, uk] ∈ G(W ), then Jλ
W (yk + λuk) = yk.

In view of these identities, one may give the following alternative prescrip-
tion for finding zk+1 from zk:

(i) Find the unique [yk+1, uk+1] ∈ G(W ) such that yk+1+λuk+1 = xk−λvk.
(ii) Find the unique [xk+1, vk+1] ∈ G(V ) such that xk+1 +λvk+1 = yk+1 +

λvk.
The analysis is centered on the operator

Sλ
W,V = Jλ

W ◦ (2Jλ
V − I) + (I − Jλ

V ),

where ”◦” denotes mapping composition.
Thus the Douglas-Rachford recursion can be written as

zk+1 = Sλ
W,V (zk).

Lions and Mercier [9] showed that Sλ
W,V is firmly nonexpansive, from which

they obtained the convergence of {zk}. Their analysis can be extended by
exploiting the connection between firm nonexpansiveness and maximal mono-
tonicity.

Consider the operator

Qλ
W,V = (Sλ

W,V )−1 − I.

Using the above algorithmic description (i)-(ii), we obtain the following
expression for the graph of Sλ

W,V
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G(Sλ
W,V ) = {[x + λv, y + λv]|[x, v] ∈ G(V ), [y, u] ∈ G(W ), y + λu = x − λv}.

A simple computation provides an expression for Qλ
W,V = (Sλ

W,V )−1 −
I,wiyh its graph:

G(Qλ
W,V ) = {[y + λv, x − y]|[x, v] ∈ G(V ), [y, u] ∈ G(W ), y + λu = x − λv}.

Given any Hilbert space H , a scalar λ > 0, and the operators W and V on
H , we define Qλ

W,V to be the splitting operator of W and V with respect to
λ. The following theorem establishes the maximal monotonicity of Qλ

W,V :

Theorem 10. If W and V are monotone then Qλ
W,V is monotone. If W

and V are maximal monotone then Qλ
W,V is maximal monotone.

Combining Theorems 10 and 3 , we have the key Lions-Mercier result.

Corollary 11. If W and V are maximal monotone, then Sλ
W,V = (I +

Qλ
W,V )−1 is firmly nonexpansive and is defined on all of H.

There is also a relationship between the zeroes of Qλ
W,V and those of W +V .

Theorem 12. Given λ > 0 and the operators W and V on H,we have:

zer(Qλ
W,V ) = Zλ = {x+λv|v ∈ V x,−v ∈ Wx} ⊂ {x+λv|x ∈ zer(W+V ), v ∈ V x}.

In conclusion, given any zero z of Qλ
W,V , Jλ

V (z) is a zero of W +V . Thus one
may imagine finding a zero ofW + V by using the proximal point algorithm
on Qλ

W,V and then applying the operator Jλ
V to the result. In fact, this is

precisely what the Douglas-Rachford splitting method does.

Theorem 13. The Douglas-Rachford iteration

zk+1 = Jλ
W (2Jλ

V − I)zk + (I − Jλ
V )zk

is equivalent to applying proximal point algorithm to the maximal mono-
tone operator Qλ

W,V with the proximal point stepsizes λk fixed at 1, and exact
evaluation of the resolvents.

In conclusion the Douglas-Rachford splitting method is a special case of
the proximal point algorithm as applied to the splitting operator Qλ

W,V .
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Generalized Proximal Point Algorithm

We present a scheme due to Golshtein and Tretyakov [6], which generalizes
proximal point algorithm. They consider iterations of the form

zk+1 = (I − ρk)zk + ρkJλ
T (zk),

(1)
where {ρk}∞k=0 ⊂ (0, 2) is a sequence of over-or under-relaxation factors.
Golshtein and Tretyakov also allow resolvents to be evaluated approxima-

tively, but, unlike Rockafellar, do not allow the stepsize λ to vary with k,
restrict H to be finite-dimensional, and do not consider the case in which
zer(T ) = Ø. The following theorem combines the results of Rockafellar and
Golshtein-Tretyakov.

Theorem 14 ( Eckstein [5]). LetT be a maximal monotone operator on
H, and let {zk} be such that

zk+1 = (I − ρk)zk + ρkwk for all k ≥ 0,

where

||wk − (I + λkT )−1(zk)|| ≤ εk for all k ≥ 0,

and {εk}, {ρk}, {λk} ⊂ [0, +∞) are sequences such that

E1 =
∑∞

k=0εk < ∞, ∆1 = infk≥0 ρk >0, ∆2 = supk≥0 ρk <2,
λ = infk≥0 λk >0.

Such a sequence {zk} is said to be conform to the generalized proximal
point algorithm. If T possesses a zero, then {zk} converges weakly to a zero
of T . If T has no zeroes, then {zk} is an unbounded sequence.

