A characterization of the quaternion group

To Professor Mirela Ştefănescu, at her 70th anniversary

Marius Tărnăuceanu

Abstract

The goal of this note is to give an elementary characterization of the well-known quaternion group Q_8 by using its subgroup lattice.

1 Introduction

One of the most famous finite groups is the quaternion group Q_8 . This is usually defined as the subgroup of the general linear group $GL(2, \mathbb{C})$ generated by the matrices

$$\mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \mathbf{i} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \ \mathbf{j} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ \mathbf{k} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

Using matrix multiplication, we have $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ and $i^2 = j^2 = k^2 = -1$, ij = -ji = k, jk = -kj = i, ki = -ik = j. Moreover, 1 is the identity of Q_8 and -1 commutes with all elements of Q_8 . Remark that i, j, k have order 4 and that any two of them generate the entire group. In this way, a presentation of Q_8 is

$$Q_8 = \langle a, b \mid a^4 = 1, \ a^2 = b^2, \ b^{-1}ab = a^{-1} \rangle$$

(take, for instance, $\mathbf{i} = a$, $\mathbf{j} = b$ and $\mathbf{k} = ab$). We also observe that the subgroup lattice $L(Q_8)$ consists of Q_8 itself and of the cyclic subgroups $\langle \mathbf{1} \rangle$, $\langle -\mathbf{1} \rangle$, $\langle \mathbf{i} \rangle$, $\langle \mathbf{j} \rangle$, $\langle \mathbf{k} \rangle$. It is well-known that Q_8 is a hamiltonian group, i.e. a non-abelian group all of whose subgroups are normal. More precisely

Accepted: February, 2012.

Key Words: Quaternion group, Subgroup lattice, Diamond lattice, $L\mbox{-}{\rm free}$ group, Almost $L\mbox{-}{\rm free}$ group.

²⁰¹⁰ Mathematics Subject Classification: Primary 20D30; Secondary 20D60, 20E15. Received: October, 2011.

Revised: January, 2012.

 Q_8 is the hamiltonian group with the smallest order.

Other basic properties of the subgroups of Q_8 are the following:

- excepting Q_8 , they are cyclic;
- $-\langle -1 \rangle$ is a *breaking point* in the poset of cyclic subgroups of Q_8 , that is any cyclic subgroup of Q_8 either contains $\langle -1 \rangle$ or is contained in $\langle -1 \rangle$;
- $-\langle \mathbf{i} \rangle, \langle \mathbf{j} \rangle$ and $\langle \mathbf{k} \rangle$ are *irredundant*, that is no one is contained in the union of the other two, and they determine a *covering* of Q_8 , that is $Q_8 = \langle \mathbf{i} \rangle \cup \langle \mathbf{j} \rangle \cup \langle \mathbf{k} \rangle$.

These properties can be easily extended to some simple but very nice characterizations of Q_8 (see e.g. [7]), namely

 Q_8 is the unique non-abelian p-group all of whose proper subgroups are cyclic,

 Q_8 is the finite non-cyclic group with the smallest order whose poset of cyclic subgroups has a unique breaking point

and

 Q_8 is the unique non-abelian group that can be covered by any three irredundant proper subgroups,

respectively.

The purpose of this note is to provide a new characterization of Q_8 by using another elementary property of $L(Q_8)$. We recall first a subgroup lattice concept introduced by Schmidt [3] (see also [4]). Given a lattice L, a group G is said to be L-free if L(G) has no sublattice isomorphic to L. Interesting results about L-free groups have been obtained for several particular lattices L, as the diamond lattice M_5 and the pentagon lattice N_5 (recall here only that a group is M_5 -free if and only if it is locally cyclic, and N_5 -free if and only if it is a modular group).

Clearly, for a finite group G the above concept leads to the more general problem of counting the number of sublattices of L(G) that are isomorphic to a certain lattice. Following this direction, our next definition is very natural.

Definition 1.1. Let L be a lattice. A group G is called *almost L-free* if its subgroup lattice L(G) contains a unique sublattice isomorphic to L.

Remark that both the Klein's group $\mathbb{Z}_2 \times \mathbb{Z}_2$ and Q_8 are almost M_5 -free (it is well-known that $L(\mathbb{Z}_2 \times \mathbb{Z}_2) \cong M_5$, while for Q_8 the (unique) diamond is determined by the subgroups $\langle -\mathbf{1} \rangle$, $\langle \mathbf{i} \rangle$, $\langle \mathbf{j} \rangle$, $\langle \mathbf{k} \rangle$ and Q_8). Our main theorem proves that these two groups exhaust all finite almost M_5 -free groups.

Theorem 1.2. Let G be a finite almost M_5 -free group. Then either $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ or $G \cong Q_8$.

In particular, we infer the following characterization of Q_8 .

Corollary 1.3. Q_8 is the unique finite non-abelian almost M_5 -free group.

Finally, we observe that there is no finite almost N_5 -free group (indeed, if G would be such a group, then the subgroups that form the pentagon of L(G) must be normal; in other words, the normal subgroup lattice of G would not be modular, a contradiction).

Most of our notation is standard and will usually not be repeated here. Basic notions and results on groups can be found in [1] and [5]. For subgroup lattice concepts we refer the reader to [2] and [6].

2 Proof of the main theorem

First of all, we prove our main theorem for p-groups.

Lemma 2.1. Let G be a finite almost M_5 -free p-group for some prime p. Then p = 2 and we have either $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ or $G \cong Q_8$.

Proof. Let M be a minimal normal subgroup of G.

