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On Henselian valuations and Brauer groups of
primarily quasilocal fields

I. D. Chipchakov

Abstract

This paper finds a classification, up-to an isomorphism, of abelian
torsion groups realizable as Brauer groups of major types of Henselian
valued primarily quasilocal fields with totally indivisible value groups.
When E is a quasilocal field with such a valuation, it shows that the
Brauer group of E is divisible and embeddable in the quotient group of
the additive group of rational numbers by the subgroup of integers.

1 Introduction and statement of the main result

A field K is said to be primarily quasilocal (abbr, PQL), if every cyclic exten-
sion F of K is embeddable as a subalgebra in each central division K-algebra
D of Schur index ind(D) divisible by the degree [F : K]; we say that K is
quasilocal, if its finite extensions are PQL-fields. This paper is devoted to the
study of the Brauer group Br(K) when K is PQL and possesses a Henselian
valuation v. It determines the structure of the p-component Br(K)p of Br(K),
for a given prime number p, under the hypothesis that the value group v(K)
of (K, v) is p-indivisible, i.e. v(K) 6= pv(K). This enables us to describe
the isomorphism classes of Brauer groups of Henselian PQL-fields with totally
indivisible value groups (i.e. p-indivisible, for each prime p), and to do the
same in the special case where the considered valued fields are quasilocal. The
method of proving our main results makes it possible to establish the existence
of new types of Henselian real-valued quasilocal fields, which make interest in
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the context of the recently posed problem of characterizing central division al-
gebras over finitely-generated fields F by their splitting fields of finite degree
over F (see Proposition 6.5 and the comment on Remark 6.6).

The basic notation, terminology and conventions kept in this paper are
standard and virtually the same as in [8], I, and [9]. Throughout, Brauer
and value groups are written additively, Galois groups are viewed as profinite
with respect to the Krull topology, and by a profinite group homomorphism,
we mean a continuous one. As usual, Q/Z denotes the quotient group of the
additive group of rational numbers by the subgroup of integers. We write P for
the set of prime numbers, and for each p ∈ P, Fp is a field with p elements, Zp

is the additive group of p-adic integers and Z(p∞) is the quasicyclic p-group.
For any profinite group G, we denote by cd(G) the cohomological dimension
of G, and by cdp(G) its cohomological p-dimension, for each p ∈ P. Given a
field E, Esep denotes a separable closure of E, GE = G(Esep/E) is the absolute
Galois group of E, Π(E) = {p ∈ P : cdp(GE) 6= 0} and P (E) is the set of those
p ∈ P, for which E is properly included in its maximal p-extension E(p) in
Esep. In what follows, for any p ∈ P (E), r(p)E denotes the rank of G(E(p)/E),
i.e. the cardinality of any minimal system of generators of G(E(p)/E) as a
profinite group; we put r(p)E = 0 in case p /∈ P (E). We write s(E) for the
class of finite-dimensional central simple E-algebras, d(E) stands for the class
of division algebras D ∈ s(E), and for each A ∈ s(E), [A] is the similarity class
of A in Br(E). For any field extension E′/E, we denote by I(E′/E) the set of
its intermediate fields, and by ρE′/E the scalar extension map of Br(E) into
Br(E′). When E′/E is finite and separable, CorE′/E denotes the corestriction
homomorphism of Br(E′) into Br(E). For convenience of the reader, we recall
that E is said to be stable, if each D ∈ d(E) has exponent exp(D) equal to
ind(D); we say that E is absolutely stable, if its finite extensions are stable
fields. The field E is called p-quasilocal, for some p ∈ P, if one of the following
conditions holds: (i) Br(E)p 6= {0} or p /∈ P (E); (ii) every extension of E in
E(p) of degree p is embeddable as an E-subalgebra in each ∆p ∈ d(E) of index
p. By [8], I, Theorem 4.1, E is PQL if and only if it is p-quasilocal, for each
p ∈ P (E). In this paper, we use at crucial points the following characterization
of the p-quasilocal property (which is obtained as a consequence of [8], I,
Theorems 3.1 (i)-(ii) and 4.1, and the general restriction-corestriction (abbr,
RC) formula for Brauer groups, see, e.g., [42], Theorem 2.5):

(1.1) A field E is p-quasilocal, for some p ∈ P, if and only if CorM/E

maps Br(M)p injectively into Br(E)p, for each finite extension M of E in
E(p). When this is the case and Br(E)p is divisible, CorM/E maps Br(M)p

bijectively upon Br(E)p, for every M of the considered type.

The present research is naturally incorporated in the study of Brauer
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groups of the basic types of stable fields. This problem has two major as-
pects. In the first place, the structure of Br(F ) of stable fields F makes
interest in the context of index-exponent relations in central simple algebras
over arbitrary fields (cf. [31], Sects. 14.4 and 19.6). In the absolutely sta-
ble case, the discussed problem is also related to the study of cohomological
properties of GE (see [31], Sect. 14.6, and [8], I, Theorem 8.1). Secondly, the
description of Br(L), for a given stable field L, usually reflects adequately an
essential part of the specific nature of L. Note in this connection that im-
portant classes of stable fields L have been singled out by analyzing special
properties of L. In particular, this applies to the absolute stability of global
fields (cf. [36], (32.19), function fields of algebraic curves defined over a PAC-
field [15], function fields of algebraic surfaces over an algebraically closed field
of zero characteristic [23] (see also [26]), and quasilocal fields [8], I, Proposi-
tion 2.3. In these cases, cd(GL(

√−1)) ≤ 2 (cf. [40], Ch. II, 3.3 and 4.1, and [5],
I, Sect. 4), which ensures that Br(L) is a divisible group unless L is formally
real (see [40], Ch. II, 2.3, and [12], page 110). The study of the stability prop-
erty in the class of Henselian fields (K, v) sheds new light on the considered
problem. As it turns out, the residue field K̂ of (K, v) is PQL whenever K is
stable and the value group v(K) is totally indivisible [8], I, Proposition 2.1.
Moreover, these conditions frequently ensure that K̂ is almost perfect, i.e. its
finite extensions have primitive elements (cf. [4], Theorem 2.1, and [8], I, (1.8)
and Proposition 2.3). The relations between v(K) and K̂ make it possible to
characterize basic classes of Henselian stable fields (see Proposition 2.2 and
[4], Theorem 3.1 and Sect. 4). They also show explicitly how Brauer and
character groups of PQL-fields determine the structure of Brauer groups of
stable fields (see Remark 2.4 and [8], II).

