
An. Şt. Univ. Ovidius Constanţa Vol. 10(1), 2002, 35–48

VISUAL REPRESENTATION OF FORMAL

SOFTWARE SPECIFICATION

Crenguţa Bogdan

Abstract

Formal software specification has long been propagated as a way to

increase the quality and reliability of software. However, the process

of construction of a formal specification remains a hard activity for the

most modelers, because they should use mathematical techniques, which

those they aren’t familiar.

In this paper we will see that it is easier to reason upon formal

specifications if we translate them into visual diagrams. The diagrams

form some kind of semiformal specifications, which have the advantage

of easier readability and understandability.

1 Introduction

A specification is an abstract description of a system with its properties.
The system properties usually include: functional behavior, internal structure,
temporal behavior, performances, and real-time and security constraints.

Carrying out a specification assumes a specification process, itself an in-
tegral part of the software process. Any specification method presumes a
specification language, the main tool for building specifications.

According to the specification language used, the specifications are classi-
fied in:
- semiformal and
- formal.

A semiformal specification uses graphical techniques such as: data flow
diagrams (DFD), entity-relationship diagrams (ERD) and class diagrams, as

Key Words:
Mathematical Reviews subject classification:
Received: June, 2001

35

36 C. Bogdan

well as some kind of structured specification techniques written in natural
language such as: event-response specification or contracts.

A formal specification is a specification written in a formal specification
language. The goal of any formal specification is to obtain a unambiguous and
precise description of the software system, as a base for the system subsequent
specification refinements, verification and validation. The formal specification
emphasizes what is expected from the system, rather than how it will be
realized.

A formal specification language must be itself formally defined that is with
both a formal syntax and a formal semantics. This is why mathematical
techniques are used for the specification building and handling. Formal speci-
fications and their languages make heavily use of discrete mathematics and the
first-order logic concepts such as: set, relation, Cartesian product, predicate,
etc.

2 A case study

Let us consider the following problem:

A safety software system for housing areas:
- enables its owner to configure it during installation,
- controls through its sensors the environmental areas against fire
and burglary and
- interacts with the owner through the keypad of the system control
panel. During installation, the system programming and configu-
ration is carried out by using the numerical and functional keys
of the control panel. Each sensor in the system is identified by
a number and a type (fire or burglary). The system stores two
passwords (each of them is up to six digits) used for the system ac-
tivation/deactivation and a telephone number used for emergency
calls when an alarm event arises. The system polls the fire sensors
for M seconds, then disables them for other N seconds. After that,
the system resumes the same cycle. The Ready indicator is light-
ing when the sensors are polled and is turned off when the sensors
are disabled.

When a sensor indicates an event, the system launches an alarm
signal. After K seconds, the system calls the security forces of-
fice and provides it with information about the event nature and
location.

In order to log in, the owner enters the password and presses Enter.
If any of the six digits is wrong the password is ignored by the

Visual Representation of Formal Software Specification 37

system and the sensors’s state doesn’t change. The owner can
cancel the password with the Clear key.

If a sensor is activated, the system is armed and the Armed in-
dicator on the control panel is turn on. In the case of the sensor
deactivation, the Armed indicator is turn off.

Moreover, the system logs all events. Each logged event is charac-
terized by its type and the date and time of its occurrence. The
event list can be delivered by pressing the MEM key.

3 Z Specification of the System

The Z language ([1], [8]) is used for system modeling.

A specification in Z is a system mathematical model. The model descrip-
tion has two parts:
- the system state,
- the system operations.

The state specification describes the system entities, their types, the re-
lations between them and the restrictions on entity properties. In order to
specify a system, Z uses the set theory for the definition of the entities and
their types, and the mathematical logic for the description of the constraints
on the entity properties.

An operation represents a change of the system state. It may also supply
some outputs. The operation specification defines the relation between the
system’s states before and after the operation execution. It also defines how
the output values depend on entries and the initial state. Each operation in
the system model is described with the next pattern:
- entries,
- start state,
- end state,
- outputs.

An entry is an input variable of the operation. Its type and preconditions
describe it. An output is an output variable of the operation.

To structure a specification, Z introduces a new construction: schema.
There are state schemas and operation schemas. A schema contains a de-
claration part and a predicate part. In the declaration part introduces the
static component of the specification, while the predicate part introduces the
dynamic component, that is relations and constrains on the entities declared
in the first part.

