

Stability of generalized Newton difference equations*

Zhihua Wang and Yong-Guo Shi*

Abstract

In the paper we discuss a stability in the sense of the generalized Hyers-Ulam-Rassias for functional equations $\Delta^n_{(p,\ c)}\varphi(x)=h(x)$, which is called generalized Newton difference equations, and give a sufficient condition of the generalized Hyers-Ulam-Rassias stability. As corollaries, we obtain the generalized Hyers-Ulam-Rassias stability for generalized forms of square root spirals functional equations and general Newton functional equations for logarithmic spirals.

1 Introduction

In 1940, S.M. Ulam [24] posed the stability problem of functional equations: When is it true that a mapping satisfying a functional equation approximately must be close to the solution of the given functional equation? For Banach spaces, the problem was solved by D. H. Hyers [7] in the case of approximately additive mappings. Thereafter, such idea of stability is called the Hyers-Ulam stability of functional equations. This concept is also generalized in [22]. As in [8, 13, 14] we say a functional equation

$$E_1(\varphi) = E_2(\varphi) \tag{1.1}$$

2010 Mathematics Subject Classification: 39B82, 39B52.

Received: May, 2011.

 ${\it Accepted: September, 2011.}$

Key Words: Functional equation, Square root spiral, Logarithmic spiral, Hyers-Ulam-Rassias stability.

^{*}Supported by NSFC (China) grant.

^{*}Corresponding author, E-mail addresses: matwzh2000@126.com(Z.H.Wang); scumat@163.com (Y.G. Shi)

has the generalized Hyers-Ulam-Rassias stability if for an approximate solution φ_s such that

$$|E_1(\varphi_s)(x) - E_2(\varphi_s)(x)| \le \phi(x),$$

for some fixed function ϕ , there exists a solution φ of equation (1.1) such that $|\varphi_s(x) - \varphi(x)| \leq \Phi(x)$ for some fixed function Φ depending only on ϕ . For some results on the stability of functional equations have been discussed extensively in many references, e.g., [1, 2, 3, 4, 5, 9, 10, 16, 17, 18, 19, 20, 21].

For the linear functional equation

$$\varphi(f(x)) = g(x)\varphi(x) + h(x), \tag{1.2}$$

in some classes of special function, where f,g,h are given functions and φ is an unknown function, M. Kuczma, B. Choczewski and R. Ger [15] gave some results in details on nonnegative solutions, monotonic solutions, convex and regularly varying solutions, and regular solutions of equation (1.2). The generalized Hyers-Ulam-Rassias stability of equation (1.2) was discussed by T. Trif [23]. The functional equation of square root spiral

$$\varphi(\sqrt{x^2+1}) = \varphi(x) + \arctan \frac{1}{x},$$
 (1.3)

is a special case of equation (1.2). K. J. Heuvers, D. S. Moak and B. Boursaw [6] presented the general solution without additional regularity of equation (1.3). After that, the generalized Hyers-Ulam-Rassias stability of equation (1.3) was proved by S.-M. Jung and P. K. Sahoo [11]. One generalization of equation (1.3) is the linear functional equation

$$\varphi(p^{-1}(p(x)+c)) = \varphi(x) + h(x),$$
 (1.4)

where p, h are given functions, p^{-1} is the inverse of p, φ is an unknown function and $c \neq 0$ is a constant. The paper [25] gave the general solution of equation (1.4), also proved the generalized Hyers-Ulam-Rassias stability and the stability in the sense of Ger for homogeneous equations of equation (1.4).

For convenience, let n be a fixed positive integer, \mathbb{K} be either the field \mathbb{R} of reals numbers or the field \mathbb{C} of complex numbers, $\mathbb{R}_+ := (0, \infty)$, $\mathbb{R}_+^* := [0, \infty)$, and X stand for a Banach space over \mathbb{K} . Suppose that $p : \mathbb{K} \to \mathbb{K}$ is bijective, $c \in \mathbb{K}$ and $c \neq 0$. By \mathscr{F} we denote the set of all functions $\varphi : \mathbb{K} \to X$. Let $\Delta_{(p,c)}$ be the difference operator defined by

$$(\Delta_{(p,c)}\varphi)(x) = \varphi(p^{-1}(p(x)+c)) - \varphi(x), \quad \forall x \in \mathbb{K},$$
(1.5)

