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Best proximity points of Kannan type cyclic
weak ϕ-contractions in ordered metric spaces

Erdal Karapınar

Abstract

In this manuscript, the existence of the best proximity of Kannan
Type cyclic weak ϕ-contraction in ordered metric spaces is investigated.
Some results of Rezapour-Derafshpour-Shahzad [22] are generalized.

1 Introduction and Preliminaries

In 1922, Banach [3] stated that every contraction on a complete metric space
has a unique fixed point. This theorem is known as Banach contraction map-
ping principle or Banach fixed point theorem. Banach’s theorem preserves
its importance in fixed point theory and has applications not only in many
branches of mathematics but also in economics. In particular, in micro eco-
nomics, for the existence of Nash equilibria, fixed point theorems are used (See
e.g. [19, 4]).

In 1969, Boyd and Wong [5] gave the definition of Φ-contraction: A self-
mapping T on a metric space X is called Φ-contraction if there exists an upper
semi-continuous function Φ : [0,∞) → [0,∞) such that

d(Tx, Ty) ≤ Φ(d(x, y)) for all x, y ∈ X.

Later, in 1997, Alber and Guerre-Delabriere [1], introduced the definition of
weak ϕ-contraction: a self-mapping T on a metric space X is called weak ϕ-
contraction if for each x, y ∈ X, there exists a function ϕ : [0,∞) → [0,∞)
such that

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)).
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In addition, Alber and Guerre-Delabriere defined weak ϕ-contraction on Hilbert
spaces and proved the existence of fixed points in Hilbert spaces. Rhoades [24]
showed that most of the results in [1] are also valid for arbitrary Banach spaces.

Notice that if ϕ is a lower semi-continuous mapping, then Φ(u) = u−ϕ(u)
becomes Φ-contraction [5]. The notions Φ-contraction and weak ϕ-contraction
have been studied by many authors, (e.g.,[11, 25, 26, 27, 13, 14, 15].)

Next, we give some preliminaries and basic definitions which are used
throughout the paper. Let X and Y be nonempty sets and T : X → X
and S : Y → Y . Define the set of all invariant non-empty subsets of X under
T as follows:

IT (X) := {Z ∈ P0(X) : T (Z) ⊂ Z} (1.1)

where P0(X) denotes the set of all non-empty subsets of X. Moreover, a map
(T × S) : X × Y → X × Y is defined as

[T × S](x, y) = (Tx, Sy). (1.2)

For a partially ordered set (X,≤), we denote the set of all comparable pair in
the following way:

CP (X) := {(x, y) ∈ X ×X : either x ≤ y or y ≤ x}. (1.3)

Let (X, d,≤) be an ordered metric space and T : X → X be a self-mapping
on X. For each x∗ and non-empty subset Z of X, we define

ZT (x
∗) := {x ∈ Z : lim

n→∞
T 2nx = x∗}. (1.4)

Cyclic maps were defined by Kirk-Srinavasan-Veeramani in 2003. They
stated the following theorem (see [16], Theorem 1.1).

Theorem 1. Let A and B be non-empty closed subsets of a complete metric
space (X, d). Suppose that T : A ∪ B → A ∪ B is a map satisfying T (A) ⊂ B
and T (B) ⊂ A and there exists k ∈ (0, 1) such that d(Tx, Ty) ≤ kd(x, y) for
all x ∈ A and y ∈ B. Then, T has a unique fixed point in A ∩B.

Definition 2. (See [2]) Let A and B be non-empty closed subsets of a metric
space (X, d) and ϕ : [0,∞) → [0,∞) be a strictly increasing map. A map
T : A ∪ B → A ∪ B is called a cyclic weak ϕ-contraction if T (A) ⊂ B and
T (B) ⊂ A and

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) + ϕ(d(A,B)) (1.5)

for all x ∈ A and y ∈ B where d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.
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A point x ∈ A ∪ B is called a best proximity point if d(x, Tx) = d(A,B).
Further, if α ∈ (0, 1) and ϕ(t) = (1 − α)t, then T is called cyclic contraction
(See [9]).

