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Abstract

Using the Leray-Schauder degree theory we obtain existence results
for Neumann boundary value problems

(Qb(u,)), = f(t7 U, u,)v u/(()) =0= u/(T),

where ¢ is an homeomorphism between R and |—a, a[ (or between |—a, a|
and R), ¢(0) =0 and f is a suitable nonlinearity.

1 Introduction

Some nonlinear operators in suitable functions spaces have been introduced
in [2] (see also [3]), whose fixed points coincide with the solutions of nonlinear
boundary value problems of the type

()" = f(t,u,), U(u,u’) =0, (1)

where [(u, u") denotes the Dirichlet, Neumann or periodic boundary conditions
on [0,T], ¢ : RY — R¥ is a suitable monotone homeomorphism and f :
[0, T] x RN xRN — R¥ is a Carathéodory function. Applications are given to
existence results when ¢ is the vector p-Laplacian (p > 1), f is asymptotically
homogeneous and I(u,u) is the Dirichlet condition.
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The aim of this paper is to study the existence of solutions for the Neumann
boundary value problem

(@) = ft,u,u'), u'(0) =0=u(T), (2)

where ¢ : R —|—a, a[ is an homeomorphism such that ¢(0) =0, f: [0, T] xRx
R — R is a continuous function satisfying some growth and sign conditions. An
analogous result can be obtained for problems of type (2) with ¢ : |—a,a[— R.

To prove the main results of this article we reformulate problem (2) in
an abstract way which allows us to apply the Leray-Schauder degree. When
¢ : ] —a,al— R, new difficulties occur because the function ¢! is not defined
everywhere. Our existence conditions require f to be everywhere bounded,
with a bound depending upon a and 7, and to satisfy a sign condition (see
Theorem 1). When ¢ : R — ] —a, a[, a sign condition is sufficient (see Theorem
2). Examples are given. The method used here is inspired by the continuation
theorem of coincidence degree theory [4] and by Theorem 3.1 in [2].

2 Notations and preliminaries

We first introduce some notations. Let C' denote the Banach space of continu-
ous functions on [0, 7] endowed with the norm ||u||c = max] lu(t)], C* denote

tel0,T
the Banach space of continuously differentiable functions on [0,7] equipped
with the norm ||u|| = [Ju[|oc + ||t/[|c and C}, denote the closed subspace of

C* defined by Cj = {u € C* : w/(0) = 0 = u/(T)}. We denote by P,Q the
projectors

T
P,Q:C—C, Pu(t)=u(0), Qu(t)= %/0 u(s)ds,

and we define H : C' — C by

If uw € C, we write

[l = min u(®),  [ulm = max u(t).

We need the following elementary inequality.
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Lemma 1 If w € C, then

- 1/2
T (1 ) T
[H(I = Qe < 7 <T/o w*(t) dt) < ﬁl\wlloo- (3)

Proof. If v = H(I — Q)w, then v € C' and v(0) = v(T) = 0, so that
u(t) = Z Ay, sin nwt,
n=1

where w = and, as w € C C L?(0,T), we have

T
t) ~ A t+ = d
w(t) ,;nw n COS NW —i—T/O w(s)ds

S 2

with 37 | n?A2 < +oo. Letting a, = nwA, (n > 1),sothat > oo a? < +oo0,
we get, for each t € [0, T,

00 a 1 00 1 1/2 00 1/2
H(I — t = - < = il 2
- Qi) = |3 2 sinn _w(nzlng) (z)

T (1 (", T
< ﬁ<?/0 w(t)dt> §—3|\w||oo.

Finally, to each continuous function f : [0,7] x R x R — R, we associate
its Nemytskii operator Ny : C! — C defined by

Ny(u)(t) = f(t,u(t),u'(t)).

All the above defined operators P, @, H, Ny are continuous.

3 Abstract formulation

Let N : C’;L — C' be a continuous operator. We consider the operator Gy
given for u € Ciﬁ by

Gn(u) =Pu+QN(u)+Hop ' oH(I —Q)N(u).
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Lemma 2 If N satisfies the condition

||N(u)||m§K<\/§% for all ueCy (4)

then the operator Gy is well defined on C# and u is a solution of

if and only if u is a fized point of Gn.
Proof. Let u € C,. Using (4) and (3) we have

T TK
IH(I = Q)N (u)]loo < EHN(U)HM <<% (6)

From (6) we deduce that Gy is well defined on CJ,. Tt is clear that Gy (u) € C*
if u € C# We show that, in fact, Gy (u) € C’# for u € C# If u € CL, then
(Gn(u)) = ¢t o H(I — Q)N (u). Using the relations
H(I = Q)N(u)(0) =0=H(I = Q)N(u)(T), ¢ '(0)=0,
it follows that
(Gn (u))'(0) = 0= (Gn (u)"(T).

