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Fixed point theorems for expanding mappings
in partial metric spaces

Xianjiu Huang, Chuanxi Zhu, Xi Wen

Abstract

In this paper, we define expanding mappings in the setting of partial
metric spaces analogous to expanding mappings in metric spaces. We
also obtain some results for two mappings to the setting of partial metric
spaces.

1 Introduction and Preliminaries
In 1994, Matthews [10] introduced the notion of partial metric space as a

part of the study of denotational semantics of dataflow networks. He general-
ized the concept of metric space in the sense that the distance from a point to
itself need not be equal to zero. Such metrics are useful in modeling partially
defined information, which often appears in Computer Science. In the same
reference, the contraction fixed point theorem was extended to partial metric
spaces. This highlights an additional feature: the fixed point has self-distance
0. Although trivial in metric spaces, this can be useful for reasoning about
posets appearing in Computer Science. For, when a computable function is
shown to be a contraction, the partial metric extension of the contraction fixed
point theorem can be used to prove that the unique fixed point, which is the
program output, will be totally computed; see [10] for details. Further appli-
cations of partial metrics to problems in theoretical Computer Science were
discussed in [2-3, 14-17].

In 1984, Wang et.al [19] introduced the concept of expanding mappings
and proved some fixed point theorems in complete metric spaces. In 1992,
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Daffer and Kaneko[4] defined an expanding condition for a pair of mappings
and proved some common fixed point theorems for two mappings in complete
metric spaces.

In this paper, we define expanding mappings in the setting of partial metric
spaces analogous to expanding mappings in complete metric spaces(see Wang
et.al [19]). We also extend a result of Daffer and Kaneko[4] for two mappings
to the setting of partial metric spaces.

Throughout this paper the letters R,R+, N will denote the set of real
numbers, nonnegative real numbers and natural numbers, respectively. We
use the following definitions in the proof of our main theorems.

We recall that given a (nonempty) set X, a function p : X ×X → R+ is
called a partial metric if and only if for all x, y, z ∈ X:

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y);

(p2) p(x, x) ≤ p(x, y);

(p3) p(x, y) = p(y, x);

(p4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

A partial metric space is a pair (X, p) such that X is a nonempty set and p
is a partial metric on X. It is clear that, if p(x, y) = 0, then from (p1) and (p2)
x = y. But if x = y, p(x, y) may not be 0. A basic example of a partial metric
space is the pair (R+, p), where p(x, y) = max{x, y} for all x, y ∈ R+. Other
examples of partial metric spaces which are interesting from a computational
point of view may be found in [10-12, 18].

There are some generalizations of partial metrics. For example, O’Neill[12]
proposed one significant change to Matthews’ definition of the partial metric,
and that was extend their range from R+ to R. According to [12], the partial
metrics in the O’Neill sense will be called dualistic partial metric and a pair
(X, p) such that X is a nonempty set and p is a dualistic partial metric on X
will be called a dualistic partial metric space. In this way, O’Neill developed
several connections between partial metrics and the topological aspects of
domain theory. Moreover, the pair (R, p), where p(x, y) = x∨y for all x, y ∈ R,
provides a paradigmatic example of a dualistic partial metric space that is not
a partial metric space. Also, Heckmann [6] generalized it by omitting small
self-distance axiom p(x, x) ≤ p(x, y). The partial metric of Heckmann sense
is called weak partial metric. The inequality 2p(x, y) ≥ p(x, x) + p(y, y) is
satisfied for all x, y in a weak partial metric space.