Very recently, Rezapour-Derafshpour-Shahzad (see[22],also [23]) stated the
following theorem:

Theorem 3. Let (X, d,≤) be an ordered metric space, A and B be non-
empty subsets of X and T : A ∪ B → A ∪ B be decreasing, cyclic weak ϕ-
contraction, that is, T satisfies (1.5). Suppose there exists x0 ∈ A such that
x0 ≤ T 2x0 ≤ Tx0. Define xn+1 = Txn and dn := d(xn+1, xn) for all n ∈ N.
Then dn → d(A,B).

In this manuscript, Theorem 3 and some other results of [22, 13] are gen-
eralized.

2 Main Results

In this section we define Kannan type cyclic weak ϕ-contraction and state our
main results.

Definition 4. Let A and B be non-empty subsets of a metric space (X, d) and
ϕ : [0,∞) → [0,∞) be a strictly increasing map. A map T : A∪B → A∪B is
said to be Kannan type cyclic weak ϕ-contraction if T (A) ⊂ B and T (B) ⊂ A
and

d(Tx, Ty) ≤ u(x, y)− ϕ(u(x, y)) + ϕ(d(A,B)) (2.1)

for all x ∈ A and y ∈ B where u(x, y) = 1
2 [d(x, Tx) + d(y, Ty)] and d(A,B) =

inf{d(a, b) : a ∈ A, b ∈ B}.

Example 5. Let X := R with the usual metric. For A = [0, 1], B = [−1, 0],
define T : A∪B → A∪B by Tx = −3x

4 for all x ∈ A∪B and ϕ(t) = t
7 . Then

T satisfies (2.1), i.e., T is a Kannan type cyclic weak ϕ-contraction.

Example 6. Consider the Euclidean ordered space X = R with the usual
metric. Let A = B = [0, 1] and T : A ∪B → A ∪B be defined by

Tx =

{
1
4 if x = 1,
1
2 if x ∈ [0, 1).

If ϕ : [0,∞) → [0,∞) is defined by ϕ(t) = t
8 then T is a Kannan type cyclic

weak ϕ-contraction but not a cyclic weak ϕ-contraction. Indeed, for x = 7/8
and y = 1 we have

d(Tx, Ty) ≤ d(x, y)− ϕ[d(x, y)] + d(A,B)
|T 7

8 − T1| ≤ | 78 − 1| − 1
8 |

7
8 − 1|

1
4 ≤ 7

64
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which shows that T is not a cyclic weak ϕ-contraction.
Let us check whether T is a Kannan type cyclic weak ϕ-contraction. Notice

that if both x and y are in [0, 1), T obviously satisfies (2.1). If x = y = 1 and
T again satisfies (2.1). Now, consider the case y ∈ [0, 1) and x = 1. Then

d(Tx, Ty) ≤ 1
2 [d(Tx, x) + d(Ty, y)]− ϕ[ 12 [d(Tx, x) + d(Ty, y)]] + d(A,B)

|T1− Ty| ≤ 1
2

[
3
4 + |y − 1

2 |
]
− 1

8 (
1
2

[
3
4 + |y − 1

2 |
]
)

1
4 ≤ 21

64 + 7
16 |y −

1
2 |

which holds for every y ∈ [0, 1). Thus, T is a Kannan type cyclic weak ϕ-
contraction.

Theorem 7. Let (X, d,≤) be an ordered metric space, A and B be non-empty
subsets of X. Suppose T : A ∪ B → A ∪ B is decreasing, Kannan type cyclic
weak ϕ-contraction, that is, T satisfies (2.1). Assume that there exists x0 ∈ A
such that x0 ≤ T 2x0 ≤ Tx0. Define xn+1 = Txn and dn := d(xn+1, xn) for
all n ∈ N. Then dn → d(A,B).

Proof. By the assumption, one can easily observe that

x0 ≤ x2 ≤ · · · ≤ x2n ≤ x2n+1 ≤ · · · ≤ x3 ≤ x1, for all n ∈ N.

