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Generalized System for Relaxed Cocoercive
Mixed Variational Inequalities and Iterative

Algorithms in Hilbert Spaces

Shuyi Zhang, Xinqi Guo and Dan Luan

Abstract

The approximate solvability of a generalized system for relaxed co-
coercive mixed variational inequality is studied by using the resolvent
operator technique. The results presented in this paper extend and im-
prove the main results of Chang et al.[1], He and Gu [2] and Verma [3,
4].

1 Introduction and Preliminaries

In this paper, the approximate solvability of a system of nonlinear varia-
tional inequalities involving two relaxed cocoercive mappings in Hilbert spaces
is studied, based on the convergence of resolvent method.

Let H be a real Hilbert space, whose inner product and norm are denoted
by ⟨·, ·⟩ and ∥ · ∥. Let I be the identity mapping on H, and T (·, ·), S(·, ·):
H ×H → H be two nonlinear operator. Let ∂φ denote the subdifferential of
function φ, where φ : H → R ∪ {+∞} is a proper convex lower semicontinu-
ous function on H. It is well known that the subdifferential ∂φ is a maximal
monotone operator. consider a systems of nonlinear variational inequalities (
for short, SNVI) as follows: Find x∗, y∗ ∈ H, such that

⟨ρT (y∗, x∗) + x∗ − y∗, x− x∗⟩+ φ(x)− φ(x∗) ≥ 0, ∀x ∈ H, ρ > 0; (1.1)
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⟨ηS(y∗, x∗) + y∗ − x∗, x− y∗⟩+ ψ(x)− ψ(y∗) ≥ 0, ∀x ∈ H, η > 0. (1.2)

It is easy to know that the SNVI (1.1) and (1.2) is equivalent to the fol-
lowing projection equations:

x∗ = Jφ(x
∗ − ρT (y∗, x∗)), ρ > 0;

y∗ = Jψ(y
∗ − ηS(x∗, y∗)), η > 0,

where Jφ = (I + ∂φ)−1, Jψ = (I + ∂ψ)−1.
Next we consider some special cases of the problem (1.1) and (1.2).
(I) If T = S, then the SNVI (1.1) and (1.2) reduces to the following system

of nonlinear variational inequalities: find x∗, y∗ ∈ H such that

⟨ρT (y∗, x∗) + x∗ − y∗, x− x∗⟩+ φ(x)− φ(x∗) ≥ 0,∀x ∈ H, ρ > 0; (1.3)

⟨ηT (y∗, x∗) + y∗ − x∗, x− y∗⟩+ ψ(x)− ψ(y∗) ≥ 0, ∀x ∈ H, η > 0. (1.4)

(II) If φ = ψ, then the SNVI (1.1) and (1.2) reduces to the following system
of nonlinear variational inequalities: find x∗, y∗ ∈ H such that

⟨ρT (y∗, x∗) + x∗ − y∗, x− x∗⟩+ φ(x)− φ(x∗) ≥ 0,∀x ∈ H, ρ > 0; (1.5)

⟨ηS(y∗, x∗) + y∗ − x∗, x− y∗⟩+ φ(x)− φ(y∗) ≥ 0, ∀x ∈ H, η > 0. (1.6)

(III) If T = S, φ = ψ, then the SNVI (1.1) and (1.2) reduces to the following
system of nonlinear variational inequalities: find x∗, y∗ ∈ H such that

⟨ρT (y∗, x∗) + x∗ − y∗, x− x∗⟩+ φ(x)− φ(x∗) ≥ 0,∀x ∈ H, ρ > 0; (1.7)

⟨ηT (y∗, x∗) + y∗ − x∗, x− y∗⟩+ φ(x)− φ(y∗) ≥ 0, ∀x ∈ H, η > 0. (1.8)

which was studied by He and Gu in [2].
(IV) If K is closed convex set in H, ψ = φ and φ(x) = IK(x) for

all x ∈ K, where IK is the indicator function of K defined by IK(x) ={
0, x ∈ K

+∞, otherwise
, then the SNVI (1.7) and (1.8) is equivalent to the fol-

lowing SNVI: find x∗, y∗ ∈ K such that

⟨ρT (y∗, x∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ K, ρ > 0; (1.9)