Brauer groups of PQL-fields also have strong influence on the study of
the norm groups of their finite abelian extensions. Specifically, this applies to
the relations described by the second part of the following assertion (cf. [9],
Theorem 3.1, and [8], I, Lemma 4.2 (ii)):

(1.2) Let E be a p-quasilocal field, Ωp(E) the set of finite abelian exten-
sions of E in E(p), Nr(E) the set of norm groups of E, and pBr(E) = {b ∈
Br(E) : pb = 0}. Then:

(i) The natural mapping of Ωp(E) into Nr(E) (by the rule M → N(M/E),
M ∈ Ωp(E)) is injective, and for each M1, M2 ∈ Ωp(E), the norm group (over
E) of the compositum M1M2 equals the intersection N(M1/E) ∩ N(M2/E),
and N(M1 ∩M2/E) = N(M1/E)N(M2/E).

(ii) For each M ∈ Ωp(E), the quotient group E∗/N(M/E) decomposes into
a direct sum G(M/E)d(p) of isomorphic copies of the Galois group G(M/E),
indexed by a set of cardinality d(p), the dimension of pBr(E) as a vector space



58 I. D. Chipchakov

over Fp. In particular, if Br(E)p = {0}, then N(M/E) = E∗.

When E is a PQL-field and L/E is a finite abelian extension, it follows from
(1.2) (ii) and [9], Lemma 2.1, that E∗/N(L/E) is isomorphic to the direct
product of the groups E∗/N(Lp/E) : p ∈ P (E), p | [L : E], where Lp = L ∩
E(p), for each admissible p. This is an analogue to the local reciprocity law
whose form is determined by the sequence d(p) : p ∈ P (E), defined in (1.2)
(ii). It is therefore worth noting that an abelian torsion group is isomorphic
to Br(Φ), for some PQL-field Φ = Φ(T ) if and only if one of the following
conditions holds (see [10], Sect. 1 and Proposition 6.4):

(1.3) (i) T is divisible; then Φ is nonreal and can be chosen among those
quasilocal fields, for which the maps ρΦ/Φ′ , Φ′ ∈ I(Φsep/Φ), are surjective;

(ii) The 2-component T2 is of order 2 and the p-components Tp, p ∈ (P \
{2}), are divisible; in this case, Φ is formally real.

Since the notion of a quasilocal field extends the one of a local field and
defines a class containing such frequently used representatives as p-adically
closed fields and Henselian discrete valued fields with quasifinite residue fields
(cf. [41], Ch. XIII, Sect. 3, and [34], Theorem 3.1 and Lemma 2.9), these
facts attract interest in the role of Henselian valuations for arbitrary quasilocal
fields. The main results of this paper, stated below, enable one to evaluate this
role by comparing (1.3) with the structure of Br(K) when (K, v) is a Henselian
quasilocal field, such that v(K) is totally indivisible (see also Corollaries 5.3
and 5.4):

Theorem 1.1. Let (K, v) be a Henselian p-quasilocal field with v(K) 6= pv(K),
for some p ∈ P. Then:

(i) Br(K)p is trivial or isomorphic to Z(p∞) except, possibly, in the case
where r(p)K = 1, char(K) 6= p and K does not contain a primitive p-th root
of unity;

(ii) K is subject to the following alternative relative to v:
(α) There exists a Zp-extension I∞ of K in K(p), such v∞(I∞) = v(K)

and the residue field of (I∞, v∞) is separable over K̂, where v∞ is the unique,
up-to an equivalence, valuation of I∞ extending v;

(β) Finite extensions of K in K(p) are totally ramified;
(iii) When p ∈ P (K), Br(K)p = {0} if and only if finite extensions of K

in K(p) are totally ramified and the group v(K)/pv(K) is of order p.

When p 6= char(K̂) and Br(K)p 6= {0}, the isomorphism Br(K)p
∼= Z(p∞)

is established in Section 4 by proving the following assertion:
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(1.4) If p 6= char(K̂) and K contains a primitive p-th root of unity, then
G(K(p)/K) is a Demushkin group (in the sense of [40]) with r(p)K = 2 or is
isomorphic to Zp depending on whether or not Br(K)p 6= {0}.

The proof of Theorem 1.1 (i) in the case where char(K̂) = p and there exists
an immediate cyclic extension I/K of degree p is presented in Section 3 (the
realizability of this special case is demonstrated by Proposition 6.2). This
part of the proof is based on the divisibility of Br(K)p (see Lemma 3.3 (i)) as
well as on (1.2) (i) and general properties of Henselian valuations and isolated
subgroups of their value groups. The rest of the proof of Theorem 1.1 is
contained in Section 4. When p = char(K̂), we adapt to our setting the proof
of [43], Theorem 3.1. Our argument also relies on (1.2) and on the method of
proving the main results of [5], I. The remaining part of the paper presents
consequences of the main result. In Section 5, we describe the isomorphism
classes of Brauer groups of Henselian PQL-fields (K, v) such that v(K) is
totally indivisible (see Corollary 5.5, (5.2) and (5.3)). When K is quasilocal,
we also prove the cyclicity of every D ∈ d(K) (see Corollary 5.3). In Section
6, we complete the characterization of the quasilocal property in the class of
Henselian fields with totally indivisible value groups, started in [5], I; also, we
give a criterion for divisibility of Brauer groups of quasilocal fields, and for
defectlessness of their finite separable extensions.