Due to (2.1), we have

dn+1 = d(xn+2, xn+1) = d(Txn+1, Txn)
≤ 1

2 [d(xn+1, Txn+1) + d(xn, Txn)]− ϕ( 12 [d(xn+1, Txn+1)+
+d(xn, Txn)]) + ϕ(d(A,B))
≤ 1

2 [dn+1 + dn]− ϕ( 12 [dn+1 + dn]) + ϕ(d(A,B)).

(2.2)

Notice that d(A,B) ≤ 1
2 [d(xn+1, xn+2) + d(xn, xn+1)]. Since ϕ is a strictly

increasing map, we have

ϕ(d(A,B)) ≤ ϕ

(
1

2
[d(xn+1, xn+2) + d(xn, xn+1)]

)
. (2.3)

Thus, regarding 0 ≤ dn+1, the expression (2.2) turns into

0 ≤ dn+1 ≤ 1

2
[dn+1 + dn]− ϕ(

1

2
[dn+1 + dn]) + ϕ(d(A,B)) (2.4)

which implies 0 ≤ 1
2dn+1 ≤ 1

2dn. Hence, the sequence {dn} is non-increasing
and bounded below. If dn0 = 0 for some n0 ∈ N, then clearly dn → 0, d(A,B) =
0 and so, dn → d(A,B). Suppose dn ̸= 0 (that is, dn > 0) for all n ∈ N and
dn → L for some L ≥ d(A,B). From (2.4), we obtain that

ϕ(
1

2
[dn+1 + dn]) ≤

1

2
[dn+1 + dn] + ϕ(d(A,B))− dn+1. (2.5)
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If we combine (2.3 ) and (2.5) we get

ϕ(d(A,B)) ≤ ϕ(
1

2
[dn+1 + dn]) ≤

1

2
[dn+1 + dn]− dn+1 + ϕ(d(A,B)) (2.6)

which yields that ϕ(L) = ϕ(d(A,B)). Since ϕ is strictly increasing, then
L = d(A,B) which completes the proof.

The following result is a consequence of Theorem 7 and Theorem 2.2 of
[22]. Regarding analogy, we omit the proof.

Corollary 8. Let (X, d,≤) be an ordered metric space, A and B be non-empty
subsets of X and T : A ∪B → A ∪B be decreasing map satisfying

d(Tx, Ty) ≤ m(x, y)− ϕ(m(x, y)) + ϕ(d(A,B)) (2.7)

for all x ∈ A and y ∈ B where m(x, y) = max{d(x, y), 1
2 [d(x, Tx)+d(y, Ty)]}.

Suppose that there exists x0 ∈ A such that x0 ≤ T 2x0 ≤ Tx0. Define xn+1 =
Txn and dn := d(xn+1, xn) for all n ∈ N. Then dn → d(A,B).

Our next results are concerned with orbital continuous maps and topolog-
ical spaces with C-condition.

Definition 9. (See [22]) A topological space X is said to have condition (C)
if for each convergent monotone sequence {xn} (that is, xn → x, x ∈ X),
there exists a subsequence {xnk

} of {xn} such that every element of {xnk
}

is comparable with the limit x. Further, X is called regular if every bounded
monotone sequence in X is convergent.

Definition 10. (See [6, 7],see also [12]) A mapping T on metric space (X, d)
is said to be orbitally continuous if limi→∞ Tni(x) = z implies limi→∞ T (Tni(x)) =
Tz.

Remark 11. It is clear that orbital continuity of T implies orbital continuity
of Tm for any m ∈ N.

Theorem 12. Let (X, d,≤) be a regular ordered metric space, A and B be
non-empty subsets of X where A is closed. Assume T : A ∪ B → A ∪ B is a
decreasing map satisfying Kannan type cyclic weak ϕ-contraction, that is, T
satisfies (2.1). Suppose that there exists x0 ∈ A such that x0 ≤ T 2x0 ≤ Tx0.
Define xn+1 = Txn and dn := d(xn+1, xn) for all n ∈ N. If T is orbitally
continuous or X has the property (C), then there exists x ∈ A such that
d(x, Tx) = d(A,B).
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Proof. By the assumption, one can easily see that

x0 ≤ x2 ≤ · · · ≤ x2n ≤ x1, for all n ∈ N.