⟨ηT (y∗, x∗) + y∗ − x∗, x− y∗⟩ ≥ 0, ∀x ∈ K, η > 0. (1.10)

The problem (1.9) and (1.10) have been studied by Chang et al. (see [1]).
(V) If T, S : H → H are univariate mappings, then the SNVI (1.1) and

(1.2) is collapsed to the following SNVI: find x∗, y∗ ∈ H such that

⟨ρT (y∗) + x∗ − y∗, x− x∗⟩+ φ(x)− φ(x∗) ≥ 0, ∀x ∈ H, ρ > 0; (1.11)
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⟨ηS(x∗) + y∗ − x∗, x− y∗⟩+ ψ(x)− ψ(y∗) ≥ 0, ∀x ∈ H, η > 0. (1.12)

Further, if K is closed convex set in H, S = T, ψ = φ and φ(x) = IK(x) for
all x ∈ K, where IK is the indicator function of K, then the SNVI (1.11) and
(1.12) is equivalent to the following SNVI: find x∗, y∗ ∈ K such that

⟨ρT (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ K, ρ > 0;
⟨ηT (x∗) + y∗ − x∗, x− y∗⟩ ≥ 0, ∀x ∈ K, η > 0,

which was studied by Verma in [3].
The following definitions and lemma are needed in the sequel.

Definition 1.1.
(i) A mapping T : H → H is called r-strongly monotone, if for each

x, y ∈ H, we have

⟨T (x)− T (y) , x− y⟩ ≥ r ∥x− y∥2 ,

for a constant r > 0. This implies that

∥Tx− Ty∥ ≥ r ∥x− y∥ ,

that is, T is r-expansive and when r = 1, it is expansive.
(ii) A mapping T : H → H is called µ-cocoercive, if there exists a constant

µ > 0 such that

⟨T (x)− T (y) , x− y⟩ ≥ µ ∥T (x)− T (y)∥2 ,∀x, y ∈ H.

Clearly, every µ-cocoercive mapping T is 1
µ - Lipschitz continuous.

(iii) A mapping T : H → H is said to relaxed γ-cocoercive, if there exists
a constant γ > 0
such that

⟨T (x)− T (y) , x− y⟩ ≥ −γ ∥T (x)− T (y)∥2 .

(iv) T : H → H is said to be relaxed (γ, r)-cocoercive, if there exists
constants γ, r > 0
such that

⟨T (x)− T (y) , x− y⟩ ≥ −γ ∥T (x)− T (y)∥2 + r ∥x− y∥2 , ∀x, y ∈ H.

Remark 1.1. It follows from the above definitions that a r-strongly mono-
tone mapping must be a relaxed (γ, r)-cocoercive mapping for γ = 0, but the
converse is not true. therefore the class of the relaxed (γ, r)-cocoercive map-
pings is more general class.
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Definition 1.2.
(1) A two-variable mapping T : H ×H → H is said to be relaxed (γ, r)-

cocoercive, if there exist constant γ, r > 0 such that

⟨T (x, u)−T (y, v), x−y⟩ ≥ −γ∥T (x, u)−T (y, v)∥2+ r∥x−y∥2,∀x, y, u, v ∈ H.

(2) A mapping T : H ×H → H is said to be µ-Lipschitz continuous in the
first variable, if there exists a constant µ > 0 such that

∥T (x, u)− T (y, v)∥ ≤ µ∥x− y∥,∀x, y, u, v ∈ H.

Lemma 1.1. Suppose that {an}, {bn} and {cn} are nonnegative sequence
satisfying the following inequality

an+1 ≤ (1− tn) an + bn + cn, n ≥ 0,

where tn ∈ (0, 1) ,
∞∑
n=0

tn = ∞, bn = o (tn) ,
∞∑
n=0

cn <∞, then lim
n→∞

an = 0.

2. Algorithms

In this section, the general two-step models for approximate solutions to
the SNVI (1.1) and (1.2) are given.

