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ON THE MULTI-GRID ITERATION FOR

THE EIGENVALUE PROBLEM AND THE
DEGREE OF INTERPOLATION WHICH IT

REQUIRES (I)

Zsuzsanna Szabó

Abstract

In [8], [10] we presented an approach method to realise a third and
fourth order interpolation in two dimensions. In [8] we showed that in-
terpolations of these type can be used as prolongation operator in the
multi-grid method and we proved that the accuracy of the multi-grid
method can be increased in this way. In this paper we study the opti-
mal degree of the prolongation operator which the second order elliptic
eigenvalue problem requires in the point of view of the accuracy. We re-
alise the implementation in Matlab of the multi-grid method with finite
difference discretization. Numerical results are also given.

1 Introduction

To develope new numerical techniques with good efficiency and accuracy this
is a practical neccesity. The aim of the paper is to study the possibilities of
the increasing the accuracy of the multi-grid method with finite difference dis-
cretization. We showed ([8]) that the order of the used prolongation operator
has an influence on the accuracy of the multi-grid method.

The order of the prolongation operator is used here in Hackbusch sense.
Definition 1 [3] p is an interpolation of order mp if interpolates polyno-

mials of degree mp − 1 exactly.
The prolongation operators proposed by us are of order three respectively

of order four. The linear prolongation operator used generally in the multi-grid
method is of the second order.

We’ll study and we’ll compare the effect of the used prolongation operator
order with the accuracy in eigenpairs computation.
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The numerical results are given for the computation of eigenvectors and
eigenvalues for the second order selfadjoint problems.

We are interested in the approximation of the eigenpairs of the considered
problem in variational form by multi-grid method.

For general information for multi-grid method we refer to Hackbusch [3].
For the eigenvalue approximation we refer to Babus̆ka & Osborne [2] and
Chatelin.

2 Preliminary Results

In this section we present some results obtained recently which will be neces-
sary in the following.

At first we present the main results from [8] and [10] about the interpolation
of higher order in R2.

In [8] we formulated the following interpolation problem:
Let Ω̄ = Ω∪∂Ω be a unit square in plane. We consider a function u : Ω → R

with u = 0 on ∂Ω.
Let Ω̄l and Ω̄l+1 (l ≥ 1 integer) be grids with mesh sizes hx

l and hy
l and

hx
l+1, h

y
l+1 in x - and y - direction and as long as hx

l /hx
l+1 = hy

l /hy
l+1 = 2 holds.

We assumed that the mesh sizes hx
l and hy

l are equal, hx
l = hy

l = 1/n
(n ∈ N∗, n ≥ 2). We denoted for simplicity by hx

l = hy
l = hl.

Therefore we had: Ω̄l = {(ihl, jhl) | i, j = 0, n} with |Ω̄l| = (n + 1)2 and
|Ω̄l+1| = (2n + 1)2.

Using the notations Ul = {u(x, y) | (x, y) ∈ Ω̄l}, Ul+1 = {u(x, y) | (x, y) ∈
Ω̄l+1}, Uk+1

l ⊆ Ul and |Uk+1
l | = k + 1, we get the following problem:

(P) Determine an operator p : Ul → Ul+1 such that p(x, y) = u(x, y), for
each x ∈ Ω̄ l+1\Ω̄ l..

We can write the problem (P) as:

(P’) For {(xi, yi), ui}N
i=1 and k < n considered, with P0(x0, y0) = u0 we have

to determine a recurrence:

Pj(x, y) = Pj−1(x, y) + bjg(x, y) with j = 0, k,

g(x, y) =
∏k−1

i=0 [(x, y)−(xi, yi)], for (x, y) ∈ Ω̄l such that u(x, y) ∈ Uk+1
l ,

where we denote by u(xi, yi) = ui, and N = (n + 1)2.

The accuracy of the polynomial interpolation formula Pk, depends on the
choice of k.

In [8] we got an interpolation operator, realised with nine points for k = 8.
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If k = 8, then |U9
l | = 9, and we can consider a nine points basic square.