for all $\varphi \in \mathscr{F}$. And we define an operator $\Delta^n_{(p, c)} : \mathscr{F} \to \mathscr{F}$ by

$$(\Delta_{(p,c)}^n\varphi)(x) = (\Delta_{(p,c)}(\Delta_{(p,c)}^{n-1}\varphi))(x), \quad \forall x \in \mathbb{K},$$

$$(1.6)$$

for all $\varphi \in \mathscr{F}$, where $\Delta^0_{(p,c)}\varphi = \varphi$. For instance, we see that

$$(\Delta_{(p,c)}^{2}\varphi)(x) = \varphi(p^{-1}(p(x)+2c)) - 2\varphi(p^{-1}(p(x)+c)) + \varphi(x),$$

$$(\Delta_{(p,c)}^{3}\varphi)(x) = \varphi(p^{-1}(p(x)+3c)) - 3\varphi(p^{-1}(p(x)+2c))$$

$$+3\varphi(p^{-1}(p(x)+c)) - \varphi(x).$$
(1.7)

For the case $p=\mathrm{id},c=1,$ S.-M. Jung and J. M. Rassias [12] proved the generalized Hyers-Ulam-Rassias stability of the so-called Newton difference equations

$$\Delta_{(id,1)}^n \varphi(x) = A \ln R_n(x), \tag{1.8}$$

where A>0, $R_1(x)=\frac{x+1}{x}$, $R_k(x)=\frac{R_{k-1}(x+1)}{R_{k-1}(x)}$, $k\in\{2,3,\ldots,n\}$, and applied their results to the functional equation for logarithmic spirals.

In this paper, we consider the following functional equation

$$\Delta_{(p,c)}^n \varphi(x) = h(x), \tag{1.9}$$

for all $x \in X$ and some fixed integer n > 0, h is a given function, φ is an unknown function. We refer to equation (1.9) as the generalized Newton difference equation. In fact, if we set n = 1, then (1.9) is transformed into equation (1.4). If we set p(x) = x, $h(x) = A \ln R_n(x)$, c = 1, then (1.9) becomes to (1.8). We prove the generalized Hyers-Ulam-Rassias stability of equation (1.9), and give a sufficient condition on the generalized Hyers-Ulam-Rassias stability. Applying the result of (1.9), we give the generalized Hyers-Ulam-Rassias stability of equations (1.4) and (1.8) as corollaries.

2 Main results

In the following theorem, we prove the generalized Hyers-Ulam-Rassias stability of (1.9).

Theorem 2.1. Suppose that $c \in \mathbb{K}$, $c \neq 0$, $p : \mathbb{K} \to \mathbb{K}$ is bijective, $h : \mathbb{K} \to X$ is a given function. If $\varphi : \mathbb{K} \to X$ satisfies

$$\|\Delta_{(n-c)}^n \varphi(x) - h(x)\| \le \phi_n(x), \quad \forall x \in \mathbb{K}, \tag{2.1}$$

where function $\phi_n : \mathbb{K} \to \mathbb{R}_+$ satisfies the condition

$$\Phi_n(x) := \sum_{k=0}^{\infty} \phi_n(p^{-1}(p(x) + kc)) < \infty, \quad \forall x \in \mathbb{K},$$
 (2.2)

for some integer $n \in \mathbb{N}$, then there exists a unique function $\Psi_n : \mathbb{K} \to X$ such that $\Delta_{(p, c)} \Psi_n(x) = h(x)$ and

$$\|\Psi_n(x) - \Delta_{(p,c)}^{n-1}\varphi(x)\| \le \Phi_n(x), \quad \forall x \in \mathbb{K}.$$
 (2.3)

Proof. It follows from (2.1) that

$$\|\Delta_{(p, c)}^{n}\varphi(x) - h(x)\| \leq \phi_{n}(x)$$

$$\|\Delta_{(p, c)}^{n}\varphi(p^{-1}(p(x) + c)) - h(p^{-1}(p(x) + c))\| \leq \phi_{n}(p^{-1}(p(x) + c))$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\|\Delta_{(p, c)}^{n}\varphi(p^{-1}(p(x) + (m - 1)c)) - h(p^{-1}(p(x) + (m - 1)c))\|$$

$$\leq \phi_{n}(p^{-1}(p(x) + (m - 1)c))$$
(2.4)

for $x \in \mathbb{K}$ and $m \in \mathbb{N}$. In view of triangular inequalities, the above inequalities yield

$$\|\sum_{k=0}^{m-1} \Delta_{(p,c)}^n \varphi(p^{-1}(p(x)+kc)) - \sum_{k=0}^{m-1} h(p^{-1}(p(x)+kc))\| \le \sum_{k=0}^{m-1} \phi_n(p^{-1}(p(x)+kc)).$$
(2.5)