Algorithm 2.1. For arbitrary chosen initial points x0, y0 ∈ H compute the
sequences {xn} and {yn} such that{

xn+1 = (1− αn − δn)xn + αnJφ(yn − ρT (yn, xn)) + δnun
yn = (1− βn − λn)xn + βnJψ(xn − ηS(xn, yn)) + λnvn,

(2.1)

where Jφ = (I + ∂φ)−1, Jψ = (I + ∂ψ)−1, ρ and η > 0 are constants and
{αn}, {βn}, {λn}, {δn} are sequences in [0, 1] and {un}, {vn} are bounded
sequences in H.

If S = T , then Algorithm 2.1 is reduced to the following:

Algorithm 2.2. For arbitrary chosen initial points x0, y0 ∈ H compute the
sequences {xn} and {yn} such that{

xn+1 = (1− αn − δn)xn + αnJφ(yn − ρT (yn, xn)) + δnun
yn = (1− βn − λn)xn + βnJψ(xn − ηT (xn, yn)) + λnvn,

where Jφ = (I + ∂φ)−1, Jψ = (I + ∂ψ)−1, ρ and η > 0 are constants and
{αn}, {βn}, {λn}, {δn} are sequences in [0, 1] and {un}, {vn} are bounded
sequences in H.



Generalized System for Relaxed Cocoercive Mixed Variational Inequalities and
Iterative Algorithms in Hilbert Spaces 135

If ψ = φ, then Algorithm 2.1 is reduced to the following:

Algorithm 2.3. For arbitrary chosen initial points x0, y0 ∈ H compute the
sequences {xn} and {yn} such that{

xn+1 = (1− αn − δn)xn + αnJφ(yn − ρT (yn, xn)) + δnun
yn = (1− βn − λn)xn + βnJφ(xn − ηS(xn, yn)) + λnvn,

where Jφ = (I + ∂φ)−1, ρ and η > 0 are constants and {αn}, {βn}, {λn}, {δn}
are sequences in [0, 1] and {un}, {vn} are bounded sequences in H.

If S = T, ψ = φ, then Algorithm 2.1 is reduced to the following:

Algorithm 2.4. For arbitrary chosen initial points x0, y0 ∈ H compute the
sequences {xn} and {yn} such that{

xn+1 = (1− αn − δn)xn + αnJφ(yn − ρT (yn, xn)) + δnun
yn = (1− βn − λn)xn + βnJφ(xn − ηT (xn, yn)) + λnvn,

where Jφ = (I + ∂φ)−1, ρ and η > 0 are constants and {αn}, {βn}, {λn}, {δn}
are sequences in [0, 1] and {un}, {vn} are bounded sequences in H.

3. Main Results

Based on Algorithm 2.1, the approximation solvability of the SNVI (1.1)
and (1.2) is presented.

Theorem 3.1. Let H be a real Hilbert spaces. Let T (·, ·) : H ×H → H be
two-variable relaxed (γ1, r1)-cocoercive and µ1-Lipschitz continuous in the first
variable; S(·, ·) : H ×H → H be two-variable relaxed (γ2, r2)-cocoercive and
µ2-Lipschitz continuous in the first variable. Suppose that (x∗, y∗) ∈ H×H is
a solution of the problem (1.1) and (1.2) and that {xn}, {yn} are the sequences
generated by Algorithm 2.1. If {αn}, {βn}, {λn} and {δn} are four sequences
in [0, 1] satisfying the following conditions

(i)
∞∑
n=0

αn =∞,
∞∑
n=0

δn <∞,

(ii) lim
n→∞

(1− βn) = 0, λn = o(αn),

(iii) 0 < ρ <
2(r1−γ1µ2

1)

µ2
1

, 0 < η <
2(r2−γ2µ2

2)

µ2
2

,

(iv) ri > γiµ
2
i , i = 1, 2, then the sequences {xn} and {yn} converges strongly

to x∗ and y∗, respectively.
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Proof. Since x∗ and y∗ are a solution to the SNVI (1.1) and (1.2), then

x∗ = Jφ(x
∗ − ρT (y∗, x∗)), ρ > 0;

y∗ = Jψ(y
∗ − ηS(x∗, y∗)), η > 0,

It follows from (2.1) that

∥xn+1 − x∗∥= ∥ (1− αn − δn)xn + αnJφ(yn − ρT (yn, xn))