2 Preliminaries on Henselian valuations and completions

Let K be a field with a nontrivial (Krull) valuation v, Ov(K) = {a ∈ K : v(a) ≥
0} the valuation ring of (K, v), Mv(K) = {µ ∈ K : v(µ) > 0} the unique
maximal ideal of Ov, v(K) and K̂ the value group and the residue field
of (K, v), respectively, Is′v(K) the set of isolated subgroups of v(K) and
Isv(K) = Is′v(K) \ {v(K)}. It is well-known that, for each H ∈ Isv(K),
the ordering of v(K) induces canonically on v(K)/H a structure of an ordered
group, and one can naturally associate with v and H a valuation vH of K with
vh(K) = v(K)/H. Unless specified otherwise, KH will denote the residue field
of (K, vH), ηH the natural projection OvH (K) → KH , and v̂H the valuation of
KH induced canonically by v and H. The valuations v, vH and v̂H are related
as follows (see [16], Proposition 5.2.1):

(2.1) (i) v̂H(KH) = H, K̂H is isomorphic to K̂ and ηH induces a surjec-
tive homomorphism of Ov(K) upon Ov̂H (KH); when H is divisible, v(K) is
isomorphic to the lexicographically ordered direct sum vH(K)⊕ v̂H(K̂H);

(ii) If v(K) properly includes the union H(K) of the groups from Isv(K),
then vH(K) is real-valued.
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Recall further that the topology of K induced by vH does not depend on the
choice of H and the mapping of Isv(K) on the set Vv of subrings of K including
Ov, defined by the rule X → OvX

(K), X ∈ Isv(K), is an inclusion-preserving
bijection. By Hölder’s theorem (cf. [16], Theorem 2.5.2), Isv(K) = {0} if and
only if v(K) is Archimedean, i.e. it embeds as an ordered subgroup in the
additive group R of real numbers. When this is the case, we identify v(K)
with its isomorphic copy in R.

We say that (K, v) is Henselian, if the valuation v is Henselian, i.e. v is
uniquely, up-to an equivalence, extendable to a valuation vL on each algebraic
field extension L/K. In order that v is Henselian, it is necessary and sufficient
that the Hensel-Rychlik condition holds (cf. [16], Sect. 18.1):

(2.2) Given a polynomial f(X) ∈ Ov(K)[X], and an element a ∈ Ov(K),
such that 2v(f ′(a)) < v(f(a)), where f ′ is the formal derivative of f , there is
a zero c ∈ Ov(K) of f satisfying the equality v(c− a) = v(f(a)/f ′(a)).

When v(K) is not Archimedean, the Henselian property can be also char-
acterized as follows (see, e.g., [11], Sect. 2):

Proposition 2.1. Let (K, v) be a valued field, and let H ∈ Isv(K). Then v
is Henselian if and only if vH and v̂H are Henselian.

When v is Henselian and L/K is an algebraic extension, vL is also Henselian
and extends uniquely to a valuation vD on each D ∈ d(L). Denote by D̂ the
residue field of (D, vD), put v(D) = vD(D), and let e(D/K) be the ramification
index of D/K, i.e. the index of v(K) in v(D). By the Ostrowski-Draxl theorem
[13], [D : K], [D̂ : K̂] and e(D/K) are related as follows:

(2.3) [D : K] is divisible by [D̂ : K̂]e(D/K) and [D : K]/([D̂ : K̂]e(D/K))
is not divisible by any p ∈ P, p 6= char(K̂).

The K-algebra D is said to be defectless, if [D : K] = [D̂ : K̂]e(D/K), and
it is called totally ramified, if e(D/K) = [D : K]. The following lemma, proved
in [11], Sect. 6, characterizes the case in which v(K) 6= pv(K) and I(K(p)/K)
does not contain totally ramified extensions of K, for a given p ∈ P.

Lemma 2.2. Let (K, v) be a Henselian field with v(K) 6= pv(K), for some
p ∈ P. Then K is subject to the following alternative relative to v:

(i) There exists a field Φ ∈ I(K(p)/K), such that [Φ: K] = p and Φ/K is
totally ramified;

(ii) char(K) = 0, K does not contain a primitive p-th root of unity and the
minimal group from Is′v(K) containing v(p) is p-divisible.
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Let v be Henselian and In(K) be the class of inertial K-algebras (i.e. those
division K-algebras D, for which [D : K] = [D̂ : K̂] ∈ N and Ẑ/K̂ is a finite
separable extension, where Ẑ is the centre of D̂). Then:

(2.4) (i) For each finite-dimensional division K̂-algebra ∆̃ whose centre is
separable over K̂, there exists ∆ ∈ In(K) with ∆̂ ∼= ∆̃ over K̂; ∆ is uniquely
determined by ∆̃, up-to a K-isomorphism [21], Theorem 2.8 (a) (and is called
an inertial lift of D̃ over K).

(ii) In order that an inertial field extension Y/K is a Galois extension, it
is necessary and sufficient that Ŷ /K̂ is Galois; when this occurs, the Galois
groups G(Y/K) and G(Ŷ /K̂) are canonically isomorphic (cf. [21], page 135).

(iii) The set IBr(K) = {[I] : I ∈ In(K)} forms a subgroup of Br(K), which
is canonically isomorphic to Br(K̂) (cf. [21], Theorem 2.8 (b)).