Each partial metric p on X generates a T0 topology T(p) on X which
has as a base the family of open p-balls {Bp(x, ε) : x ∈ X; ε > 0}, where
{Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

From this fact it immediately follows that a sequence {xn} in a partial
metric space (X, p) converges to a point x ∈ X if and only if p(x, x) =
lim
n→∞

p(x, xn). Following [9] (compare [11]), a sequence {xn} in a partial metric
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space (X, p) is called a Cauchy sequence if there exists lim
n,m→∞

p(xn, xm). A

partial metric space (X, p) is said to be complete if every Cauchy sequence
{xn} in X converges, with respect to T(p), to a point x ∈ X such that
p(x, x) = lim

n,m→∞
p(xn, xm). The continuity of the self-maps in the partial

metric spaces is, in fact, the sequential continuity. If f : X → X, where (X, p)
is a partial metric space, then f is continuous at the point a ∈ X if, for every
sequence xn ∈ X, which converges in the partial metric p to a, the sequence
fxn converges to fa, i.e.,

p(a, a) = lim
n→∞

p(xn, a) ⇒ p(fa, fa) = lim
n→∞

p(fxn, fa).

It is easy to see that, every closed subset of a complete partial metric space
is complete.

If p is a partial metric on X, then the function ps : X ×X → R+ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a metric on X.
Definition 1.1 Let (X, d) be a partial metric space and T : X → X. Then

T is called a expanding mapping, if for every x, y ∈ X there exists a number
k > 1 such that p(Tx, Ty) ≥ kp(x, y).

Definition 1.2 Two self mappings f and g of a partial metric space (X, d)
are said to be commuting if fgx = gfx for all x ∈ X.

Definition 1.3 Let f and g be self mappings of a set X (i.e., f, g : X →
X). If w = fx = gx for some x in X, then x is called a coincidence point of
f and g, and w is called a point of coincidence of f and g. Self mappings f
and g are said to be weakly compatible if they commute at their coincidence
point; i.e., if fx = gx for some x ∈ X, then fgx = gfx.

Weakly compatible mappings are more general than that of commuting
but neither implication is reversible.

The following lemma will be useful in what follows; see [10,11].
Lemma 1.1 Let (X, p) be a partial metric space.
(1) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy

sequence in the metric space (X, ps).
(2) A partial metric space (X, p) is complete if and only if the metric space

(X, ps) is complete. Furthermore lim
n→∞

ps(a, xn) = 0 if and only if p(a, a) =

lim
n→∞

p(a, xn) = lim
n,m→∞

p(xn, xm).

2 Main results
In this section, we shall establish some fixed point theorems concerning

expanding maps. The following lemma will be useful.
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Lemma 2.1 Let (X, p) be a partial metric space and {xn} be a sequence
in X. If there exists a number k ∈ (0, 1) such that

p(xn+1, xn) ≤ kp(xn, xn−1), n = 1, 2, · · · (2.1)

then {xn} is a Cauchy sequence in X.
Proof By the simple induction with the condition (2.1), we have

p(xn+1, xn) ≤ kp(xn, xn−1) ≤ k2p(xn−1, xn−2) ≤ · · · ≤ knp(x1, x0). (2.2)

On the other hand, since

max{p(xn, xn), p(xn+1, xn+1)} ≤ p(xn, xn+1)

then from (2.2) we have

max{p(xn, xn), p(xn+1, xn+1)} ≤ knp(x1, x0). (2.3)

Therefore,

ps(xn, xn+1) = 2p(xn, xn+1)− p(xn, xn)− p(xn+1, xn+1)

≤ 2p(xn, xn+1) + p(xn, xn) + p(xn+1, xn+1) ≤ 4knp(x1, x0).

This shows that lim
n→∞

ps(xn, xn+1) = 0. Now we have

ps(xn, xn+l) = ps(xn, xn+1)+ps(xn+1, xn+2)+ · · ·+ps(xn+l−1, xn+l)

≤ 4knp(x1, x0) + 4kn+1p(x1, x0) + · · ·+ 4kn+l−1p(x1, x0)

≤ 4kn

1− k
p(x1, x0).

This shows that {xn} is a Cauchy sequence in metric spaces (X, ps), then
from Lemma 1.1, {xn} is a Cauchy sequence in partial metric spaces (X, p).