− (1− αn − δn)x
∗ − αnJφ(y

∗ − ρT (y∗, x∗)) + δnun − x∗δn∥
≤ (1− αn − δn)∥xn − x∗∥+ δn (∥un∥+ ∥x∗∥)
+ αn∥yn − y∗ − ρ

(
T (yn, xn)− T (y∗, x∗)

)
∥. (3.1)

From the relaxed (γ1, r1) cocoercive and µ1-Lipschitz continuity in the first
variable on T , we have

∥yn − y∗ − ρ
(
T (yn, xn)− T (y∗, x∗)

)
∥2

= ∥yn − y∗∥2 − 2ρ⟨T (yn, xn)− T (y∗, x∗), yn − y∗⟩
+ ρ2∥T (yn, xn)− T (y∗, x∗)∥2

≤ ∥yn − y∗∥2 + ρ2µ2
1∥yn − y∗∥2 − 2ρr1∥yn − y∗∥2

+ 2ργ1∥T (yn, xn)− T (y∗, x∗)∥2

≤ (1 + ρ2µ2
1 − 2ρr1 + 2ργ1µ

2
1)∥yn − y∗∥2. (3.2)

Substituting (3.2) into (3.1) and simplifying the result, we have

∥xn+1 − x∗∥ = (1− αn − δn) ∥xn − x∗∥+ θ1αn∥yn − y∗∥+ δn (∥un∥+ ∥x∗∥) .
(3.3)

where θ1 =
√
1 + ρ2µ2

1 − 2ρr1 + 2ργ1µ2
1 < 1 by Condition (iii).

Now we make an estimation for ∥yn − y∗∥. It follows from (2.1) that

∥yn − y∗∥
= ∥ (1− βn − λn)xn + βnJψ(xn − ηS(xn, yn))

− (1− βn − λn) y
∗ − βnJψ(y

∗ − ηS(x∗, y∗)) + λnvn − y∗λn∥
≤ (1− βn − λn)∥xn − y∗∥+ βn∥xn − x∗ − η∥S(xn, yn)− S(x∗, y∗)∥
+ λn(∥vn∥+ ∥y∗∥)
≤ (1− βn − λn)∥xn − x∗∥+ (1− βn − λn)∥x∗ − y∗∥
+ βn∥xn − x∗ − η[S(xn, yn)− S(x∗, y∗)]∥+ λn(∥vn∥+ ∥y∗∥). (3.4)

Next we estimate ∥xn − x∗ − η[S(xn, yn) − S(x∗, y∗)]∥. From the relaxed
(γ2, r2) cocoercive and µ2-Lipschitz cocoercive in the first variable on S, we
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get

∥xn − x∗ − η[S(xn, yn)− S(x∗, y∗)]∥2

= ∥xn − x∗∥2 − 2η⟨S(xn, yn)− S(x∗, y∗), xn − x∗⟩
+ η2∥S(xn, yn)− S(x∗, y∗)∥2

≤ ∥xn − x∗∥2 + η2µ2
2∥xn − x∗∥2 + 2ηγ2∥S(xn, yn)− S(x∗, y∗)∥2

− 2ηr2∥xn − x∗∥2

≤ (1 + η2γ22 − 2ηr + 2ηγ2µ
2
2)∥xn − x∗∥2. (3.5)

Let θ2 =
√
1 + η2γ22 − 2ηr2 + 2ηγ2µ2

2 < 1 by Condition (iii). Substituting
(3.5) into (3.4), we have

∥yn − y∗∥ ≤ (1− βn − λn)∥xn − x∗∥+ (1− βn − λn)∥x∗ − y∗∥
+ βnθ2∥xn − x∗∥+ λn(∥vn∥+ ∥y∗∥). (3.6)