Now suppose that u is a solution of (5). Integrating both members over

[0,T] we get
QN(u)=0 (7)

and, integrating both members over [0, t] we get ¢(u') = Ho N (u), from where
it follows that ¢(u') = H(I — Q)N (u), so, v’ = ¢~ o [H(I — Q)N](u) and,
integrating, u = Pu+ H o ¢~ o [H(I — Q)N](u), which, because of (7) is
equivalent to u = Gy (u). Conversely, if u = Gy (u), then

w—Pu—Ho¢™" o [H(I - Q)N](u) = QN(u),
which gives
w=Pu+Hog ' o[H(I - Q)N)(), QN(u)=0,

so that u € C’;L and wu is a solution for (5) by differentiating the first equation,
applying ¢ to both of its members, differentiating again and using the second
equation. u
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4 A compact homotopy
Assume now that f satisfies the condition
|f(t,u,v)|§K<\/§% for all (t,u,v) € [0,T] x R x R. (8)
For X € [0, 1] consider the family of abstract Neumann problems
(@(u)" = ANg(u) + (1 = N)@Ny(u), '(0) =0 =u/(T). 9)
As
IAN7 () + (1 = NQN; (W)l < K < V32, (10)
for all u € C’#, it follows from Lemma 2 that the operator M associated to
(9), which is, as easily shown, given by
M\ u) = Pu+ QNy(u) + Hop ' o [NH(I — Q)Ny](u) (11)

is well defined and continuous on [0,1] x C}, and that u is a solution for (9)
if and only if u = M(\, u).

To use Leray-Schauder degree [1, 5] for finding fixed points of M, we prove
in the next lemma that the continuous operator M is completely continuous on
Cy, i.e. that for any sequence (An,un)n C [0,1] x C with (|[us]]), bounded,
the sequence (M (A, uy,))r has a convergent subsequence.

Lemma 3 M is completely continuous on C’#

Proof. Let (An, tn)n C [0,1] x Cf with (|lunl])n bounded. We may assume
that A, — Ao. Let v, = M(A\p,uy), (n € N). Then

Vn = Py + QNy(un) + Ho 67" 0 [\ H(I = Q)Nf](un), (n € N).

Because of (8),

HQNf(un)Hoo < K,
-1 _, KT KT |,
167" o DB (I — QNfl(un)loo < max{|¢ <—%>H¢ <%>\}.—M,
(n € N). (12)

From (12) it follows that (v, ), is bounded in C. Let ¢1,ts € [0,T]. Then, for
all n € N, using (12) we have

"6 o P H (I — Q)N (un)(s)ds

t1

|vn(t1) = vn(t2)| =

S M|t1 *t2|7
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which implies that (vy,), is equicontinuous. Applying Arzela-Ascoli theorem,
passing if necessary to a subsequence, we may assume that v,, — v in C. On
the other hand

v, = ¢~ o M H(I = Q)Nfl(un), (n€N)
so, using (12), it follows that ||} |lcc < M for all n € N. Furthermore, if

ty,t2 € [0,T], then

|m¢@m—¢@ﬁnN§/”quWA%xwm§2Mmme (13)

t1

Using (6), (4) and the uniform continuity of ¢! on compact intervals of | —
a, a[, it follows that (v],), is equicontinuous. Applying Arzela-Ascoli theorem,
we may assume, passing to a subsequence, that v/, — w in C, with ||w|l. < M.
It follows that v € CL, v' = w, so that v,, — v in C. [ |

5 A priori estimates

Let f be a function as in Section 3, and M the corresponding nonlinear oper-
ator given by (11).

Lemma 4 If there exists R > 0 and € € {—1,1} such that, with

M = max{

KT | KT
-0 ED,
one has
euf(t,u,v) >0 if |u|>R, |v|<M,tel0,T], (14)

then there is a constant p > R such that for each X € [0, 1], each possible fixed
point u of M(A, ) verifies the inequality ||ull < p.

