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Approximate multipliers and approximate
double centralizers: A fixed point approach

Abasalt Bodaghi, Madjid Eshaghi Gordji and Kamal Paykan

Abstract

In the present paper, the Hyers-Ulam stability and also the super-
stability of double centralizers and multipliers on Banach algebras are
established by using a fixed point method. With this method, the con-
dition of without order on Banach algebras is no longer necessary.

1 Introduction

The concept of the stability and the superstability for Banach algebra has
been a main stream in the theory of Banach algebras in the last decades.
A functional equation is called stable if any approximately solution to the
functional equation is near to a true solution of that functional equation, and
is superstable if every approximately solution is an exact solution of it.

In 1940, Ulam [21] proposed the following question concerning the stability
of group homomorphisms: under what condition does there exist an additive
mapping near an approximately additive mapping? Hyers [13] answered the
problem of Ulam for the case where X and Y are Banach spaces. A gener-
alized version of the theorem of Hyers for approximately linear mapping was
given by Th. M. Rassias [19]. Since then, the stability problems of various
functional equation have been extensively investigated by a number of authors
(for instances, [6], [7], [10], and [14]).
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In 2003, Cădariu and Radu [3] applied the fixed point method to the inves-
tigation of the Jensen functional equation (see [2, 4, 8, 9] for more applications
of this method). They presented a short and a simple proof (different from
the “direct method ”, initiated by Hyers in 1941) for the Hyers-Ulam stability
of the Jensen functional equation [18], for the Cauchy functional equation [4]
and for the quadratic functional equation [3].

Let A be a non-unital Banach algebra. Then A# = A⊕C is a unital Banach
algebra such that A is a closed subalgebra of A#. In fact A# is the smallest
unitization of A. Also there are other unitizations for Banach algebras. For
instance, the multiplier of A, M(A) is one of them. However, M(A) is very
much bigger than A#.

The concept of the multipliers of Banach algebras were defined by Helgason
in [11]. Later, Wang in [22] studied the multipliers on commutative Banach al-
gebras. For some non-unital Banach algebras, their multipliers are computed.
If X is a locally compact Housdorff space, then M(C0(X)) = Cb(X), where
C0(X) is Banach algebra (C∗-algebra) of continuous functions on X which
vanish at infinity, and Cb(X) is Banach algebra of all bounded continuous
complex-valued functions on X. For Hilbert space H, the multiplier of the
compact operators on H is the bounded operators on H.

Let A be an algebra. Recall that Al(A) := {a ∈ A : aA = {0}} is
the left annihilator ideal and Ar(A) := {a ∈ A : Aa = {0}} is the right
annihilator ideal on A. We say a Banach algebra A is (strongly) without order
if Al(A) = Ar(A) = {0}. Obviously, a Banach algebra is strongly without
order when A is unital or approximately unital.

Miura, Hirasawa and Takasaki in [16, Theorem 1.3] investigated the stabil-
ity of multipliers on Banach algebras, and showed that every approximately
multiplier on a Banach algebra can be approximated by a multiplier. They
also proved the superstability multipliers with the condition of without order
on Banach algebras. On the other hand, the notion of double centralizer was
introduced by Hochschild [12] and Johnson [15] independently. The stability
and the superstability of double centralizers of a Banach algebra A which is
(strongly) without order is investigated in [17].

In this paper, we remove the condition of without order on Banach alge-
bras. In other words, we show that the hypothesis on Banach algebras being
without order in [16, 17] can be eliminated, and establish the stability and the
superstability of double centralizers and multipliers on a Banach algebra by a
method of the fixed point.
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2 Stability of double centralizers

Before proceeding to the main results, we will state the following theorem
which is useful to our purpose (an extension of the result was given in [20]).

Theorem 2.1. (The fixed point alternative [5]) Let (Ω, d) be a complete gen-
eralized metric space and J : Ω → Ω be a mapping with Lipschitz constant
L < 1. Then, for each element x ∈ Ω, either d(Jnx, Jn+1x) = ∞ for all
n ≥ 0, or there exists a natural number n0 such that:

(i) d(Jnx, Jn+1x) < ∞ for all n ≥ n0;

(ii) the sequence {Jnx} is convergent to a fixed point y∗ of J;

(iii) y∗ is the unique fixed point of J in the set

Λ = {y ∈ Ω : d(Jn0x, y) < ∞};

(iv) d(y, y∗) ≤ 1
1−Ld(y, Jy) for all y ∈ Λ.