Theorem 2.1 Let (X, p) be a complete partial metric space and T : X → X
be a surjection. Suppose that there exist a1, a2, a3 ≥ 0 with a1 + a2 + a3 > 1
such that

p(Tx, Ty) ≥ a1p(x, y)+a2p(x, Tx)+a3p(y, Ty), for all x, y ∈ X,x ̸= y. (2.4)

Then T has a fixed point in X.
Proof Let x0 ∈ X. Since T is surjective, choose x1 ∈ X such that Tx1 =

x0. Inductively, we can define a sequence {xn} ∈ X such that xn−1 = Txn,
n = 1, 2, · · · .
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Without loss of generality, we assume that xn−1 ̸= xn for all n = 1, 2, · · ·
(otherwise, if there exists some n0 such that xn0−1 = xn0 , then xn0 is a fixed
point of T ).

It follows that from condition (2.4)
p(xn−1, xn) = p(Txn, Txn+1)

≥ a1p(xn, xn+1) + a2p(xn, Txn) + a3p(xn+1, Txn+1)
= a1p(xn, xn+1) + a2p(xn, xn−1) + a3p(xn+1, xn)

or (1− a2)p(xn−1, xn) ≥ (a1 + a3)p(xn+1, xn)
If a1 + a3 = 0, then a2 > 1. The above inequality implies that a negative

number is greater than or equal to zero. That is impossible. So, a1 + a3 ̸= 0
and (1− a2) > 0. Therefore,

p(xn+1, xn) ≤ hp(xn−1, xn) (2.5)

where h = 1−a2

a1+a3
< 1. By Lemma 2.1, {xn} is a Cauchy sequence in X.

Since (X, p) is complete, then from Lemma 1.1 (X, ps) is complete and so the
sequence {xn} is converges in the metric space (X, ps), that is, there exists a
point z ∈ X such that

lim
n→∞

ps(xn, z) = 0.

Consequently, we can find u ∈ X such that z = Tu. Again from Lemma
1.1, we have

p(z, z) = lim
n→∞

p(xn, z) = lim
n,m→∞

p(xn, xm). (2.6)

Moreover, since {xn} is a Cauchy sequence in the metric space (X, ps), we
have

lim
n,m→∞

ps(xn, xm) = 0.

On the other hand, since

max{p(xn, xn), p(xn+1, xn+1)} ≤ p(xn, xn+1)

then by the simple induction with (2.5) we have

max{p(xn, xn), p(xn+1, xn+1)} ≤ hnp(x1, x0). (2.7)

Hence, we have lim
n→∞

p(xn, xn) = 0. Thus from the definition ps, we have

lim
n,m→∞

p(xn, xm) = 0.

Therefore, from (2.6) we have

p(z, z) = lim
n→∞

p(xn, z) = lim
n,m→∞

p(xn, xm) = 0.
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Now, we show that u = z. From condition (2.4) we obtain

p(xn, z) = p(Txn+1, Tu) ≥ a1p(xn+1, u) + a2p(xn+1, xn) + a3p(u, Tu)

which implies that as n → ∞

0 = p(z, z) ≥ (a1 + a3)p(u, z).

Hence, p(u, z) = 0, that is u = z = Tu.
This gives that z is a fixed point of T . This completes the proof.
Remark 2.1 Setting a2 = a3 = 0 and a1 = λ in Theorem 2.1, we can

obtain the following result.
Corollary 2.1 Let (X, p) be a complete partial metric space and T : X →

X be a surjection. Suppose that there exists a constant λ > 1 such that

p(Tx, Ty) ≥ λp(x, y), for all x, y ∈ X. (2.8)

Then T has a unique fixed point in X.
Proof From Theorem 2.1, it follows that T has a fixed point z in X by

setting a2 = a3 = 0 and a1 = λ in condition (2.4).
Uniqueness. Suppose that z ̸= w is also another fixed point of T , then

from condition (2.8), we obtain

p(z, w) = p(Tz, Tw) ≥ λp(z, w)

which implies p(z, w) = 0, that is z = w. This completes the proof.
Corollary 2.2 Let (X, p) be a complete partial metric space and T : X →

X be a surjection. Suppose that there exist a positive integer n and a constant
λ > 1 such that

p(Tnx, Tny) ≥ λp(x, y), for all x, y ∈ X. (2.9)

Then T has a unique fixed point in X.
Proof From Corollary 2.1, Tn has a unique fixed point z. But Tn(Tz) =

T (Tnz) = Tz, so Tz is also a fixed point of Tn. Hence Tz = z, z is a fixed
point of T . Since the fixed point of T is also fixed point of Tn, the fixed point
of T is unique.