In our safety system we identify as basic types the following entities:
[ControlPanel, SystemParameters, Sensor, Alarm, Event, SupervisorService]

38 C. Bogdan

Figure 1: Z state schema of security system

3.1 The State Schema of System

A state schema for the safety system is shown in the Figure 1. The specifica-
tion in the Figure 1 models the system state with the following variables:
- contain represents the set of all the sensors of the system;
- memorize represents the set of all shown events;
- configure represents the system parameters configuration: the passwords and
telephone numbers, inserted with the control panel;
- control represents the control of the sensors through the control panel;
- release represents the fact that each sensor releases an alarm;
- associate describes that any event corresponds a alarm ;
- signal models the fact that each sensor displays events on the control panel;
- obtain models the fact that each event associates a phone number from the
system parameters;
- resolve models the fact that the supervisor service has been called and re-
ceived information on the event.

In this specification, memorize and contain represent entity sets. All other
variables represent relations and functions. For example, the control variable
is a total surjection from Sensor to ControlPanel, because the system has a
control panel that controls all the system sensors.

Two multiplicity constraints are presented in the second section of the
specification in Figure 1. In the next subsection, we present how the type of
the used functions/relations determines them.

Visual Representation of Formal Software Specification 39

Figure 2: Translation rules from Z schemas to ERD

3.2 Representating Static Aspects of a Z Specification with an

ERD

Let us translate the state schema in an ERD (Entity-Relationship Diagram)
([6]). In this translation we will follow the rules:
- the state schema name is also a name of an entity type, that is the system
is an entity type in ERD;
- variables representing entities are translated in ERD as entity types and
connected to the system entity with relations;
- free types are translated into super types. Their values are subtypes;
- variables representing relations between entities are translated in ERD as
relations or type indicator. Multiplicity constrains for associations are deter-
mined by the type of functions or relations used to define the variables and
constraints. The table from Figure 2 resumes these translation rules, presented
also in ([3]). The ERD in Figure 3 is obtained from the table and the state
schema in the Figure 1.

40 C. Bogdan

Figure 3: An ERD for Z specification

Figure 4: Type schema for the set of sensors

3.3 Operation Schemas of the System

In the following, we model the sensor’s state and type through the free types:
SensorState ::= active|inactive,SensorType ::= fire|burglary.
In this case we can represent the set of sensors with the next type schema
from the Figure 4.

To specify the parameters of the system, we define
Digit == 0..9, and seq6[Digit] == {s ∈ seqDigit|#s = 6} the set of the
sequences with six digits.

We can use arrays to memorize the passwords and phone numbers:
Array = [array : seqData], where Data = [value : seq6[Digit]].

Now we can define the SystemParameters’s type schema from the Figure
5.

The process of checking of a password contains in a checking digit after
digit conformably with a password memorized by the system. First of all, we

Visual Representation of Formal Software Specification 41

Figure 5: Type schema for the set of sensors

should see which password the owner chooses, after the first digit introduced.
That’s why we define the free type:
Boolean ::= false|true and the type schemas:
DigitsNumber = [nr : 0..6],
DigitsNumberInit = [DigitsNumber′|nr′ = 0] and those from the Figure 6.
The checking of the first digit is described through the operation schema from
the Figure 7.

For the next digits, the checking is done in the same way. The operation
schema that specifies the update of the sensor’s state is in the Figure 8.

To treat the errors we define the free type Report ::= ok|invalidePassword

and the type schemas from the Figure 9.

In conclusion, we can combine these operation schemas to describe the op-
eration ControlPassword:
ControlPassword == (CheckF irstDigit

∧
FirstDigitOK

∧
CheckNextDigit

∧
∧

NextDigitOK
∧

UpdateSensorState)
∨

Error

3.4 Representing Dynamic Aspects of a Z Specification

To represent graphically the operation schemas of a Z specification, we will
construct a DFD diagram ([6]) following the next rules:
- the operation schemas will be represented by data processes,
- the type schemas that treat boolean values and contain outputs parameters,
which are values of the any free type, will be shown by the control flows,
- the sets specified through the type schemas will be data stores and the
schema’s variables will be data flows to/from stores, and
- basic types will be actors.
By example, the DFD for the ControlPassword operation schema is shown
in Figure 10.

42 C. Bogdan

Figure 6: Type schemas for FirstPassword, PasswordSequence and Password-
SequenceInit

4 Object-Z Specification of the System

The Object-Z language allows a more complete and appropriate specification
of systems. An Object-Z specification describes a system as a collection of
interacting objects. Each object has a structure and a behavior.

In general, an Object-Z specification consists of a number of class schemas
([2], [5]). A class schema captures the object-orientation notion of a class and
encapsulates a state schema and a set of operation schemas. These operations
may affect state variables.

Syntactically, a class schema is constituted from the elements in the Figure
11.

The specification of the formal generic parameters allows describing of the
abstract data types.

Inheritance (simple and multiple) is described by including the names of
the inherited classes within the inheriting class. In this case, the type, constant
and schema definitions in the inherited class are merged with those declared
explicitly in the inheriting class.