Regarding that X is regular and A is closed, the sequence {x2n} converges to
a point, say x ∈ A. Observe that

d(A,B) ≤ d(x2n, Tx) = d(Tx2n−1, Tx) ≤ d(Tx2n−1, Tx2n) + d(Tx2n, Tx),
(2.8)

for all n ∈ N. If T is orbitally continuous, then d(Tx2n, Tx) → 0. Regarding
Theorem 7, we have d(Tx2n−1, Tx2n) → d(A,B) and hence

d(x, Tx) = d(A,B)

due to (2.8). Suppose now that X has the property (C). Taking the fact that
the sequence {x2n} is bounded and increasing into account, one can find a
subsequence {x2nk

} of {x2n} such that

x2n1 ≤ x2n2 ≤ · · · ≤ x2nk
≤ · · · ≤ x.

Hence,

d(A,B) ≤ d(x2nk
, Tx) = d(x2nk−1, Tx)

≤ d(x2nk−1, Tx2nk
) + d(Tx2nk

, Tx)
≤ d(x2nk−1, Tx2nk

) + d(x2nk
, Tx)

(2.9)

which implies that d(x, Tx) = d(A,B).

The following corollary results from Theorem 7 and Theorem 2.3 of [22].
The proof is omitted because of analogy.

Corollary 13. Let (X, d,≤) be a regular ordered metric space, A and B be
non-empty subsets of X where A is closed. Assume that T : A ∪ B → A ∪ B
is a decreasing map satisfying

d(Tx, Ty) ≤ m(x, y)− ϕ(m(x, y)) + ϕ(d(A,B)) (2.10)

for all x ∈ A and y ∈ B where m(x, y) = max{d(x, y), 1
2 [d(x, Tx)+d(y, Ty)]}.

Suppose that there exists x0 ∈ A such that x0 ≤ T 2x0 ≤ Tx0. Define xn+1 =
Txn and dn := d(xn+1, xn) for all n ∈ N. If T is orbitally continuous or X
has the property (C), then there exists x ∈ A such that d(x, Tx) = d(A,B).

Corollary 14. Let (X, d,≤) be an ordered metric space, A and B be non-
empty subsets of X. Define T : A∪B → A∪B such that T (A) ⊂ B, T (B) ⊂ A
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and (A × B) ∩ CP (X) ∈ IT (X). Assume that there exists x0 ∈ A such that
(x0, Tx0) ∈ CP (X) and

d(Tx, Ty) ≤ 1

2
[d(x, Tx) + d(Ty, y)]− ϕ(

1

2
[d(x, Tx) + d(Ty, y)]) + ϕ(d(A,B)),

(2.11)
for all x ∈ A and y ∈ B with (x, y) ∈ CP (X), where ϕ : [0,∞) → [0,∞)
is a strictly increasing map. Define xn+1 = Txn and dn := d(xn+1, xn) for
all n ∈ N. If T is orbitally continuous or X has the property (C), then
dn → d(A,B).

Proof. By the assumption, it is easy to see that,

d(T 2n+1x0, T
2nx0) ≤ 1

2 [d(T
2nx0, T

2n+1x0) + d(T 2nx0, T
2n−1x0)]

−ϕ( 12 [d(T
2nx0, T

2n+1x0) + d(T 2nx0, T
2n−1x0)]) + ϕ(d(A,B)),

(2.12)

for all n ∈ N. Clearly, d(A,B) ≤ 1
2 [d(T

2nx0, T
2n+1x0) + d(T 2nx0, T

2n−1x0)].
Since ϕ is a strictly increasing map, then

ϕ(d(A,B)) ≤ ϕ

(
1

2
[d(T 2nx0, T

2n+1x0) + d(T 2nx0, T
2n−1x0)]

)
.