Assuming as above that v is Henselian, let D be an arbitrary finite-dimen-
sional division K-algebra, Dv a completion of D with respect to the topology
induced by v, and Z(D) the centre of D. It is known that there is a close rela-
tionship between finite-dimensional division K-algebras and the corresponding
Kv-algebras, described in part by the following statement:

(2.5) (i) K is separably closed in Kv and the valuation v̄ of Kv continuously
extending v is Henselian;

(ii) The natural mapping of D⊗K Kv into Dv is a Kv-isomorphism when-
ever Z(D)/K is separable; hence, ρK/Kv

is injective and preserves indices and
exponents;

(iii) A finite extension L of K in Ksep embeds in an algebra U ∈ d(K) if
and only if Lv embeds in Uv over Kv.

Note also the following characterization of finite extensions of Kv in Kv,sep,
in case v is Henselian (cf. [3], Ch. VI, Sect. 8, No 2, and [21], page 135):

(2.6) (i) Every finite extension L of Kv in Kv,sep is Kv-isomorphic to L̃⊗K

Kv and L̃v, where L̃ is the separable closure of K in L; L/Kv is Galois if and
only if L̃/K is Galois; when this holds, G(L/Kv) ∼= G(L̃/K) (canonically).

(ii) Ksep ⊗K Kv is a field, Ksep ⊗K Kv
∼= Kv,sep and GK

∼= GKv .

Statements (2.5) reduce the study of index-exponent relations in central
division algebras over a Henselian field (K, v) to the special case in which
K = Kv. Combining, for instance, (2.5) and (2.6) (i) with [48], Proposition 2.1,
and [4], Theorem 3.1, one obtains the following result:

Proposition 2.3. Let (K, v) be a Henselian discrete valued field. Then:
(i) K is stable, provided that K̂ is almost perfect, stable and PQL.
(ii) K is absolutely stable if and only if K̂ is quasilocal and almost perfect.
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Remark 2.4. Statement (1.3) and the method of proving it in [10], com-
bined with Proposition 2.2 and Scharlau’s generalization of Witt’s decompo-
sition theorem [38], make it possible to study effectively the structure of the
Brauer groups of various types of stable fields (see also [8], II, Sect. 3 and
Lemma 2.3, for the relations between Br(E) and the character group of GE).
Specifically, they enable one to find series of absolutely stable fields F with
Henselian valuations and indivisible groups Br(F ), for infinitely many p ∈ P
(see [4], Corollary 4.7, and [10], Proposition 6.8).

Let us note that, for every Henselian field (K, v) with char(K) = p and
v(K) 6= pv(K), r(p)K = ∞, i.e. G(K(p)/K) is not finitely-generated as a
pro-p-group (cf. [11], Remark 4.2). Therefore, the following two propositions
(proved in [11], and generalizing [32], (2.7)) fully characterize the case where
r(p)K ∈ N. The characterization depends on whether or not the minimal
group G(K) ∈ Is′v(K) containing v(p) is p-divisible.

Proposition 2.5. Let (K, v) be a Henselian field with char(K) = 0, char(K̂) =
p > 0 and G(K) = pG(K), and let ε be a primitive p-th root of unity in Ksep.
Then r(p)K ∈ N if and only if r(p)KG(K) ∈ N and one of the following condi-
tions holds:

(i) v(K) = pv(K) or ε /∈ K; in this case, finite extensions of K in K(p)
are inertial relative to vG(K) and G(K(p)/K) ∼= G(KG(K)(p)/KG(K));

(ii) ε ∈ K and v(K)/pv(K) is of order pτ , for some τ ∈ N; in this case,
G(K(p)/K) is isomorphic to a topological semi-direct product
Zτ

p × G(KG(K)(p)/KG(K)).
When r(p)K ∈ N, K̂ is perfect, G(KG(K)(p)/KG(K)) is a trivial or a free pro-
p-group, and either p ∈ P (K̂) or KG(K)(p)/KG(K) is immediate relative to
v̂G(K).

The concluding part of our next result is implied by (2.3), [43], Proposi-
tion 2.2.

Proposition 2.6. Let (K, v) be a Henselian field with char(K) = 0 and
char(K̂) = p 6= 0. Then the following conditions are equivalent:

(i) G(K) 6= pG(K) and r(p)K ∈ N;
(ii) K̂ is finite, G(K) is cyclic, and in case K contains a primitive p-th

root of unity, the group vG(K)(K)/pvG(K)(K) is finite.
When these conditions hold, finite extensions of K in Ksep are defectless.
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Corollary 2.7. Assume that (K, v) is a Henselian p-quasilocal field, such that
char(K̂) = p, r(p)K ≥ 2 and v(K)/pv(K) is noncyclic. Then:

(i) v(K)/pv(K) is of order p2 and finite extensions of K in K(p) are totally
ramified;

(ii) K contains a primitive pn-th root of unity, for each n ∈ N, and
G(K(p)/K) is isomorphic to the additive group Z2

p with respect to its stan-
dard topology.

Proof. Denote by Σp(K) the set of extensions of K in K(p) of degree p, and
by Vp(K) the set of subgroups of v(K) properly including pv(K) and different
from v(K). Let K1 and K2 be different elements of Σp(K). Then (1.2) (i)
yields N(K1/K)N(K2/K) = K∗, which means that v(K) = pv(K1)+pv(K2).
In other words, it follows from (2.3) and the noncyclicity of v(K)/pv(K) that
v(K)/pv(K) is of order p2 and the mapping of Σp(K) into Vp(K) by the rule
L → pv(L), L ∈ Σp(K), is well-defined and bijective. This observation proves
that r(p)K = 2 and every L ∈ Σp(K) is totally ramified over K. It is now
easy to see from (2.4) (i) that p /∈ P (K̂). This implies K̂ is infinite, so it
follows from Proposition 2.6 and [11], Remark 4.2, that char(K) = 0 and
G(K) = pG(K). Applying Proposition 2.5, one obtains further that K̂ is
perfect and p /∈ P (KG(K)). Since char(KG(K)) = 0, vG(K) is Henselian and
p /∈ P (KG(K)), this enables one to deduce from (2.3) that finite extensions of
K in K(p) are totally ramified relative to vG(K) (and because of the equality
G(K) = pG(K), they have the same property relative to v). In view of [6],
Lemma 1.1, these observations show that K contains a primitive pn-th root of
unity, for each n ∈ N. As v(K)/pv(K) is of order p2, it is now easy to see from
Proposition 2.5 that G(K(p)/K) ∼= Z2

p, which completes the proof of Corollary
2.7.