Combining (3.6) and (3.3), we obtain that

∥xn+1 − x∗∥
= (1− αn − δn) ∥xn − x∗∥+ θ1αn∥yn − y∗∥+ δn(∥un∥+ ∥x∗∥)
≤ (1− αn − δn) ∥xn − x∗∥+ θ1αn[(1− βn − λn)∥xn − x∗∥
+ (1− βn − λn)∥x∗ − y∗∥
+ βnθ2∥xn − x∗∥+ λn(∥vn∥+ ∥y∗∥)] + δn(∥un∥+ ∥x∗∥)
≤ (1− (1− θ1)αn)∥xn − x∗∥+ αn[(1− βn − λn)∥x∗ − y∗∥
+ λn(∥vn∥+ ∥y∗∥)] + δn(∥un∥+ ∥x∗∥). (3.7)

Set an = ∥xn−x∗∥, tn = (1−θ1)αn, bn = αn[(1−βn−λn)∥x∗−y∗∥+λn(∥vn∥+
∥y∗∥)] and cn = δn(∥un∥+∥x∗∥) in (3.7). By Lemma 1.1 ensures that xn → x∗

as n→ ∞. This completes the proof.

Remark 3.2. Theorem 2.1 extends and improves the main results of [1],
[2], [3] and [4], respectively.

The following theorems can be obtained from Theorem 3.1 immediately.

Theorem 3.3. Let H be a real Hilbert spaces. Let T (·, ·) : H × H → H
be two-variable relaxed (γ1, r1)-cocoercive and µ1-Lipschitz continuous in the
first variable. Suppose that (x∗, y∗) ∈ H × H is a solution of the problem
(1.3) and (1.4) and that {xn}, {yn} are the sequences generated by Algorithm
2.2. If {αn}, {βn}, {λn} and {δn} are four sequences in [0, 1] satisfying the
following conditions

(i)
∞∑
n=0

αn =∞,
∞∑
n=0

δn <∞,
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(ii) lim
n→∞

(1− βn) = 0, λn = o(αn),

(iii) 0 < ρ <
2(r1−γ1µ2

1)

µ2
1

, 0 < η <
2(r2−γ2µ2

2)

µ2
2

,

(iv) ri > γiµ
2
i , i = 1, 2, then the sequences {xn} and {yn} converges strongly

to x∗ and y∗, respectively.

Theorem 3.4. Let H be a real Hilbert spaces. Let T (·, ·) : H ×H → H be
two-variable relaxed (γ1, r1)-cocoercive and µ1-Lipschitz continuous in the first
variable; S(·, ·) : H ×H → H be two-variable relaxed (γ2, r2)-cocoercive and
µ2-Lipschitz continuous in the first variable. Suppose that (x∗, y∗) ∈ H×H is
a solution of the problem (1.5) and (1.6) and that {xn}, {yn} are the sequences
generated by Algorithm 2.3. If {αn}, {βn}, {λn} and {δn} are four sequences
in [0, 1] satisfying the following conditions

(i)
∞∑
n=0

αn =∞,
∞∑
n=0

δn <∞,

(ii) lim
n→∞

(1− βn) = 0, λn = o(αn),

(iii) 0 < ρ <
2(r1−γ1µ2

1)

µ2
1

, 0 < η <
2(r2−γ2µ2

2)

µ2
2

,

(iv) ri > γiµ
2
i , i = 1, 2, then the sequences {xn} and {yn} converges strongly

to x∗ and y∗, respectively.

Theorem 3.5. Let H be a real Hilbert spaces. Let T (·, ·) : H × H → H
be two-variable relaxed (γ1, r1)-cocoercive and µ1-Lipschitz continuous in the
first variable. Suppose that (x∗, y∗) ∈ H × H is a solution of the problem
(1.7) and (1.8) and that {xn}, {yn} are the sequences generated by Algorithm
2.4. If {αn}, {βn}, {λn} and {δn} are four sequences in [0, 1] satisfying the
following conditions

(i)
∞∑
n=0

αn =∞,
∞∑
n=0

δn <∞,

(ii) lim
n→∞

(1− βn) = 0, λn = o(αn),

(iii) 0 < ρ <
2(r1−γ1µ2

1)

µ2
1

, 0 < η <
2(r2−γ2µ2

2)

µ2
2

,

(iv) ri > γiµ
2
i , i = 1, 2, then the sequences {xn} and {yn} converges strongly

to x∗ and y∗, respectively.
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