Regarding 0 ≤ dn+1, the expression (2.12) becomes

0 ≤ dn+1 ≤ 1

2
[dn+1 + dn]− ϕ(

1

2
[dn+1 + dn]) + ϕ(d(A,B)) (2.13)

which implies that 0 ≤ 1
2dn+1 ≤ 1

2dn. Hence, {dn} is decreasing and bounded
below. If dn0 = 0 for some n0 ∈ N, then clearly dn → d(A,B) = 0. Consider
the other case dn > 0 for all n ∈ N. Let dn → L for some L ≥ d(A,B). By
the assumptions, we have

ϕ(d(A,B)) ≤ ϕ(
1

2
[dn+1 + dn]) ≤

1

2
[dn+1 + dn]− dn+1 + ϕ(d(A,B)) (2.14)

which yields ϕ(dn) → ϕ(d(A,B)), and therefore ϕ(L) = ϕ(d(A,B)). Since ϕ
is strictly increasing, L = d(A,B).

The following result is a consequence of Theorem 14 and Theorem 2.3 of
[22]. Regarding analogy, we omit the proof.

Corollary 15. Let (X, d,≤) be an ordered metric space, A and B be non-
empty subsets of X. Define T : A∪B → A∪B such that T (A) ⊂ B, T (B) ⊂ A
and (A × B) ∩ CP (X) ∈ IT (X). Assume that there exists x0 ∈ A such that
(x0, Tx0) ∈ CP (X) and

d(Tx, Ty) ≤ m(x, y)− ϕ(m(x, y)) + ϕ(d(A,B)) (2.15)
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for all x ∈ A and y ∈ B with (x, y) ∈ CP (X) where

m(x, y) = max{d(x, y), 1
2
[d(x, Tx) + d(y, Ty)]}

and ϕ : [0,∞) → [0,∞) is a strictly increasing map. Define xn+1 = Txn and
dn := d(xn+1, xn) for all n ∈ N. If T is orbitally continuous or X has the
property (C), then dn → d(A,B).

Theorem 16. Let (X, d,≤) be an ordered metric space, A and B be non-empty
subsets of X. Define T : A ∪ B → A ∪ B such that T (A) = B, T (B) ⊂ A
and (A × B) ∩ CP (X) ∈ IT (X). Assume that there exist x, y ∈ A such that
(x, z), (z, y) ∈ CP (X). Suppose also that there exist x0, u ∈ A such that
x0 ∈ AT (u), (x0, Tx0) ∈ CP (X) and

d(Tx, Ty) ≤ 1

2
[d(x, Tx) + d(Ty, y)]− ϕ(

1

2
[d(x, Tx) + d(Ty, y)]) + ϕ(d(A,B))

(2.16)
for all x ∈ A and y ∈ B with (x, y) ∈ CP (X) where ϕ : [0,∞) → [0,∞) is
a strictly increasing map. Moreover, y ∈ A, (x, y) ∈ CP (X) and x ∈ AT (u)
implies that y ∈ AT (u). Then, AT (u) = A and the following holds:

BT (Tu) = B and d(u, Tu) = d(A,B) ⇔ T is orbitally continuous. (2.17)

Proof. First, we prove that AT (u) = A. Take x ∈ A. If (x, x0) ∈ CP (X),
then x ∈ AT (u) and so AT (u) = A. If (x, x0) /∈ CP (X), then by assumption,
there exists z ∈ A such that (x, z), (x0, z) ∈ CP (X). Therefore, x ∈ AT (u).
Hence, in any case, AT (u) = A.

Now we show (2.17). Assume that T is orbitally continuous. Fix y ∈ B.
Choose x̃ ∈ A such that T x̃ = y. Since AT (u) = A and T 2nx̃ → u,
then T 2n+1x̃ → Tu. That is, T 2ny → Tu and thus BT (Tu) = B. If
d(A,B) = d(u, Tu) then the proof is done. Assume that d(A,B) ̸= d(u, Tu).
Since d(x0, Tx0) ∈ CP (X) and by(2.16), the sequence {d(T 2n+1x0, T

2nx0)}
is decreasing. Hence, Theorem 14 implies that d(T 2n+1x0, T

2nx0) ↓ d(A,B).
Choose n ∈ N in a way that

d(A,B) ≤ d(T 2n+1x0, T
2nx0) < d(u, Tu). (2.18)

Substitute r = T 2n+1x0 and s = T 2nx0. Since (r, s) ∈ CP (X) then (Tr, Ts) ∈
CP (X) and thus {d(T 2nr, T 2ns)} is a decreasing sequence.