Throughout this paper, we assume that A is a complex Banach algebra

and denote

n−times︷ ︸︸ ︷
A×A× ...×A by An. A linear mapping L : A −→ A is said

to be left centralizer on A if L(ab) = L(a)b for all a, b ∈ A. Similarly, a
linear mapping R : A −→ A satisfying R(ab) = aR(b) for all a, b ∈ A is
called right centralizer on A. A double centralizer on A is a pair (L,R), where
L is a left centralizer, R is a right centralizer and aL(b) = R(a)b for all
a, b ∈ A. For example, (Lc, Rc) is a double centralizer, where Lc(a) := ca
and Rc(a) := ac. The set D(A) of all double centralizers equipped with the
multiplication (L1, R1) · (L2, R2) = (L1L2, R1R2) is an algebra.

A mapping T : A −→ A is said to be a multiplier if aT (b) = T (a)b for all
a, b ∈ A. Clearly, if Al(A) = {0} (Ar(A) = {0}, respectively) then T is a left
(right) centralizer. For all a, b ∈ A, we put a0 − b0 = 0, a0b = b. We establish
the Hyers-Ulam stability of double centralizers as follows:

Theorem 2.2. Let fi : A → A be mappings with fi(0) = 0 (i = 0, 1), and let
φ : A6 → [0,∞) be a function such that

∥fi(µx+ y + zw)− µfi(x)− fi(y)− [(1− i)(fi(z)w)
1−i + i(zfi(w))

i]

−sf0(t) + f1(s)t∥ ≤ φ(x, y, z, w, t, s) (1)

for all µ ∈ T = {λ ∈ C : |λ| = 1} and all x, y, z, w, s, t ∈ A, i = 0, 1. If there
exists a constant K ∈ (0, 1) such that

φ(2x, 2y, 2z, 2w, 2s, 2t) ≤ 2Kφ(x, y, z, w, s, t) (2)
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for all x, y, z, w, s, t ∈ A, then there exists a unique double centralizer (L,R)
on A satisfying

∥f0(x)− L(x)∥ ≤ 1

2(1−K)
φ(x, x, 0, 0, 0, 0) (3)

and

∥f1(x)−R(x)∥ ≤ 1

2(1−K)
φ(x, x, 0, 0, 0, 0) (4)

for all x ∈ A.

Proof. We consider the set X = {h : A −→ A|h(0) = 0} and introduce the
generalized metric on X as follows:

d(h1, h2) := inf{C ∈ (0,∞) : ∥h1(x)−h2(x)∥ ≤ Cφ(x, x, 0, 0, 0, 0), ∀x ∈ A},

if there exist such constant C, and d(h1, h2) = ∞, otherwise. Similar to the
proof of [1, Theorem 2.2], we can show that d is a generalized metric on X
and the metric space (X, d) is complete. We define a mapping T : X −→ X
via

Th(x) =
1

2
h(2x) (5)

for all x ∈ A. First, we show that T is strictly contractive on X. Given
h1, h2 ∈ X, let C ∈ (0,∞) be an arbitrary constant with d(h1, h2) ≤ C, i.e.,

∥h1(x)− h2(x)∥ ≤ Cφ(x, x, 0, 0, 0, 0) (6)

for all x ∈ A. If we substitute x in the inequality (6) by 2x and make use of
(2) and (5), then we have

∥Th1(x)− Th2(x)∥ =
1

2
∥h1(2x)− h2(2x)∥

≤ 1

2
Cφ(2x, 2x, 0, 0, 0, 0)

≤ CKφ(x, x, 0, 0, 0, 0)

for all x ∈ A. Then d(Th1, Th2) ≤ CK. Hence we conclude that

d(Th1, Th2) ≤ Kd(h1, h2)

for all h1, h2 ∈ X. Hence, T is a strictly contractive mapping on X with a
Lipschitz constant K. Now, we prove that d(Tf0, f0) < ∞. Putting i = 0, µ =
1, x = y, z = w = t = s = 0 in (1), we obtain