Remark 2.8. It is known that if (K, v) is a Henselian field satisfying the
conditions of Proposition 2.6, then Br(KG(K)) ∼= Q/Z and Br(KG(K)) embeds
in Br(K) (see (2.4) (iii) and [41], Ch. XII, Sect. 3). Also, it follows from (2.1)
(i), (2.4) (ii), (2.6) and [40], Ch. II, Theorems 3 and 4, that r(p)KG(K) ≥ 2.

3 On the Brauer group of a Henselian p-quasilocal field
with a p-indivisible value group

In this Section we prove that if (K, v) is a Henselian p-quasilocal field satisfying
the conditions of Theorem 1.1, and if K possesses an immediate extension in
K(p) of degree p, then Br(K)p is isomorphic to Z(p∞).
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Theorem 3.1. Under the hypotheses of Theorem 1.1, suppose that K(p) con-
tains as a subfield an immediate extension I of K of degree p. Then K̂ is
perfect, v(K)/pv(K) is of order p and ∇0(K) ⊂ N(I/K).

The proof of Theorem 3.1 relies on the following two lemmas lemma, the
first of which has been proved in [11].

Lemma 3.2. In the setting of Lemma 2.2, suppose that K̂ is imperfect and
Wp(K) is the set of those Λ ∈ I(K(p)/K), for which [Λ: K] = [Λ̂ : K̂] = p

and Λ̂ is purely inseparable over K̂. Then:
(i) Wp(K) is infinite except, possibly, in the case where char(K) = 0,

v(p) /∈ pv(K) and K does not contain a primitive p-th root of unity;
(ii) When char(K) = 0 and v(p) /∈ pv(K), there exists a field Λ′ ∈

I(K(p)/K), such that [Λ′ : K] = p and v(p) ∈ pv(Λ′).

Lemma 3.3. Let (K, v) be a Henselian p-quasilocal field with v(K) 6= pv(K).
Then:

(i) Br(K)p is divisible;
(ii) There is at most one extension of K in K(p) of degree p, which is not

totally ramified over K; when such an extension exists, Br(K)p 6= {0};
(iii) K̂ is perfect, provided that p = char(K̂).

Proof. When p > 2, the divisibility of Br(K)p is a special case of [8], I, The-
orem 3.1 (ii), and in case p = 2, it is implied by (1.4) and the fact that
G(E(2)/E) is a group of order 2, for every formally real 2-quasilocal field E
[8], I, Lemma 3.5. The rest of our proof relies on the fact that if R is a finite
extension of K in K(p), which is not totally ramified, then v(λ) ∈ pv(K), for
every λ ∈ N(R/K). At the same time, it follows from Galois theory and the
normality of maximal subgroups of finite p-groups (cf. [27], Ch. I, Sect. 6;
Ch. VIII) that if R ∈ I(K(p)/K) and [R : K] = p, then R/K is cyclic. Since,
by (1.2) (i), N(R1/K)N(R2/K) = K∗ whenever R1 and R2 lie in I(K(p)/K),
R1 6= R2 and [Rj : K] = p, j = 1, 2, these observations prove the former part
of Lemma 3.3 (ii). Combined with [31], Sect. 15.1, Proposition b, they also
imply the latter assertion of Lemma 3.3 (ii). For the proof of Lemma 3.3 (iii),
it suffices to note that (M,vM ) satisfies the conditions of Lemma 3.3 when-
ever M ∈ I(K(p)/K) and [M : K] ∈ N (see (2.3) and [8], I, Theorem 4.1 (ii)),
which reduces our concluding assertion to a consequence of Lemma 3.2 and
the former part of Lemma 3.3 (ii).

Remark 3.4. Let (K, v) be a Henselian p-quasilocal field with v(K) 6= pv(K)
and char(K̂) 6= p. In view of (2.3), the former part of Lemma 3.3 (ii) can be
restated by saying that r(p)K̂ ≤ 1. Combining (2.3) and (2.4) (i) with Lemma
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3.3 (i) and [8], I, Lemma 3.5, one also obtains that G(K̂(p)/K̂) ∼= Zp unless
p /∈ P (K̂). It is therefore clear from Lemma 3.3 (ii) and [6], Lemma 1.1 (a),
that if K does not contain a primitive p-th root of unity, then G(K(p)/K) ∼=
G(K̂(p)/K̂) and finite extensions of K in K(p) are inertial. Hence, by [31],
Sect. 15.1, Proposition b (and the proof of Lemma 3.3 (ii)), pBr(K) ∼=p Br(K̂)
or pBr(K) is isomorphic to the direct sum pBr(K̂)⊕ v(K)/pv(K), depending
on whether or not r(p)K̂ = 0.

Lemma 3.5. In the setting of Lemma 3.3, suppose that char(K̂) = p and
there exists a field I ∈ I(K(p)/K), such that [I : K] = p and I/K is not
totally ramified. Then (K, v) has the following properties:

(i) The group v(K)/pv(K) is of order p, provided that r(p)K ≥ 2; in
particular, this applies to the case where v(K) is Archimedean;

(ii) A finite extension M of K in K(p) is totally ramified if and only if
M ∩ I = K;

(iii) p ∈ P (K̂) if and only if I/K is inertial; when this holds, K̂(p)/K̂ is
a Zp-extension.