Theorem 2.2 Let (X, p) be a complete partial metric space and T : X →
X be a continuous surjection. Suppose that there exist a constant λ > 1 such
that, for each x, y ∈ X,

p(Tx, Ty) ≥ λu, for some u ∈ {p(x, y), p(x, Tx), p(y, Ty)}. (2.10)
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Then T has a fixed point in X.
Proof Similar to the proof of Theorem 2.1, we can obtain a sequence {xn}

such that xn−1 = Txn.
Without loss of generality, we assume that xn−1 ̸= xn for all n = 1, 2, · · ·

(otherwise, if there exists some n0 such that xn0−1 = xn0 , then xn0 is a fixed
point of T ).

It follows that from condition (2.10)

p(xn−1, xn) = p(Txn, Txn+1) ≥ λun

where un = {p(xn, xn+1), p(xn, xn−1)}.
Now we have to consider the following two cases.
If un = p(xn, xn−1), then

p(xn−1, xn) ≥ λp(xn, xn−1)

which implies p(xn−1, xn) = 0 , that is xn−1 = xn. This is a contradiction.
If un = p(xn, xn+1), then

p(xn−1, xn) ≥ λp(xn, xn+1).

By Lemma 2.1, {xn} is a Cauchy sequence in X. Since (X, p) is complete, the
sequence {xn} converges to a point z ∈ X.

Since T is continuous, it is clear that z is a fixed point of T . This completes
the proof.

Now, we give a common fixed point theorem of two weakly compatible
mappings in partial metric spaces.

Theorem 2.3 Let (X, p) be a partial metric space. Let S and T be weakly
compatible self-mappings of X and T (X) ⊆ S(X). Suppose that there exists a
constant λ > 1 such that

p(Sx, Sy) ≥ λp(Tx, Ty), for all x, y ∈ X. (2.11)

If one of the subspaces T (X) or S(X) is complete, then S and T have a unique
common fixed point in X.

Proof Let x0 ∈ X. Since T (X) ⊆ S(X), choose x1 such that y1 = Sx1 =
Tx0. In general, choose xn+1 such that yn+1 = Sxn+1 = Txn. Then from
(2.11),

p(yn+1, yn+2) = p(Txn, Txn+1) ≤
1

λ
p(Sxn, Sxn+1)
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=
1

λ
p(Txn−1, Txn) =

1

λ
p(yn, yn+1). (2.12)

Thus, by Lemma 2.1, {yn} is a Cauchy sequence. Since T (X) ⊆ S(X) and
T (X) or S(X) is a complete subspace of X then from Lemma 1.1 (S(X), ps)
is complete and so the sequence yn = T (xn−1) ⊆ S(X) is converges in the
metric space (S(X), ps), that is, there exists a z in S(X) such that

lim
n→∞

ps(yn, z) = 0.

Consequently, we can find u ∈ X such that Su = z. Again from Lemma
1.1, we have

p(Su, z) = p(z, z) = lim
n→∞

p(yn, z) = lim
n,m→∞

p(yn, ym). (2.13)

Moreover, since {yn} is a Cauchy sequence in the metric space (S(X), ps),
we have

lim
n,m→∞

ps(yn, ym) = 0.

On the other hand, since

max{p(yn, yn), p(yn+1, yn+1)} ≤ p(yn, yn+1)

then by the simple induction with (2.12) we have

max{p(yn, yn), p(yn+1, yn+1)} ≤ (
1

λ
)np(y1, y0). (2.14)

Hence, we have lim
n→∞

p(yn, yn) = 0. Thus from the definition ps, we have

lim
n,m→∞

p(yn, ym) = 0.