∥f0(2x)− 2f0(x)∥ ≤ φ(x, x, 0, 0, 0, 0)
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for all x ∈ A. Hence

∥1
2
f0(2x)− f0(x)∥ ≤ 1

2
φ(x, x, 0, 0, 0, 0) (7)

for all x ∈ A. It follows from (7) that d(Tf0, f0) ≤ 1
2 . By Theorem 2.1, there

exists a unique mapping L : A → A such that L is a fixed point of T and that
Tnf0 → L, i.e.,

lim
n→∞

f0(2
nx)

2n
= L(x) (8)

for all x ∈ A, and so

d(f0, L) ≤
1

1−K
d(Tf0, f0) ≤

1

2(1−K)
.

In fact, the inequality (3) is true for all x ∈ A. It follows from (2) that

lim
n→∞

φ(2nx, 2ny, 2nz, 2nw, 2ns, 2nt)

2n
= 0. (9)

Now, replace 2nx and 2ny by x and y respectively, and put i = 0, z = w =
t = s = 0 in (1). If we divide both sides of the resulting inequality by 2n, and
letting n tend to infinity, then the equalities (8) and (9) imply that

L(µx+ y) = µL(x) + L(y)

for all x, y ∈ A and all µ ∈ T. Now assume that µ ∈ C and µ = µ1 + iµ2,
where µj (j = 1, 2) are real numbers. Let µ1 = α1 + β1 such that α1 is the

integer part of µ1 and 0 ≤ β1 < 1. Easily, we can write β1 =
β1,1+β1,2

2 , where
β1,1, β1,2 ∈ T. We have

L(µ1x) = L(α1x+ β1x) = α1L(x) +
β1,1 + β1,2

2
L(x) = µ1L(x).

Similarly, we have L(µ2x) = µ2L(x). Thus L is C-linear. We may also show
from (1) that L(xy) = L(x)y, and so it is a left centralizer of A. According
to the above argument, one can show that there exists a unique mapping
R : A → A which is a fixed point of T such that

lim
n→∞

f1(2
nx)

2n
= R(x) (10)

for all x ∈ A. Indeed, R belongs to the set {h ∈ X, d(Tf1, h) < ∞}. Also, it
follows from (2) that

lim
n→∞

φ(0, 0, 0, 0, 2ns, 2nt)

2n
= 0 (11)
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for all s, t ∈ A. If we put x = y = z = w = 0 and substitute s and t by 2ns and
2nt in (1) respectively and we divide the both sides of the obtained inequality
by 4n, then we get

∥sf0(2
nt)

2n
− f1(2

ns)

2n
t∥ ≤ φ(0, 0, 0, 0, 2ns, 2nt)

4n
.

Passing to the limit as n → ∞ and from (11), we conclude that sL(t) =
R(s)t, for all s, t ∈ A.

Corollary 2.3. Let r ∈ (0, 1), θ be a non-negative real number and let fi :
A → A be mappings with fi(0) = 0 (i = 0, 1) such that

∥fi(µx+ y + zw)− µfi(x)− fi(y)− [(1− i)(fi(z)w)
1−i + i(zfi(w))

i]

−sf0(t) + f1(s)t∥ ≤ θ(∥x∥r + ∥y∥r + ∥z∥r + ∥w∥r + ∥s∥r + ∥t∥r)

for all µ ∈ T and all x, y, z, w, r, s ∈ A. Then there exists a unique double
centralizer (L,R) on A satisfying

∥f0(x)− L(x)∥ ≤ θ

2− 2r
∥x∥r

and

∥f1(x)−R(x)∥ ≤ θ

2− 2r
∥x∥r

for all x, y ∈ A.

Proof. The result follows immediately from Theorem 2.2 by taking

φ(x, y, z, w, s, t) = θ(∥x∥r + ∥y∥r + ∥z∥r + ∥w∥r + ∥s∥r + ∥t∥r)

for all x, y, z, w, s, t ∈ A and by letting K = 2r−1.