Proof. Statement (2.4) (i) and Lemma 3.3 (ii) imply the former assertion of
Lemma 3.5 (iii) and the inequality r(p)K̂ ≤ 1. As K̂ is a nonreal field, this in
turn enables one to deduce the latter part of Lemma 3.3 (iii) from Galois theory
and [47], Theorem 2. Note further that every L ∈ I(K(p)/K), L 6= K, contains
as a subfield a cyclic extension L0 of K of degree p. This well-known fact is
implied by Galois theory and the subnormality of proper subgroups of finite p-
groups. Let now r(p)K ≥ 2 or, equivalently, there is a field T ∈ K(p)/K), such
that [T : K] = p and T 6= I. By (1.2) (i), then N(T/K)N(I/K) = K∗, which
implies that T/K is totally ramified. At the same time, it becomes clear from
(2.3) that IT/T is not totally ramified. Since, by [8], I, Theorem 4.1 (ii), T is
p-quasilocal, the noted properties of T and L make it easy to prove Lemma 3.5
(ii), arguing by induction on n = logp([M : K]). The former part of Lemma
3.5 (i) follows from Corollary 2.7 and the assumption on I/K, and for the
proof of the latter one, it suffices to observe that the existence of T in case
v(E) ≤ R is guaranteed by Lemma 2.2 (and by Proposition 2.6 and Remark
2.8).

Lemma 3.6. Let (K, v) be a Henselian field with char(K̂) = p > 0, v(K) =
pv(K) and Br(K)p 6= {0}. Suppose also that K is p-quasilocal and p ∈
P (K̂). Then finite extensions of K in K(p) are defectless, Br(K)p ⊆ IBrv(K),
Br(K)p

∼= Br(K̂)p and [K̂ : K̂p] = p.
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Proof. Statement (2.4) (i) and the assumption that p ∈ P (K̂) imply the exis-
tence of an inertial extension Ip of K in K(p) of degree p. This ensures that
∇0(K) ⊆ N(Ip/K). Note further that if K̂ is perfect, then K∗ = ∇0(K).K∗p,
so the noted inclusion requires that N(Ip/K) = K∗. As Br(K)p 6= {0},
this contradicts (1.2) (i) and thereby proves that K̂ 6= K̂p. We show that
[K̂ : K̂p] = p. By Lemma 3.2, there is a field Λ ∈ I(K(p)/K), such that
[Λ: K] = [L̂ : K̂] = p and Λ̂ is purely inseparable over K̂. Let ϕ be a genera-
tor of G(Λ/K). It is easily seen that if [K̂ : K̂p] ≥ p2, then Ov(K) contains an
element b, such that b̂ /∈ Λ̂p. Therefore, the cyclic K-algebra Db = (Λ/K, ϕ, b)
lies in d(K) and D̂b/K̂ is a purely inseparable field extension of degree p2. This
leads to the conclusion that Ip does not embed in Db as a K-subalgebra. Our
conclusion, contradicts the assumption that K is p-quasilocal, which proves
that [K̂ : K̂p] = p.

We show that Br(K)p ⊆ IBr(K) and finite extensions of K in K(p) are
defectless. Fix a generator σ of G(Ip/K) and an algebra ∆ ∈ d(K) of exponent
p. As K is p-quasilocal and, by [8], I, Theorem 3.1, ind(∆) = p, it is easily seen
that ∆ is isomorphic to the K-algebra (Ip/K, σ, a), for some a ∈ K∗\N(Ip/K).
Moreover, it follows from the equality v(K) = pv(K) that a can be chosen so
that v(a) = 0. Hence, by the Henselian property of v and the fact that Ip/K is
inertial, ∆/K is inertial too, which proves that pBr(K) ⊆ IBr(K). Applying
(2.4) (iii) and Witt’s theorem (see [12], Sect. 15, and [21], Theorem 2.8), one
obtains consecutively that Br(K)p ∩ IBr(K) ∼= Br(K̂)p and Br(K)p ∩ IBr(K)
is a divisible subgroup of Br(K)p. Therefore, by [17], Theorem 24.5, Br(K)p∩
IBr(K) is a direct summand in Br(K)p, so the inclusion pBr(K) ⊂ IBr(K)
implies that Br(K)p ⊆ IBr(K). This indicates that the maximal subfields of
(Ip/K, σ, a) are defectless over K. As K is p-quasilocal, the obtained result
proves that every L ∈ I(K(p)/K) with [L : K] = p is defectless over K.
Since finite extensions of K in K(p) are p-quasilocal, by [8], I, Theorem 4.1,
this enables one to deduce from Galois theory and the normality of maximal
subgroups of finite p-groups that finite extensions of K in K(p) are defectless.

Lemma 3.7. Under the hypotheses of Lemma 3.5, suppose that r(p)K ≥ 2
and there exists a p-indivisible group H ∈ Isv(K). Then:

(i) KH is p-quasilocal and r(p)KH
≥ 2.

(ii) IH/KH is immediate and I/K is inertial relative to v̂H and vH , re-
spectively.