Substitute $p^{-1}(p(x) + \ell c)$ for x in (2.5) and then substitute k for $k + \ell$ in the resulting inequality to obtain

$$\|\sum_{k=\ell}^{\ell+m-1} \Delta_{(p,c)}^{n} \varphi(p^{-1}(p(x)+kc)) - \sum_{k=\ell}^{\ell+m-1} h(p^{-1}(p(x)+kc))\| \le \sum_{k=\ell}^{\ell+m-1} \phi_n(p^{-1}(p(x)+kc))$$
(2.6)

for all $x \in \mathbb{K}$ and $\ell, m \in \mathbb{N}$.

By some manipulation, we further have

$$\parallel \sum_{k=0}^{\ell+m-1} \Delta_{(p,c)}^{n} \varphi(p^{-1}(p(x)+kc)) - \sum_{k=0}^{\ell+m-1} h(p^{-1}(p(x)+kc)) + \Delta_{(p,c)}^{n-1} \varphi(x)
- \sum_{k=0}^{\ell-1} \Delta_{(p,c)}^{n} \varphi(p^{-1}(p(x)+kc)) + \sum_{k=0}^{\ell-1} h(p^{-1}(p(x)+kc)) - \Delta_{(p,c)}^{n-1} \varphi(x) \|
\leq \sum_{k=\ell}^{\ell+m-1} \phi_n(p^{-1}(p(x)+kc))$$
(2.7)

for all $x \in \mathbb{K}$ and $\ell, m \in \mathbb{N}$. Thus, considering (2.2), we see that the sequence

$$\left\{ \sum_{k=0}^{m-1} \left[\Delta_{(p,c)}^{n} \varphi(p^{-1}(p(x)+kc)) - h(p^{-1}(p(x)+kc)) \right] + \Delta_{(p,c)}^{n-1} \varphi(x) \right\}_{m=1}^{\infty} (2.8)$$

is a Cauchy sequence for all $x \in \mathbb{K}$. Hence, we can define a function $\Psi_n : \mathbb{K} \to X$ by

$$\Psi_n(x) = \sum_{k=0}^{\infty} \left[\Delta_{(p,c)}^n \varphi(p^{-1}(p(x)+kc)) - h(p^{-1}(p(x)+kc)) \right] + \Delta_{(p,c)}^{n-1} \varphi(x). \tag{2.9}$$

By (2.9), we obtain

$$\Delta_{(p, c)} \Psi_{n}(x) = \Psi_{n}(p^{-1}(p(x) + c)) - \Psi_{n}(x)$$

$$= \sum_{k=1}^{\infty} [\Delta_{(p, c)}^{n} \varphi(p^{-1}(p(x) + kc)) - h(p^{-1}(p(x) + kc))]$$

$$+ \Delta_{(p, c)}^{n-1} \varphi(p^{-1}(p(x) + c))$$

$$- \sum_{k=0}^{\infty} [\Delta_{(p, c)}^{n} \varphi(p^{-1}(p(x) + kc)) - h(p^{-1}(p(x) + kc))] - \Delta_{(p, c)}^{n-1} \varphi(x)$$

$$= h(x) \tag{2.10}$$

for all $x \in \mathbb{K}$. In view of (2.2) and (2.9), if we let m go to infinity in (2.5), then we obtain (2.3).

It only remains to prove the uniqueness of the function Ψ_n . If a function $H: \mathbb{K} \to X$ satisfies $\Delta_{(p, c)}H(x) = h(x)$ for each $x \in \mathbb{K}$, then we can easily show that

$$H(p^{-1}(p(x) + mc)) - H(x) = \sum_{k=0}^{m-1} h(p^{-1}(p(x) + kc))$$
 (2.11)

for all $x \in \mathbb{K}$ and $m \in \mathbb{N}$. Now, assume that $G_n : \mathbb{K} \to X$ satisfies $\Delta_{(p, c)}G_n(x) = h(x)$ and the inequality (2.3) in place of Ψ_n . By (2.2), (2.3) and (2.11), we get

$$\|\Psi_n(x) - G_n(x)\| = \|\Psi_n(p^{-1}(p(x) + mc)) - G_n(p^{-1}(p(x) + mc))\|$$

$$< 2\Phi_n(p^{-1}(p(x) + mc)) \longrightarrow 0, \text{ as } m \longrightarrow \infty. (2.12)$$

for all $x \in \mathbb{K}$, which proves the uniqueness of Ψ_n . This completes the proof.