We make some remarks:
- Theorem 14 states also that, in a general Hilbert space, the proximal

point algorithm produces an unbounded sequence when applied to a maximal
monotone operator that has no zeroes.

- In view of Theorems 14 and 12, we immediately obtain the following
Lions-Mercier convergence result:

If W + V has a zero, then the Douglas-Rachford splitting method produces
a sequence {zk} weakly convergent to a limit z of the form x + λv, where
x ∈ zer(W + V ), v ∈ V x,and −v ∈ Wx.
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- Using Remark 15, we deduce the following result:
Suppose W and V are maximal monotone operators and zer(W +V ) = Ø.

Then the sequence {zk} produced by Douglas-Rachford splitting is unbounded.

We intend to establish a relation between the Peaceman-Rachford
algorithm and the generalized proximal point algorithm presented
above.

The following result will be used in the next presentation. We adapt a
theorem, which was stated and proved in [1], in view of our goal.

Theorem 18. Assume that T is a maximal monotone operator on H and
zer(T ) be a nonempty set.We consider that the following statements hold:

(i) 0 < λ ≤ λk for all k ∈ N∗,
(ii) 0 < ρ ≤ ρk ≤ 2 for all k ∈ N∗.
Then the sequence {zk} generated by the rule (1) weakly converges to an

element of zer(T ) and it is such that

lim
k→∞

||zk − zk−1|| = 0.

In the following analysis, we use the Peaceman-Rachford scheme of Lions
and Mercier [9]. Let us consider some λ > 0 and two maximal monotone
operators W and V . The sequence {zk} is obtained by Peaceman-Rachford
algorithm if

zk+1 = (2Jλ
W − I)(2Jλ

V − I)zk.

(2)
Given any sequence satisfying (2), let [zk, vk] be, for all k ≥ 0, the unique

element of G(V ) such that

xk + λvk = zk.

The existence and uniqueness of this element follow from Corollaries 5, 6.
Then for all k, one has

(2Jλ
V − I)zk = 2xk − (xk + λvk) = xk − λvk

.

Similarly, if [yk, uk] ∈ G(W ), then
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Jλ
W (yk + λuk) = yk.

Using these relations, we can give the following alternative scheme for
finding zk+1 from zk:

(i) Find the unique element [yk+1, uk+1] ∈ G(W )such that

yk+1 + λuk+1 = xk − λvk,

(ii) Find the unique element [xk+1, vk+1] ∈ G(V ) such that

xk+1 + λvk+1 = yk+1 − λvk+1

From (2) we obtain

zk+1 = 2Jλ
W (2Jλ

V − I)zk + 2(I − Jλ
V )zk − zk.

This relation suggests us to use the operator

Sλ
W,V = Jλ

W ◦ (2Jλ
V − I) + (I − Jλ

V ).

The Peaceman-Rachford recursion (2) can be written as follows:

zk+1 = 2Sλ
W,V (zk) − zk = (2Sλ

W,V − I)zk

(3)
Consider the operator

Qλ
W,V = (Sλ

W,V )−1 − I,

Since Theorem 10 implies that Qλ
W,V is maximal monotone, we can define

the operator

Pλ
W,V = 2(I + Qλ

W,V )−1 − I = 2(I + Qλ
W,V )−1 + (1 − 2)I.
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We rewrite (3) using Pλ
W,V , in the form

zk+1 = Pλ
W,V (zk) = 2(I + Qλ

W,V (zk) + (1 − 2)zk.

Theorem 19. The Peaceman-Rachford iteration

zk+1 = (2Jλ
W − I)(2Jλ

V − I)zk

is equivalent to applying the generalized proximal point algorithm to the
maximal monotone operator Qλ

W,V with the proximal point stepsizes λk fixed
at 1 and the relaxation factors ρk = 2 for all k ≥ 1.

Proof. The Peaceman-Rachford iteration is

zk+1 = Pλ
W,V (zk),

which is just

zk+1 = (1 − 2)zk + 2(I + Qλ
W,V )−1(zk),

that is the generalized proximal point scheme (1) with ρk = 2 for all k ≥ 1.
In view of the Theorems 18 and 12, we immediately obtain the following

result.

Corollary 20. If W +V has a zero, then the Peaceman-Rachford splitting
method produces a sequence {zk} weakly convergent to a limit z of the form
x + λv, where x ∈ zer(W + V ), v ∈ V x and −v ∈ Wx.

Proof. From the Theorem 18, we obtain that the sequence {zk} converges
weakly to a limit z ∈ zer(Qλ

W,V ). Applying Theorem 12, we have

z = x + λv,

where x ∈ zer(W + V ), v ∈ V x and −v ∈ Wx.
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