Proof. Lemma 3.5 (ii) and the inequality r(p)K ≥ 2 ensure that v(K)/pv(K)
is of order p. As H 6= pH, this implies that vH(K) = pvH(K). It is therefore
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clear from (2.3) that if v(p) ∈ H, i.e. char(KH) = 0, then finite extensions of K
in K(p) are inertial relative to vH , which yields G(K(p)/K) ∼= G(KH(p)/KH)
(cf. [21], page 135), whence r(p)K = r(p)KH

. Suppose now that v(p) /∈ pH,
fix an element π ∈ Mv(K) so that v(π) ∈ H \ pH, and denote by J the root
field in Ksep of the polynomial f(X) = Xp − X − π−1 over K. It is easy
to see that J ∈ I(K(p)/K), [J : K] = p, and J/K is inertial relative to vH

and totally ramified relative to v. In particular, J 6= I and p ∈ P (KH), so it
follows from Lemma 3.6, applied to K, vH and p, that KH is p-quasilocal and
Br(K)p

∼= Br(KH)p 6= {0}. In view of [22], Proposition 4.4.8, this indicates
that r(p)KH

= ∞. We show that I/K is inertial relative to vH . This has
already been established in the case where v(p) ∈ H, so we assume here that
v(p) /∈ H. It is clearly sufficient to prove that IJ/J is inertial relative to the
prolongation v′H of vH on J . This implies that each generator ψ of G(I/K)
is uniquely extendable to a generator ψ′ of G(IJ/J). We show that IJ/J is
inertial relative to v′H by proving the following statement:

(3.1) There exists r ∈ Ov(I), such that vI(r − ψ′(r)) ≤ p−1v(π).

Fix a root ξ of f in J , put θ = ξ−1, and denote by H ′ the sum of H and the
cyclic group 〈vJ(ξ)〉. It is easily verified that H ′ ∈ IsvJ

(J), v′H = vJ,H′ and
vH(ηH(π)) = pv′H(ηH′(θ)). For convenience, we put κH = ηH(κ) and κ′H′ =
ηH′(κ′), for each κ ∈ OvH

(K), κ′ ∈ Ov′H (J). Observing that char(KH) =
p and θH′ = πH

∏p−1
u=1(ξH′ + u), one obtains by direct calculations that

v̂′H(θH′) = p−1v̂H(πH) and v̂′H(θH′− ζ̃(θH′)) = (2p−1)v̂H(πH), for each gener-
ator ζ̃ of G(JH′/KH). Thus it turns out that vJ (θ) = p−1v(π), vJ(θ− ζ(θ)) =
(2p−1)v(π) and vJ(1−ζ(θ)θ−1) = p−1v(π), provided that ζ generates G(J/K).
Hence, by (2.3) and the choice of π, vJ (ζ(θ)θ−1 − 1) /∈ pv(J). Note also that
the p-quasilocal property of K is preserved by J [8], I, Theorem 4.1, which
ensures that ζ(λ)λ−1 ∈ N(IJ/J), for each λ ∈ (IJ)∗ (see [9], Lemma 4.2).
Take an element θ′ ∈ IJ of norm N IJ

J (θ′) = ζ(θ)θ−1 and put λ′ = θ′ − 1. We
show that vIJ(θ′ − ψ′(θ′)) ≤ p−1v(π). It follows from the Henselian property
of v and the primality of p that vIJ(θ′ − ψ′(θ′)) = vIJ(ψ′u(θ′) − ψ′u

′
(θ′)),

for ψ′u 6= ψ′u
′
. Therefore, the equality N IJ

J (θ′) = ζ(θ)θ−1 implies that if
vIJ(θ′ − ψ′(θ′)) > p−1v(π), then vIJ (λ′p) = vJ(ζ(θ)θ−1 − 1). Since IJ/J is
immediate relative to vJ , our conclusion requires that p−1v(π) ∈ pv(J) and
v(π) ∈ pv(K), a contradiction proving (3.1) (and the fact that I/K is inertial
relative to vH).

It remains to be seen that IH/KH is immediate relative to v̂H . Observing
that v(I) = v(K) and v(K)/H is torsion-free, one obtains that v̂H(IH) =
v̂H(KH). Since, by Lemma 3.3 (iii), K̂ is perfect, and by (2.1) (i), it is isomor-
phic to the residue field of (KH , v̂H), this implies that IH/KH is immediate
or inertial. Suppose for a moment that IH/KH is inertial. Then IH/KH pos-
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sesses a primitive element α̃ ∈ Ov̂H (IH), such that v̂H(d(g̃)) = 0, where g̃ is
the minimal (monic) polynomial of α̃ over KH , and d(g̃) is the discriminant
of g̃. The choice of α̃ guarantees that g̃(X) ∈ Ov̂H

(KH)[X], whence g̃ is a re-
duction modulo Mv(K) of a monic polynomial g(X) ∈ Ov(K)[X] (see (2.1)).
Denote by d(g) the discriminant of g. It is easily obtained that v(d(g)) = 0
and the residue class of d(g) in KH equals d(g̃). Observe also that, for each
root β̃ ∈ Ov̂H

(IH) of g̃, there exists a root β ∈ Ov(I) of g, such that β̂ = β̃.
The obtained result leads to the conclusion that I/K is inertial. This contra-
dicts our assumptions and thereby proves that IH/KH is immediate relative
to v̂H , as claimed.

Remark 3.8. The assertion of Lemma 3.7 (ii) can be restated by saying
that v(σ(λ) − λ) > 0 whenever λ ∈ Ov(I), and there exists αH ∈ Ov(I),
v(σ(αH)− αH) ∈ H, where σ is a generator of G(I/K).

Our objective now is to prove Theorem 3.1, under the extra hypothesis
that Isv(K) 6= {0} and H 6= pH, for each H ∈ Isv(K), H 6= {0}. Suppose first
that Isv(K) does not contain a minimal element (with respect to inclusion),
and fix an arbitrary element β ∈ ∇0(K). Then v(β − 1) /∈ Hβ , for some
Hβ ∈ Isv(K), so it follows from (2.2), (3.1) and Lemma 3.7 that β ⊂ N(I/K).
It remains to be seen that ∇0(K) ⊆ N(I/K), provided that Is′v(K) contains
a minimal element Γ 6= {0}. Applying Lemma 3.7, one sees that it suffices to
consider the special case of v(K) = Γ. The minimality of Γ indicates that it
is Archimedean, so the inclusion I0(K) ⊂ N(I/K) can be proved by showing
that ∇δ(K) ⊆ N(I/K), for an arbitrary δ ∈ Γ, δ > 0. Our main step in this
direction is contained in the following lemma.