Proof. Let A € [0,1] and uw = M(X,u). Hence v’ = ¢~ ' o NH(I — Q)Ny(u)],
and, from (6) and from the choice of M it follows that

[t/ ]| oo < M. (15)

Because u = M(A,u), it follows from Lemma 2 that u is a solution of (9),
which implies that

A £t ult), o (D)t = 0. (16)
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If [u]ar < —R (respectively [u]r > R) then, from (15) and (14), it follows that

/ f(t,u(t),u'(t))dt <0 (respectively / f(t,u(t), ' (t)dt > 0).

Using (16) we have that

[u]pr > —R and [u]r, < R. (17)
It is clear that
T
W < fale+ [ 0l (18)
0
From relations (17), (18) and (15), we obtain that
—(R+ M) < [u]r <[ulpy < R+ M. (19)
It follows that ||u|| < R+ 2M and it suffices to take p = R + 2M. |

6 Main results. Examples

The existence result when ¢ :] — a,a[— R follows from the above a priori
estimates and Leray-Schauder theory.

Theorem 1 Let f : [0,7] x R x R — R be a continuous function verifying
conditions (8) and (14). Then (2) has at least one solution.

Proof. Let M be the operator given by (11). We have that M(1,-) = Gn, and
N(0,-) = P+ QNy. Using Lemma 3, Lemma 4 and the homotopy invariance
of the Leray-Schauder degree [1, 5], we obtain that dys[I — N (1,-), B,(0),0]
and dis[I — N(0,-), B,(0),0] are well defined and equal. But the range of
N(0,-) is contained in the subset of constant functions, isomorphic to R, so,
using a property of the Leray-Schauder degree we have that

dLS[I 7N(0a )aBﬂ(O)vo] = dB[I 7N(07 ')|Ra (7/)7 p)vo]

—sign(QN¢(p)) + sign(QN¢(—p
= ds[-QNy, (~p,p),0) = 2@ P) 1 SEn QN (7))
where dp denotes the Brouwer degree. But, using (14) and the fact that p > R

we see that QNy(+p) = % fo f(t, £p,0)dt have opposite signs, which implies
that

|dLS[I 7N(17 ')7 BP(O)a 0” = |dLS[I - N(Oa ')a Bﬂ(o)a 0” =1
Then, from the existence property of the Leray-Schauder degree, there is u €
B,(0) such that u = N(1,u) = Gy, (u), and u is a solution for (2) by Lemma
2. ]
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The case where ¢ : | — a,a[ — R is simpler to treat because ¢! is now
defined over R, so that the fixed point operator Gy is well defined without
growth restriction upon N. Notice now that a solution of (2) or of (5) must
satisfy the estimate —a < u/(t) < a for allt € [0, 7] in order to be defined. This
estimate is satisfied for any possible fixed point of Gy or M. The complete
continuity of M is proved like in Lemma 3. We have the following result

Theorem 2 Let ¢ :] —a,a[— R be a homeomorphism such that $(0) = 0 and
f:[0,T] xR xR — R be a continuous function such that, for some R > 0
and some € € {—1,1},

euf(t,u,v) >0 if |ul >R, |v] <a, t€]0,T]. (20)
Then (2) has at least one solution.
Proof. If A € [0,1] and u is a possible fixed point of M(],-), then
u' = ¢~ o [NH(I — Q)N](u), (21)
and
T
/0 f(t,u(t), ' (t))dt = 0. (22)
If follows from (21) that
W' (t)| <a (tel0,T]). (23)
Now, if [u]pr < —R, we have, using (21) and (20),
ef(t,u(t),u'(t)) <0 (tel0,T]),
which gives a contradiction to (22). Similarly if [u]r > R. Hence,
[ulpd > —R, [u]lr < R. (24)

Now, using (23),

T
[ular — [l < / u'(8)] dt < aT,

which implies, together with (24) that
lu)loo < R+ aT,
and hence
lul| < R+a(T +1) (25)

for all possible fixed points of M(J,+). The end of the proof is then entirely
similar to that of Theorem 1. ]
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Example 1 Using Theorem 1 we obtain that the Neumann boundary value
problem

u’ !
——— ) =alarctanu +sint), u'(0)=4'(1)=0
V1+ u’2)

has at least one solution if |a| < 0.835.

Example 2 Using Theorem 1 we obtain that the Neumann boundary value
problem

<\/%> N ?arctan(qut)Jr §Sin(u’+t2), w'(0) =u'(1) =0

has at least one non constant solution.

Example 3 Using Theorem 2 we obtain that the Neumann boundary value
problem

(ﬁ) = (u+ )3 +sin2(«), u'(0)=0=u(T)

has at least one non constant solution.
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