The type and constant definitions have the same syntax as the global type
and the constant definitions in Z. However, their scope is limited to the class

Visual Representation of Formal Software Specification 43

Figure 7: Operation Schema for CheckFirstDigit

Figure 8: Operation schema for UpdateSensorState

in which they are declared.

The state schema is a Z state schema except that it has no name associated
with it. The declarations of the state schema are referred to as the state
variables and the predicate as the state invariant.

The initial state schema is named INIT and shows the initial state of class’s
objects.

Operation schemas are Z operation schemas, excepting that they use the D
operator to show the variables which values are modified when the operation
is executed on the object of class.

A history invariant is a temporal predicate that constrains the behavior of
the classes’s objects.

44 C. Bogdan

Figure 9: Type schemas to verify the errors

Following the definition of our system, we construct o class for each data
type also obtained in the Z specification, but now, the classes contain opera-
tions too, operations that should be specified in Z using operations schemas.

Now, the class PasswordController has responsibility that the control panel
controls the sensors.

From the Object-Z specification of the system, we give in the Figure 12
only the class schemas of SystemParameters and PasswordController.

4.1 Visualizing the Object-Z Class Schemas

To construct a UML class diagram ([4], [7]) from an Object-Z formal specifi-
cation, we may follow the next rules:
- every class schema will be a UML class, where the schema variables will be
the attributes of the UML class. INIT schema corresponds to the class con-
structor and the operation schemas correspond to the UML class operations,
- the entries of the operation schema are formal parameters of the correspon-
ding operation of the UML class and the output type gives the return type
from the operation signature,
- the predicate part of every operation schema may be specified in note ele-
ments associated to UML class and can be expressed using the formal language
OCL, which is part of UML language,
- if a class schema use a variable with type another class schema, then in the

Visual Representation of Formal Software Specification 45

Figure 10: A DFD for Object-Z Specification

UML class diagram will be an association between the corresponding UML
classes, with the name deriving from variable’s name.

Applying the above rules for the system Object-Z specification of our sys-
tem, we obtain the UML class diagram in the Figure 13.

5 Conclusions

The paper presents the construction of graphical, semiformal specifications
from formal specifications written in Z and Object-Z. The mapping has been
done for a case study, by using translation rules informally specified for each
language.

For the structured formal language Z, we mapped the Z specification of the
system state in an entity-relationship diagram, a conceptual technique used in
the structured analysis.

To construct an ERD, we have analyzed the semantic relations between
the variables declared in the state schema and the syntactic constructs ERD.
As result, the basic types were translated into entity types and the variables
into the ERD relations and sub/super type indicator, respectively.

The dynamic aspects of Z specification are mapped in a DFD, that is in
processes, data repositories, data flows, control flows, and actors specifications.

Representing an Object-Z specification with a UML class diagram was an
almost linear mapping process, because Object-Z is an object-oriented lan-
guage, so it’s basic construct is class. The class’s attributes and operations

46 C. Bogdan

Figure 11: Type schemas to verify the errors

have been specified through the state schema and operations schemas, respec-
tively.

In conclusion, we consider that formal specifications may be documented
with diagrams, which provide a visual way for reading and understanding them
easier.

Visual Representation of Formal Software Specification 47

Figure 12: A DFD for Object-Z Specification

Figure 13: The syntax of Object-Z class schema

References

[1] J. P. Bowen, Z: A Formal Specification Notation, In Marc Frappier and Henri Habrias
(eds.), Software Specification Methods: An overview U-sing a Case Study, Springer-
Verlag, 2001.

[2] R. Duke, P. King, G. Rose, G. Smith, The Object-Z Specification Language: Version 1,
Technical Report No. 91-1, The University of Queensland, 1991.

[3] S. K. Kim, D. Carrington, Visualization of Formal Specifications, Technical Report No.
99-47, The University of Queensland, 1999.

[4] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language. Reference Man-

ual, Addison-Wesley, 1999.

48 C. Bogdan

[5] G. P. Smith, An Object-Oriented Approach to Formal Specification, PHD Thesis, The
University of Queesland, 1992.

[6] L. D. Şerbănaţi, Analiza şi proiectarea structurată a sistemelor, course in Romanian,
1998.

[7] L. D. Şerbănaţi, Curs de ingineria programării. Modelarea orientată spre obiecte, course
in Romanian, 1997.

[8] J. Woodcock, J. Davis, Using Z. Specification, Rafinement and Proofs, Prentice Hall,
1999.

”Ovidius” University of Constanta,
Faculty of Mathematics and Informatics,
8700 Constanta,
Romania
e-mail: cbogdan@univ-ovidius.ro