Now we give a sufficient condition of the generalized Hyers-Ulam-Rassias stability of (1.9).

Corollary 2.1. Suppose that $c \in \mathbb{K}$, $c \neq 0$, $p : \mathbb{K} \to \mathbb{K}$ is bijective, and $h : \mathbb{K} \to X$ is a given function. If $\varphi : \mathbb{K} \to X$ satisfies $\|\Delta_{(p, c)}^n \varphi(x) - h(x)\| \leq \phi_n(x)$ for all $x \in \mathbb{K}$, where function $\phi_n : \mathbb{K} \to \mathbb{R}_+$ is a fixed function, for some integer $n \in \mathbb{N}$. If

$$\liminf_{k \to \infty} \frac{\phi_n(p^{-1}(p(x) + (k-1)c))}{\phi_n(p^{-1}(p(x) + kc))} > 1, \quad \forall x \in \mathbb{K},$$
(2.13)

then equation (1.9) has the generalized Hyers-Ulam-Rassias stability.

Proof. Consider the sequence $\{U_k(x)\}$ defined by $U_k(x) := \phi_n(p^{-1}(p(x) + kc))$. By (2.13), we have

$$\limsup_{k \to \infty} \frac{U_k}{U_{k-1}} = \limsup_{k \to \infty} \frac{\phi_n(p^{-1}(p(x) + kc))}{\phi_n(p^{-1}(p(x) + (k-1)c))}$$

$$= \frac{1}{\lim_{k \to \infty} \inf \frac{\phi_n(p^{-1}(p(x) + (k-1)c))}{\phi_n(p^{-1}(p(x) + kc))}}$$

$$< 1, \forall x \in \mathbb{K}.$$

By ratio test we see that the series (2.2) converges for all $x \in \mathbb{K}$. By Theorem 2.1 we get the generalized Hyers-Ulam-Rassias stability. This completes the proof of the corollary. \square

By Theorem 2.1, we can obtain directly the generalized Hyers-Ulam-Rassias stability of equations (1.4) and (1.8).

Corollary 2.2. (cf.[25]). Suppose that $c \in \mathbb{K}$, $c \neq 0$, $p : \mathbb{K} \to \mathbb{K}$ is bijective, $h : \mathbb{K} \to X$ is a given function. If $\varphi_s : \mathbb{K} \to X$ satisfies

$$\|\varphi_s(p^{-1}(p(x)+c)) - \varphi_s(x) - h(x)\| \le \phi(x), \quad \forall x \in \mathbb{K}, \tag{2.14}$$

where function $\psi : \mathbb{K} \to \mathbb{R}_+$ satisfies

$$\Phi(x) := \sum_{k=0}^{\infty} \phi(p^{-1}(p(x) + kc)) < \infty, \quad \forall x \in \mathbb{K},$$
 (2.15)

then there exists a unique solution $\varphi : \mathbb{K} \to X$ of equation (1.4) such that

$$\|\varphi(x) - \varphi_s(x)\| \le \Phi(x), \quad \forall x \in \mathbb{K}.$$
 (2.16)

Corollary 2.3. (cf.[12]). If a function $\varphi : \mathbb{R}_+ \to \mathbb{R}$ satisfies

$$|\Delta_{(id,1)}^n \varphi(x) - A \ln R_n(x)| \le \gamma_n(x), \quad \forall x \in \mathbb{R}_+, \tag{2.17}$$

and some integer $n \in \mathbb{N}$, where $\gamma_n : \mathbb{R}_+ \to \mathbb{R}_+^*$ is a function which satisfies

$$\Upsilon_n(x) := \sum_{k=0}^{\infty} \gamma_n(x+k) < \infty, \quad \forall x \in \mathbb{R}_+,$$
(2.18)

then there exists a unique function $\Psi_n : \mathbb{R}_+ \to \mathbb{R}$ such that $\Delta_{(id,1)} \Psi_n(x) = A \ln R_n(x)$ and

$$|\Psi_n(x) - \Delta_{(id,1)}^{n-1}\varphi(x)| \le \Upsilon_n(x), \quad \forall x \in \mathbb{R}_+.$$
(2.19)