Therefore, from (2.13) we have

p(Su, z) = p(z, z) = lim
n→∞

p(yn, z) = lim
n,m→∞

p(yn, ym) = 0.

Now, we show that Tu = z. From condition (2.11)

p(Tu, Txn) ≤
1

λ
p(Su, Sxn).

Proceeding to the limit as n → ∞, we have p(Tu, z) ≤ 1
λp(Su, z) = 0,

which implies that p(Tu, z) = 0, that is Tu = z. Therefore, Tu = Su = z.
Since S and T are weakly compatible, STu = TSu, that is Sz = Tz.
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Now we show that z is a common fixed point of S and T . From condition
(2.11)

p(Sz, Sxn) ≥ λp(Tz, Txn).

Proceeding to the limit as n → ∞, we have p(Sz, z) ≥ λp(Tz, z) =
λp(Sz, z), which implies that p(Sz, z) = 0, that is Sz = z. Hence Sz = Tz = z.

Uniqueness. Suppose that z ̸= w is also another common fixed point of S
and T , that is Sw = Tw = w. Then p(z, w) = p(Sz, Sw) ≥ λp(Tz, Tw) =
λp(z, w), this implies that p(z, w) = 0, that is z = w. This completes the
proof.

Now we give an example illustrating Theorem 2.3.
Example 2.1 Let X = [0, 1] and p(x, y) = max{x, y}, then (X, p) is a

complete partial metric space. Let S(x) = x
2 , T (x) =

x
6 for all x, y ∈ X. Then

T (X) ⊆ S(X) and S(X) is complete. Further, for all x ∈ [0, 1] with x ≥ y we
have

d(Sx, Sy) = max{x
2
,
y

2
} =

x

2
≥ λ

6
d(Tx, Ty)

for 1 < λ < 3 and (2.11) is satisfied. Moreover, mappings S and T are weakly
compatible at x = 0 and 0 is the unique common fixed point. Thus all the
conditions of Theorem 2.3 are satisfied.

Remark 2.2 In Theorem 2.3, the weak compatibility condition cannot be
removed.

Indeed, letting (X, p) be defined as in Example 2.1, define the mappings
S(x) = 1−x, T (x) = 1

2−
x
2 , x ∈ X. Then T (X) ⊆ S(X) and S(X) is complete.

Moreover, for all x ∈ [0, 1] with x ≥ y we have

p(Sx, Sy) = max{1− x, 1− y} = 1− x ≥ λp(Tx, Ty)

for 1 < λ < 2 and (2.11) is satisfied. S1 = T1 = 0 but ST1 = 1 and TS1 = 1
2 ,

so S and T are not weakly compatible. It follows that except for the weakly
compatibility of S and T all other hypotheses of Theorem 2.3 are satisfied.
But they do not have a common fixed point. This shows that the weakly
compatibility of S and T in Theorem 2.3 is an essential condition.

Daffer and Kaneko[4] prove a fixed point theorem for a pair of mappings.
We extend their result in partial metric space, thus defining an expanding
condition for a pair of mappings in Corollary 2.3 below.

Corollary 2.3 Let (X, p) be a complete partial metric space. Let S :
X → X be a surjection and T : X → X be an injective. If S and T are
commutative, and there exists a constant λ > 1 such that

p(Sx, Sy) ≥ λp(Tx, Ty), for all x, y ∈ X, (2.15)

then S and T have a unique common fixed point in X.



222 Xianjiu Huang, Chuanxi Zhu, Xi Wen

Proof Note that mappings which commute are clearly weakly compatible
and S(X) is complete and T (X) ⊆ S(X) in Corollary 2.3 since S is surjec-
tive. Then, we can apply Theorem 2.3 that assures the existence of a unique
common fixed point of S and T in X.
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