Hence d(T 2nr, T 2ns) ↓ d(u, Tu) and so d(u, Tu) ≤ d(r, s) = d(T 2n+1x0, T
2nx0) <

d(u, Tu) which contradicts (2.18). Thus, d(A,B) = d(u, Tu).
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To prove the inverse inclusion of (2.17), assume that BT (Tu) = B and
d(A,B) = d(u, Tu). Let x ∈ A ∪ B and Tn(i)x → w for some w ∈ A ∪ B.
To complete the proof, it is sufficient to show that T is orbitally continu-
ous, that is, Tn(i)+1x → Tw. Define the subsets SA = A ∩ {Tn(i)x} and
SB = B ∩ {Tn(i)x}. Observe that SA and SB are subsequences of {Tnix},
that is, SA = A ∩ {Tn(i)x} = {Tn1(i)x} and SB = B ∩ {Tn(i)x} = {Tn2(i)x}.
We consider the following two cases:

The first case, d(u, Tu) = d(A,B) = 0, in other words Tu = u. On account
of Theorem 14 and using the fact that {Tn1(i)x} is a subsequence of {Tn(i)x}
and the assumption Tn(i)x → w, we get Tn1(i)x → w. On the other hand,
{Tn1(i)x} is also a subsequence of {T 2nx} and thus, Tn1(i)x → u. Hence, we
conclude that u = w, and further w = u = Tu = Tw. Then we have

d(T (Tn(i))x, Tw) ≤ 1
2 [d(T

n(i)x, T (Tn(i))x) + d(Tw,w)]
−ϕ( 12 [d(T

n(i), T (Tn(i))) + d(Tw,w)]) + ϕ(d(A,B))
≤ 1

2 [[d(T
n(i)x, T (Tn(i))x) + d(Tw,w)]

≤ 1
2 [d(T

n(i)x, T (Tn(i))x)]
≤ 1

2 [d(T
n(i)x, Tw) + d(Tn(i)x,w)] ( since Tw = w)

(2.19)
which implies that 1

2d(T (T
n(i))x, Tw) ≤ 1

2d(T
n(i)x,w), or equivalently,

T (Tn(i))x → Tw. Hence, T is orbitally continuous.
Consider the second case, d(u, Tu) = d(A,B) > 0. We assert that both SA

or SB are finite. Indeed, if both SA and SB are infinite, then as in the first
case, Tn1(i)+1x → u and Tn2(i)+1x → Tu. Since both {Tn1(i)x} and {Tn2(i)x}
are subsets of {Tn(i)x} and Tn(i)x → w, then both subsequences converge to
w and thus w = Tu = u. So d(A,B) = d(u, Tu) = 0 which is a contradiction.
Therefore, either SA or SB is finite. Assume that SB = {b1, b2, · · · , bm} is
finite. As in the first case, we get that Tn1(i)x → u, Tn1(i)+1x → Tu and
w = u. Then, {Tn(i)+1x} = {Tn1(i)x} ∪ {Tb1, · · · , T bm} and Tn(i)+1 → Tw.
Suppose now that SA = {a1, a2, · · · , aj} is finite and recall that {Tn2(i)x} is
a subsequence of {Tn(i)}. Then, Tn2(i)x → w. Moreover, {Tn2(i)x} is also a
subsequence of {T 2n+1x} = T 2n(Tx) and Tx ∈ B = BT (Tu), so Tn2(i)x →
Tu. Hence, w = Tu. Due to the fact that {Tn2(i)x} is a subset of {T 2n+2x} =
{T 2n(T 2x)} and T 2x ∈ A = AT (u), we have

Tn2(i)+1 → u. (2.20)

We claim that Tw = u. Since (u, u) ∈ CP (X), by triangle inequality we have
d(u, T 2u) ≤ d(u, T 2nu) + d(T 2nu, T 2u). By assumptions of the theorem, we
have d(T 2nu, T 2u) ≤ d(T 2n−2u, u) which implies that

d(u, T 2u) ≤ d(u, T 2nu) + d(T 2n−2u, u).
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Taking into account that u ∈ A = AT (u), we have T
2nu → u and T 2n−2u → u.