In the following corollary, we show that if f1, f2 are additive mappings,
then the superstability for the inequality (1) is valid.

Corollary 2.4. Suppose that additive mappings f0, f1 : A → A satisfy (1) and
a function φ : A6 → [0,∞) satisfies (2). Then (f0, f1) is a double centralizer.

Proof. Since fi is additive, fi(0) = 0 for i = 0, 1. On the other hand, we
have fi(2

nx) = 2nfi(x) for all x ∈ A and i = 0, 1. By Theorem 2.2, we have
(f0, f1) = (L,R) is a double centralizer.
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Corollary 2.5. Let pj , θ be positive real numbers (1 ≤ j ≤ 6) with
∑6

j=1 pj ̸=
1, and let fi : A → A be mappings with fi(0) = 0 (i = 0, 1) such that

∥fi(µx+ y + zw)− µfi(x)− fi(y)− [(1− i)(fi(z)w)
1−i + i(zfi(w))

i]

−sf0(t) + f1(s)t∥ ≤ θ(∥x∥p1∥y∥p2∥z∥p3∥w∥p4∥s∥p5∥t∥p6) (12)

for all µ ∈ T and all x, y, z, w, r, s ∈ A. Then (f0, f1) is a double centralizer.

Proof. Putting x = y = z = w = s = t = 0 in (12), we get fi(0) = 0 for
i = 0, 1. Now, if we put x = y, z = w = s = t = 0 and µ = 1 in (12), then
we have fi(2x) = 2fi(x) for all x ∈ A. It is easy to see by induction that

fi(2
nx) = 2nfi(x), and so fi(x) =

fi(2
nx)

2n for all x ∈ A and n ∈ N. It follows
from the proof of Theorem 2.2 that (f0, f1) is a double centralizer on A.

3 Stability of multipliers

In this section, we investigate the Hyers-Ulam stability and the superstability
of multipliers.

Theorem 3.1. Let f : A → A be a mapping with f(0) = 0 and let ϕ : A4 →
[0,∞) be a function such that

∥f(µx+ µy)− µf(x)− µf(y)− f(z)w + zf(w)∥ ≤ ϕ(x, y, z, w) (13)

for all µ ∈ T and all x, y, z, w ∈ A. If there exists a constant K ∈ (0, 1) such
that

ϕ(2x, 2y, 2z, 2w) ≤ 2Kϕ(x, y, z, w) (14)

for all x, y, z, w ∈ A, then there exists a unique multiplier T on A satisfying

∥f(x)− T (x)∥ ≤ 1

2(1−K)
ϕ(x, x, 0, 0) (15)

for all x ∈ A.

Proof. It follows from ϕ(2x, 2y, 2z, 2w) ≤ 2Kϕ(x, y, z, w) that

limn→∞
ϕ(2nx, 2ny, 2nz, 2nw)

2n
= 0 (16)

for all x, y, z, w ∈ A. Putting µ = 1, x = y and z = w = 0 in (13), we obtain

∥f(2x)− 2f(x)∥ ≤ ϕ(x, x, 0, 0)
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for all x ∈ A. So

∥1
2
f(2x)− f(x)∥ ≤ 1

2
ϕ(x, x, 0, 0) (17)

for all x ∈ A. Consider the set X := {h : A → A | h(0) = 0} and introduce
the generalized metric on X:

d(h1, h2) := inf{C ∈ R+ : ∥h1(x)− h2(x)∥ ≤ Cϕ(x, x, 0, 0) for all x ∈ A},

if there exist such constant C, and d(h1, h2) = ∞, otherwise. It is easy to
show that (X, d) is complete. We define a mapping Φ : X → X by

Φh(x) =
1

2
h(2x)

for all x ∈ A. By the same reasoning as in the proof of Theorem 2.2, Φ is
strictly contractive on X. It follows from (17) that

d(Φf, f) ≤ 1

2
.