Theorem 1 [8] The polynomial interpolation formula, for k = 8, has the
following form:

P1(x, y) = ui−1,j−1 + h[ux,ij−1x + uy,i−1,jy]+
+h2

2 [uxx,ij−1 · x(x − 1) + uyy,i−1jy(y − 1) + 2uxy,ijxy]+
+h3

2 [uxxy,ij · xy(x − 1) + uyyx,ijxy(y − 1)]+
+h4

4 uyyxx,ijxy(x − 1)(y − 1).

Theorem 2 [8] If u ∈ Ck(Ω̄), where k ≥ 2 are integers then the interpo-
lation polynom has a global error order of O(h2). Thus
P1(x, y) = u((i−1)h, (j−1)h)+ h

1!

[
∂u(ih,(j−1)h)

∂x · x + ∂u((i−1)h,jh)
∂y y

]
+O(h2).

In [10] we realised a fourth order interpolation operator.
Theorem 3 [10] The polynomial interpolation formula, for k = 16, has

the following form:

P2(x, y) = u0 + (u1 − u0)x +
u2 − 2u1 + u0

2
x(x − 1) +

+(u3 − 3u2 + 3u5 − u0)x(x − 1)(x − 2) + (u4 − u0)y +

+(u5 − u4 − u1 + u0)xy +
u6 − 2u5 + u4 − (u2 − 2u1 + u0)

2
xy(x − 1) +

+
u7 − 3u6 + 3u5 − u4 − u3 + 3u2 − 3u1 + u0

6
xy(x − 1)(x − 2) +

+
u8 − 2u4 + u0

2
y(y − 1) +

u9 − 2u5 + u1 − (u8 − 2u4 + u0)
2

xy(y − 1) +

+
(u10 − 2u9 + u8) − 2(u6 + u4 − 2u5) + (u0 + u2 − 2u1)

4
·

·xy(x − 1)(y − 1) +
[
u11 − 3u10 + 3u9 − u8 − 2(u7 − 3u6) + 2(u4 − 3u5)

12
+

+
u3 − 3u2 + 3u1 − u0

12

]
x(x − 1)(x − 2)y(y − 1) +

u12 − 3u8 + 3u4 − u0

6
·

·y(y − 1)(y − 2) +
u13 − 3u9 − u12 + 3u8 + 3u5 − u1 − 3u4 + u0

6
·

·xy(y − 1)(y − 2) +
[
u14 − 3u10 − 2(u13 − 3u9) + u12 − 3u8 + 3u6 − u2

12
+

+
2(u1 − 3u5) − u0 + 3u4

12

]
x(x − 1)y(y − 1)(y − 2) +

[
u15 − 3u14

36
+
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+
3u13 − u12 + 3(3u10 − u11) + 3(u8 − 3u9) + 3(u7 − 3u6)

36
+

+
3(3u5 − u4) − u3 + 3u2 − 3u1 + u0

36

]
x(x − 1)(x − 2)y(y − 1)(y − 2).

Theorem 4 [10] Let Ω = (0, 1) × (0, 1) with the boundary ∂Ω = {0, 1} ×
{0, 1} and u : Ω̄ → R be a sufficiently smooth function, u ∈ Ck(Ω̄), k ≥ 2,
then the interpolation operator P2 is of the third order.

Thus we can write:

P2(x, y) = u((i − 1)h, (j − 1)h) +

+
h

1!

[
∂u(ih, (j − 1)h)

∂x
· x +

∂u((i − 1)h, jh

∂y
· y

]
+

+
h2

2!

[
C0

2

∂2u(ih, (j − 1)h)
∂x2

· x(x − 1) + C1
2

∂2u(ih, jh)
∂x∂y

· x · y+

+ C2
2

∂2u((i − 1)h, jh)
∂y2

· y(y − 1)
]

+
h3

3!

[
C0

3

∂3u(ih, (j − 1)h)
∂x3

·

·x(x − 1)(x − 2) + C1
3

∂3u(ih, jh)
∂x2∂y

· xy(x − 1) + C2
3

∂3u(ih, jh)
∂y2∂x

·

·xy(y − 1) +C3
3

∂3u((i − 1)h, jh)
∂y3

y(y − 1)(y − 2)
]

+ O(h3).

To verify the obtained theoretical results, we have written a program in
MATLAB.

For tests, we consider functions defined on Ω = (0, 1)× (0, 1), which on the
boundary of the domain denoted by Γ = {0, 1} × {0, 1}, verify the condition
u = 0.