References

- [1] R. P. Agarwal, B. Xu and W. Zhang, Stability of functional equations in single variable, *J. Math. Anal. Appl.* **288**(2003), 852-869.
- [2] M. Amyari and M. S. Moslehian, Approximately ternary semigroup homomorphisms, *Lett. Math. Phys.* **77**(2006), 1-9.
- [3] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2(1950), 64-66.
- [4] G. L. Forti, Hyers-Ulam stability of functional equations in several variables, *Aeguationes Math.* **50**(1995), 143-190.
- [5] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994), 431-436.
- [6] K. J. Heuvers, D. S. Moak and B. Boursaw, The functional equation of the square root spiral, *In Functional Equations and Inequalities*, (Edited by Th. M. Rassias), Kluwer, 2000, pp. 111-117.
- [7] D. H. Hyers, On the stability of the linear functional equation, *Proc. Nat. Acad. Sci. U.S.A.* **27**(1941), 222-224.
- [8] S.-M. Jung, Hyers-Ulam-Rassias stability of functional equations, *Dynam. Systems Appl.* **6**(1997), 541-566.
- [9] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
- [10] S.-M. Jung and P. K. Sahoo, Hyers-Ulam stability of the quadratic equation of Pexider type, J. Korean Math. Soc. 38(2001), 645-656.
- [11] S.-M. Jung and P. K. Sahoo, Stability of a functional equation for square root spirals, *Appl. Math. Lett.* **15**(2002), 435-438.
- [12] S.-M. Jung and J. M. Rassias, Stability of general Newton functional equations for logarithmic spirals, *Advances in Difference Equations*, Volume 2008, Article ID 143053, 5 pages.
- [13] G. H. Kim, B. Xu and W. Zhang, Notes on stability of the generalized gamma functional equation, *Internat. J. Math. Math. Sci.* **32**(2002), 57-63.
- [14] G. H. Kim, On the Hyers-Ulam-Rassias stability of functional equations in n-variables, J. Math. Anal. Appl. 299(2004), 375-391.

- [15] M. Kuczma, B. Choczewski and R. Ger, *Iterative Functional Equations*, Encyclopedia Math. Appl. Vol. **32**, Cambridge Univ. Press, 1990.
- [16] M. Mirzavaziri and M. S. Moslehian, A fixed point approach to stability of a quadratic equation, *Bull. Braz. Math. Soc.* **37(3)**(2006), 361-376.
- [17] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems 159(2008), 720-729.
- [18] M. S. Moslehian, K. Nikodem and D. Popa, Asymptotic aspect of the quadratic functional equation in multi-normed spaces, *J. Math. Anal. Appl.* **355**(2009), 717-724.
- [19] A. Najati and M. B. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, *J. Math. Anal. Appl.* **337**(2008), 399-415.
- [20] K. Nikodem, The stability of the Pexider equations, Ann. Math. Sil. 5(1991), 91-93.
- [21] Ch. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras, *Bull. Sci. Math.* **132**(2008), 87-96.
- [22] T. M. Rassias, On the stability of the linear mapping in Banach spaces, *Proc. Amer. Math. Soc.* **72**(1978), 297-300.
- [23] T. Trif, On the stability of a general gamma-type functional equation, *Publ. Math. Debrecen* **60**(2002), 47-61
- [24] S. M. Ulam, *Problems in Modern Mathematics, Chapter VI*, Science Editions, Wiley, New York, 1964.
- [25] Z. Wang, X. Chen and B. Xu, Generalization of functional equation for the square root spiral, *Appl. Math. Comput.* **182**(2006), 1355-1360.

Zhihua Wang.

School of Science, Hubei University of Technology,

Wuhan, Hubei 430068, P.R. China

Email: matwzh2000@126.com

Yong-Guo Shi,

Key Laboratory of Numerical Simulation of Sichuan Province,

College of Mathematics and Information Science, Neijiang Normal University,

Neijiang, Sichuan 641112, P.R. China

Email: scumat@163.com