Hence, u = T 2u. Since w = Tu, then Tw = T 2u = u. So, the equation (2.20)
becomes Tn2(i)+1 → u = Tw. Thus, Tn(i)+1x → Tw where {Tn(i)+1x} =
{Tn2(i)x} ∪ {Ta1, · · · , aj} which completes the proof.

Notice that the condition

d(Tx, Ty) ≤ 1

2
[d(Tx, x) + d(Ty, y)]− ϕ(

1

2
[d(Tx, x) + d(Ty, y)]) + d(A,B),

for all x ∈ A, y ∈ B with (x, y) ∈ CP (X), does not imply

y ∈ A, (x, y) ∈ CP (X), x ∈ AT (u) ⇒ y ∈ AT (u).

The following example is given to support our assertion:

Example 17. Let X := R2 with the usual metric and the following order:

(a, b) ≤ (c, d) ⇔ a ≤ c and c ≤ d.

For A = {x1 = (5, 2), x2 = (1, 2)}, B = {y1 = (3, 0), y2 = (0, 4)}, define
T : A∪B → A∪B by Tx1 = y2, Tx2 = y1, T y1 = x2, T y2 = x1. Here, x2 ≤ x1

and y1 ≤ x1 and the others are not comparable. Let ϕ(t) = t
3 . Observe that

d(Tx1, T y1) = d(x2, y2) = d(A,B) =
√
5 and 1

2 [d(Tx1, x1) + d(Ty1, y1)] =
1
2 [
√
8 +

√
29]. Then we have

d(Tx1, T y1) ≤
1

2
[d(Tx1, x1)+d(Ty1, y1)]−ϕ(

1

2
[d(Tx1, x1)+d(Ty1, y1)])+d(A,B),

while T 2nx1 → x1 and T 2nx2 → x2.

Last we give a consequence of Theorem 7 and Theorem 2.4 of [22].

Corollary 18. Let (X, d,≤) be an ordered metric space, A and B be non-
empty subsets of X. Define T : A∪B → A∪B such that T (A) = B, T (B) ⊂ A
and (A × B) ∩ CP (X) ∈ IT (X). Assume that there exist x, y ∈ A such
that (x, z), (z, y) ∈ CP (X). Suppose that there exist x0, u ∈ A such that
x0 ∈ AT (u), (x0, Tx0) ∈ CP (X) and

d(Tx, Ty) ≤ m(x, y)− ϕ(m(x, y)) + ϕ(d(A,B)) (2.21)

for all x ∈ A and y ∈ B with (x, y) ∈ CP (X) where

m(x, y) = max{d(x, y), 1
2
[d(x, Tx) + d(y, Ty)]}
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and ϕ : [0,∞) → [0,∞) is a strictly increasing map. Moreover, y ∈ A, (x, y) ∈
CP (X) and x ∈ AT (u) implies that y ∈ AT (u). Then, AT (u) = A and the
following hold:

BT (Tu) = B and d(u, Tu) = d(A,B) ⇔ T is orbitally continuous. (2.22)

Regarding analogy, we omit the proof.
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[7] Lj. B. Ćirić, On some maps with a nonunique fixed point. Publ. Inst.
Math., 17(1974) 52–58 .

[8] H.S.Ding,L. Li, and S. Radenovic, Bhaskar-Lakshmikantham-Ciric-type
theorems in partially ordered metric space, preprint.

[9] A.A.Eldered, P.Veeramani, Proximal pointwise contraction. Topology and
its Applications, 156 (2009) 2942–2948.

[10] A.A.Eldered, P.Veeramani, Convergence and existence for best proximity
points. J. Math. Anal. Appl., 323 (2006)1001–1006.



62 Erdal Karapınar

[11] N.Hussain, G. Jungck, Common fixed point and invariant approximation
results for noncommuting generalized (f, g)-nonexpansive maps, J. Math.
Anal. Appl., 321(2006) 851-861.

[12] E.Karapınar, Some Nonunique Fixed Point Theorems of Ćirić type on
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