We studied the order of the error in connection with the number of grid-
points on Ωh = {(ih, jh) | i, j = 0, N}, where h = 1

N is the meshsize and N > 0
is a given integer number.

We can observe that if we increase the number of meshpoints, then the
error decreases semnificatively.

The obtained error orders in both cases we present in the following tables,
where N means the number of the grid points. The choice of N is unlimitated,
depends only on the configuration of the computer.
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N error order
4 10−3

16 10−4

32 10−5

64 10−6

128 10−7

256 10−8

N error order
4 10−3

16 10−5

32 10−6

64 10−8

128 10−9

3 Numerical results

In this Section, to test the numerical results obtained with different nu-
merical methods, we use the Laplace-operator on the unit square, with first
order boundary conditions on the boundary of the domain. It’s a good exam-
ple for our purpose, because the eigenvalues of the Laplace operator can be
determinated exactly.

The numerical results presents a study of the accuracy of multi-grid method
and it can be used to get information about the degree of the used prolongation
operator and the accuracy of the used method.

We showed that the accuracy depends on the order of the used prolongation
operator (see [8]).

Automatically we can formulate the following problem:
Can we improve semnificatively the accuracy, without limit, with the in-

creasing of the order of the prolongation operator, or we can determine a step
mo for that ?

Prolongation operator of order mo means that for each prolongation of
order mp ≥ m0 the accuracy doesn’t increase semnificatively.
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In Section 2 we gave the third and the fourth order interpolation operator,
as a consequence of the definition formulated by Hackbusch.

In the following we present its use as prolongation in the multi-grid method
with finite difference discretization (MGFDD) in eigen-computation.

We’ll use the Rayleigh quotient, which is most important from numerical
point of view because, if we determine the global minimum (maximum) of the
quotient, then we can calculate the suitable least (greatest) eigenvector.

For the computation we use the preconditioned gradient method. The
convergency of the method was proved in 1984 by V.G. Prikazcsikov, A.N.
Himics.

The multi-grid method permits the computation of a selected eigenvalue
and eigenvector. If approximations to the first n eigenvalues and eigenvectors
are desired, the eigenvector iteration can be improved by means of the Ritz
projection as proposed by Ruge (1981).

We use the multi-grid method in the sense of transfering the eigenvec-
tors obtained on each grid to the finest grid and with that we start the next
iteration.

The interpolation operator denoted by P1 is of the third order and the
interpolation operator denoted by P2 is of the fourth order. The linear pro-
longation operator, generally used in the multi-grid method, is of the second
order and we’ll denote it by P .

In the following we present the obtained maximal errors in connection with
the used prolongation operator.

The MGFDD results in eigenvalues approximating those of the differential
operator from below.

We will denote by λi, i = 1, m the exact eigenvalues and with λ′
i, i = 1, m

the approximate eigenvalues.
It’s known that the exact values are: λ1 = 2π2, λ2 = λ3 = 5π2 λ4 = 8π2

etc.
In Table 1, Table 2, Table 3 and Table 4 we present the first two approx-

imate eigenvalue, on 2, 3, 4, 5 grids and the obtained maximal errors in each
case, denoted by eλ′

i
.

We used 2 interior, 2 exterior iterations and we started the iterations with
5 gridpoints on the first grid (on the 5th grid we got 16129 gridpoints).

Table 1 λ′
1 eλ′

1
λ′

2 eλ′
2

P 19,6990 0,6004 48,8540 1,0287
P1 19,6902 0,4497 48,8484 0,9621
P2 19,6907 0,4179 48,8358 0,6522
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Table 2 λ′
1 eλ′

1
λ′

2 eλ′
2

P 19,7322 0,2686 49,2288 0,4908
P1 19,7280 0,1807 49,2252 0,3662
P2 19,7279 0,1589 49,2192 0,2198

Table 3 λ′
1 eλ′

1
λ′

2 eλ′
2

P 19,7418 0,2296 49,3256 0,3949
P1 19,7384 0,1232 49,3225 0,2680
P2 19,7384 0,1226 49,3178 0,1352

Table 4 λ′
1 eλ′

1
λ′

2 eλ′
2

P 19,7442 0,2139 49,3498 0,3710
P1 19,7411 0,0915 49,3469 0,2571
P2 19,7411 0,1143 49,3426 0,1171

We note that we could improve the accuracy, if we increase the number of
grids and the order of the prolongation operator, but in the same case with
P2 the improvement it’s not semnificatively.