By Theorem 2.1, Φ has a unique fixed point in the set X1 := {h ∈ X :
d(f, h) < ∞}. Let T be the fixed point of Φ. Then T is the unique mapping
with

T (2x) = 2T (x)

for all x ∈ A such that there exists C ∈ (0,∞) such that

∥T (x)− f(x)∥ ≤ Kϕ(x, x, 0, 0)

for all x ∈ A. On the other hand, we have limn→∞d(Φn(f), h) = 0. Thus

limn→∞
1

2n
f(2nx) = T (x) (18)

for all x ∈ A. Hence

d(f, T ) ≤ 1

1−K
d(f,Φf) ≤ 1

2(1−K)
. (19)

This implies the inequality (15). It follows from (13), (16) and (18) that

∥T (x+ y)− T (x)− T (y)∥ = limn→∞
1

2n
∥f(2n(x+ y)) + f(2n(x))− f(2ny)∥

≤ limn→∞
1

2n
ϕ(2nx, 2ny, 0, 0) = 0
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for all x, y ∈ A. So
T (x+ y) = T (x) + T (y)

for all x, y ∈ A. Thus T is Cauchy additive. Putting y = x, z = w = 0 in (13),
we have

∥2µf(x)− f(2µx)∥ ≤ ϕ(x, x, 0, 0)

for all x ∈ A. Hence

∥T (2µx)− 2µT (x)∥ = limn→∞
1

2n
∥f(2µ2nx)− 2µf(2nx)∥

≤ limn→∞
1

2n
ϕ(2nx, 2nx, 0, 0) = 0

for all µ ∈ T and x ∈ A. So T (2µx) = 2µT (x) for all µ ∈ T and x ∈ A. Since
T is a additive map, T (µx) = µT (x) for all µ ∈ T and x ∈ A. The proof of
Theorem 2.2 shows that T is C-linear. If we substitute z and w by 2nz and
2nw in (13) respectively, and put x = y = 0 and we divide the both sides of
the obtained inequality by 4n, we get

∥z f(2
nw)

2n
− f(2nz)

2n
w∥ ≤ ϕ(0, 0, 2nz, 2nw)

4n
.

Passing to the limit as n → ∞ and using (16), we conclude that zT (w) =
T (x)w for all z, w ∈ A.

Corollary 3.2. Let r ∈ (0, 1), θ be non-negative real number and let f : A → A
be a mapping with f(0) = 0 such that

∥f(µx+ µy)− µf(x)− µf(y)− f(z)w − zf(w)∥ ≤ θ(∥x∥r + ∥y∥r + ∥z∥r + ∥w∥r)

for all µ ∈ T and all x, y, z, w ∈ A. Then there exists a unique multiplier T on
A satisfying

∥f(x)− T (x)∥ ≤ θ

2− 2r
∥x∥r

for all x ∈ A.

Proof. We can deduce the desired result from Theorem 3.1 if we take

ϕ(x, y, z, w) = θ(∥x∥r + ∥y∥r + ∥z∥r + ∥w∥r)

for all x, y, z, w ∈ A.

In analogy with corollaries 2.4 and 2.5, we have the following results which
show that under what conditions the multipliers on Banach algebras are su-
perstable.
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Corollary 3.3. Suppose that an additive mapping f : A → A satisfies (13)
and a function ϕ : A4 → [0,∞) satisfies (14). Then f is a multiplier on A.

Proof. Since f is additive, f(0) = 0. On the other hand, we have f(2nx) =
2nf(x) for all x ∈ A. By Theorem 3.1, f is a multiplier on A.

Corollary 3.4. Let pj (1 ≤ j ≤ 4), θ be positive real numbers with
∑4

j=1 pj ̸=
1, and let f : A → A be a mapping such that

∥f(µx+ µy)− µf(x)− µf(y)− f(z)w − zf(w)∥

≤ θ(∥x∥p1∥y∥p2∥z∥p3∥w∥p4) (20)

for all µ ∈ T and all x, y, z, w ∈ A. Then f is a multiplier on A.

Proof. If we put x = y = z = w = 0 in (20), we have f(0) = 0. Again, by
letting x = y, z = w = 0 and µ = 1 in (20), we get f(2x) = 2f(x) for all

x ∈ A. Similar to the proof of Corollary 2.5, one can obtain f(x) = f(2nx)
2n

for all x ∈ A and n ∈ N. Now, the proof of Theorem 3.1 shows that f is a
multiplier on A.
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