If there is $N \in L(G)$ with |N| = p and $N \neq M$, then $MN \in L(G)$ and $MN \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Obviously, $\mathbb{Z}_p \times \mathbb{Z}_p$ has more than one diamond for $p \geq 3$. So, we have p = 2 and we easily infer that $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

If M is the unique minimal subgroup of G, then by (4.4) of [5], II, G is a generalized quaternion 2-group, that is there exists an integer $n \geq 3$ such that $G \cong Q_{2^n}$. If $n \geq 4$, then G contains a subgroup $H \cong Q_{2^{n-1}}$ and therefore $G/\Phi(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \cong H/\Phi(H)$. This shows that G has more than one diamond, a contradiction. Hence n = 3 and $G \cong Q_8$, as desired.

We are now able to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. We will proceed by induction on |G|. Let H be the top of the unique diamond of G. We distinguish the following two cases.

Case 1. H = G.

We infer that every proper subgroup of G is M_5 -free and therefore cyclic. Assume that G is not a p-group. Then the Sylow subgroups of G are cyclic. If all these subgroups would be normal, then G would be the direct product of its cyclic Sylow subgroups and hence it would be cyclic, a contradiction. It follows that there is a prime q such that G has more than one Sylow qsubgroup. Let $S, T \in Syl_a(G)$ with $S \neq T$. Since S and T are cyclic, $S \wedge T$ is normal in $S \vee T$ and the quotient $S \vee T/S \wedge T$ is not cyclic (because it contains two different Sylow q-subgroups). Hence $S \vee T = G$ and $G/S \wedge T$ is almost M_5 -free. If $S \wedge T \neq 1$, then the inductive hypothesis would imply that $G/S \wedge T$ would be a 2-group (isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$ or to Q_8), contradicting the fact that it has two different Sylow q-subgroups. Thus $S \wedge T = 1$. This shows that $Syl_q(G) \cup \{1, G\}$ is a sublattice of L(G). Since G is almost M_5 free, one obtains $|Syl_q(G)| = 3$. By Sylow's theorem we infer that q = 2and $|G: N_G(S)| = |Syl_q(G)| = 3$. In this way, we can choose a 3-element $x \in G \setminus N_G(S)$. It follows that $X = \langle x \rangle$ operates transitively on $Syl_q(G)$. Then for every $Q \in Syl_q(G)$, we have $Q \lor X \ge Q \lor Q^x = G$ and consequently $Q \lor X = G$. On the other hand, we obviously have $Q \land X = 1$ because Q and X are of coprime orders. So $\{1, S, T, X, G\}$ is a second sublattice of L(G)isomorphic to M_5 , contradicting our hypothesis. Hence G is a p-group and the conclusion follows from Lemma 2.1.

Case 2. $H \neq G$.

By the inductive hypothesis we have either $H \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ or $H \cong Q_8$. We also infer that H is the unique Sylow 2-subgroup of G. Let p be an odd prime dividing |G| and K be a subgroup of order p of G. Then HK is an almost M_5 -free subgroup of G, which is not isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$ or to Q_8 . This shows that HK = G. Denote by n_p the number of Sylow p-subgroups of G. If $n_p = 1$, then either $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_p$ or $G \cong Q_8 \times \mathbb{Z}_p$. It is clear that the subgroup lattices of these two direct products contain more than one diamond, contradicting our assumption. If $n_p \neq 1$, then $n_p \geq p+1 \geq 4$ and so we can choose two distinct Sylow p-subgroups K_1 and K_2 . For $H \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ one obtains that $L_1 = \{1, H, K_1, K_2, G\}$ forms a diamond of L(G), which is different from L(H), a contradiction. For $H \cong Q_8$ the same thing can be said by applying a similar argument to the quotient G/H_0 , where H_0 is the (unique) subgroup of order 2 of G. This completes the proof.

We end our note by indicating three open problems concerning this topic.

Problem 2.2. Describe the (almost) *L*-free groups, where *L* is a lattice different from M_5 and N_5 .

Problem 2.3 Determine explicitly the number of sublattices isomorphic to a given lattice that are contained in the subgroup lattices of some important classes of finite groups.

Problem 2.4. Extend the concepts of *L*-free group and almost *L*-free group to other remarkable posets of subgroups of a group (e.g. what can be said about a group whose normal subgroup lattice/poset of cyclic subgroups contains a certain number of sublattices isomorphic to a given lattice?).

Acknowledgements. The author is grateful to the reviewer for its remarks which improve the previous version of the paper.

References

- Isaacs, I.M., *Finite group theory*, Amer. Math. Soc., Providence, R.I., 2008.
- [2] Schmidt, R., Subgroup lattices of groups, de Gruyter Expositions in Mathematics 14, de Gruyter, Berlin, 1994.
- [3] Schmidt, R., L-free groups, Illinois J. Math. 47 (2003), 515-528.
- [4] Schmidt, R., L_{10} -free groups, J. Group Theory **10** (2007), 613-631.
- [5] Suzuki, M., Group theory, I, II, Springer Verlag, Berlin, 1982, 1986.
- [6] Tărnăuceanu, M., Groups determined by posets of subgroups, Ed. Matrix Rom, Bucureşti, 2006.
- [7] Tărnăuceanu, M., A characterization of generalized quaternion 2groups, C. R. Math. Acad. Sci. Paris 348 (2010), 731-733, doi: 10.1016/j.crma.2010.06.016.

Marius Tărnăuceanu Faculty of Mathematics "Al.I. Cuza" University Iași, Romania E-mail: tarnauc@uaic.ro