On the other hand, we can improve the accuracy semnificatively if we
increase the number of the interior and exterior iterations.

The next Tables presents the obtained maximal errors on 2, 3, 4, 5 grids
with 8 exterior and 4 interior iterations. We used 5 gridpoints also, on the
first grid.

Table 5 λ′
1 eλ′

1
λ′

2 eλ′
2

P 19,6759 0, 3642 · 10−6 48,8116 0, 0321 · 10−6

P1 19,6759 0, 1955 · 10−5 48,8116 0, 1054 · 10−5

P2 19,6759 0, 0215 · 10−6 48,8116 0, 8189 · 10−6

Table 6 λ′
1 eλ′

1
λ′

2 eλ′
2

P 19,7234 0, 3931 · 10−4 49,2134 0, 3775 · 10−4

P1 19,7234 0, 0321 · 10−4 49,2134 0, 2562 · 10−4

P2 19,7234 0, 0004 · 10−5 49,2134 0, 1221 · 10−5

Table 7 λ′
1 eλ′

1
λ′

2 eλ′
2

P 19,7352 0, 1143 · 10−3 49,3143 0, 2508 · 10−3

P1 19,7352 0, 0241 · 10−4 49,3143 0, 2795 · 10−4

P2 19,7352 0, 0019 · 10−6 49,3143 0, 4509 · 10−6
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Table 8 λ′
1 eλ′

1
λ′

2 eλ′
2

P 19,7382 0, 1557 · 10−3 49,3396 0, 4004 · 10−3

P1 19,7382 0, 0199 · 10−4 49,3396 0, 2361 · 10−4

P2 19,7382 0, 0015 · 10−6 49,3396 0, 3214 · 10−6

We can observe also, that the accuracy doesn’t increase semnificatively if
we use the fourth order prolongation P2.

The program permits the calculation of more than two eigenvalues. Next
Tables presents the errors for the first four approximate eigenvalue on 2, 3
grids with 8 exterior and 4 interior iteration.

Table 9 λ′
1 eλ′

1
λ′

2 eλ′
2

λ′
3 eλ′

3
λ′

4 eλ′
4

P 19,6762 0,0079 48,8122 0,0154 92,0576 19,8359 48,8579 1,3660
P1 19,6760 0,0021 48,8119 0,0067 91,5988 22,5726 48,8783 1,6246
P2 19,6759 0,0011 48,8119 0,0059 91,3645 23,0349 49,0075 5,7136

Table 10 λ′
1 eλ′

1
λ′

2 eλ′
2

λ′
3 eλ′

3
λ′

4 eλ′
4

P 19,7236 0,0076 49,2139 0,0169 91,7930 31,7023 49,2201 0,247
P1 19,7234 0,0005 49,2136 0,0038 91,1140 37,3704 49,2780 1,4331
P2 19,7234 0,0002 49,2135 0,0034 90,7750 40,1834 49,3290 4,3989

4 Conclusions

In Section 3 we studied and we compared the effect of the used prolongation
operators, of different order, to the accuracy in eigenpairs computation.

The obtained maximal errors shows, as we can see in the Tables, the ef-
ficiency of the used higher order prolongation operators. So we see that the
considered problem requires third order prolongation.

If we use third order prolongation than the accuracy will increase sem-
nificatively in comparison with the second order prolongation, but with the
fourth order prolongation the increasing it’s innesential.

Our program permits the study of the convergence of the eigenvectors.
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The suitable eigenfunctions from the space Vh = {w1, . . . , wn} are:

u
(i)
h =

n∑
k=1

v
(i)
k · wk, i = 1, n.

We used the multi-grid method to increase the accuracy in the sense of
transfering the eigenvectors obtained on each grid to the finest grid and with
this we start the next iteration.

The main result is, that we show that if we use prolongation with high
accuracy to transfer the eigenvectors obtained on each grid to the finest grid,
then the decrease of the accuracy is minimal and the iteration on the finest
grid will start better and for 2nd order problems from this point of view
prolongation of third order suffices.
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