Lemma 3.9. Assume that (K, v), p and I satisfy the conditions of Lemma 3.5,
v(K) is Archimedean, and L ∈ I(K(p)/K) is a field, such that [L : K] = p
and L 6= I. Suppose further that v(L) \ pv(L) contains an element γ > 0
satisfying the conditions γ = vL(λ) = vL(τ(λ)λ−1 − 1) < p−1v(p), for some
λ ∈ Ov(L), where τ is a generator of G(IL/L). Then ∇γ′(L) ⊆ N(IL/L) and
∇γ′′(K) ⊆ N(IL/K), where γ′ = (2p− 2)γ and γ′′ = [(p2 − 1)(4p− 2)]γ.

Proof. Fix an element θ′ ∈ (IL)∗ so that N IL
L (θ′) = τ(λ)λ−1, and put γ̃ =

vIL(τ ′(θ′) − θ′), for some τ ′ ∈ G(IL/L), τ 6= 1. As in the proof of (3.1),
one obtains that if γ̃ > γ, then vIL(λ − 1 − (θ′ − 1)p) ≥ γ̃, which implies
γ = vL(λ − 1) = vIL(θ′ − 1)p. Since IL/L is immediate, this contradicts the
assumption that γ /∈ pv(L) and thereby proves that γ̃ ≤ γ. Applying next (2.2)
to the minimal polynomial of λ′ over L, one obtains that ∇γ′(L) ⊆ N(IL/L).
Observe that pv(K) is a dense subgroup of R (I/K is immediate, whence
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v(K) is noncyclic, see [43], Proposition 2.2). Therefore, for each ε > 0, one
can find an element µε ∈ K such that (2p − 3)γ < v(µε) < (2p − 3)γ + ε
and v(µε) ∈ pv(K). Hence, by the choice of λ, γ′ < vL(µελ)) < γ′ + ε,
vL(µελ) /∈ pv(L), and (2p− 1)γ < vL(τ j(1 + µελ)− 1− µελ) < (2p− 1)γ + ε,
j = 1, . . . , p− 1. As ∇γ′ ⊆ N(IL/L), these calculations prove the existence of
an element µ′ ∈ ∇0(IL) of norm N IL

L (µ′) = 1 + µελ. Let f be the minimal
polynomial of µ′ over K. It is easily seen that f is of degree p2. Using the above
calculations, observing that the natural action of G(IL/K) on L∗ induces on
N(IL/L) a structure of a Z[G(L/K)]-module, and arguing as in the proof of the
inclusion ∇γ′ ⊆ N(IL/L), one obtains that 0 < vIL(µ′−ϕ(µ′)) ≤ (2p−1)γ+ε
when ϕ runs across G(IL/K)\{1}. Since ε can be taken smaller than any fixed
positive number, this enables one to deduce from (2.2) that ∇γ′′ ⊆ N(IL/L),
so Lemma 3.9 is proved.

It is now easy to prove Theorem 3.1 in the remaining case where v(K) ≤ R.
Take elements γ ∈ v(K) \ pv(K) and µ̃ ∈ K so that γ > 0 and v(µ̃) = γ. We
prove that if γ is sufficiently small, then the extension Lµ̃ = L of K in Ksep

generated by a root of the polynomial fµ̃(X) = Xp − X − µ̃−1 satisfies the
following conditions:

(3.2) L ⊆ K(p), [L : K] = p and there exists θ ∈ L, such that vL(θ) =
p−1v(µ̃) = p−1γ, vL(ζ(θ)− θ) = (2p−1)γ and vL(ζ(θ)θ−1 − 1) = p−1γ.

We show that one can take as θ the inverse of some root of fµ̃. If char(K) =
p, this is obtained by direct calculations (as in the proof of (3.1)). Suppose
further that char(K) = 0, take a primitive p-th root of unity ε ∈ Ksep, and put
m = [K(ε) : K]. It is well-known (cf. [27], Ch. VIII, Sect. 3) that K(ε)/K
is cyclic and m | (p − 1). Set µ = mµ̃, fix a generator ϕ of G(K(ε)/K), and
let s and l be positive integers, such that ϕ(ε) = εs and p | (sl − 1). Denote
by Λ′ some extension of K(ε) in Ksep obtained by adjunction of a p-th root
of the element ρ(µ) =

∏m−1
u=0 ϕi(1 + (ε − 1)pµ−1)li . It is easily verified that

ϕ(ρ(µ))ρ(µ)−s ∈ K(ε)∗p. Observing also that v′(ρ(µ)− 1−m(ε− 1)pµ−1) ≥
(2p)v′(ε−1)−2γ, and that the polynomial g(X) = (X+1)p−ρ(µ) is irreducible
over K(ε)), one concludes that ρ(µ) /∈ K(ε)∗p. Hence, by Albert’s theorem
(cf. [1], Ch. IX), Λ′ = Λ(ε), for some Λ ∈ I(K(p)/K) with [Λ: K] = p. Our
calculations also show that Λ′/K(ε) is totally ramified. Since m | (p − 1),
this proves that Λ/K is totally ramified as well. Note further that when γ
is sufficiently small, Λ′/K(ε) possesses a primitive element which is a root of
the polynomial Xp − µ̃p−1X − µ̃p−1. This is obtained by applying (2.2) to
the polynomial h̃(X) = g((ε − 1)−1µ̃X) ∈ Ov′(K(ε)). Thus it becomes clear
that Λ′/K(ε) has a primitive element ξ satisfying fµ̃(X). This implies that
[K(ξ) : K] = p, so it follows from the cyclicity of Λ′/K and Galois theory that
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K(ξ) = Λ = L. Using again (2.2), one concludes that when γ is sufficiently
small, the element θ = ξ−1 satisfies the inequalities required by (3.2). Since
p−1γ /∈ pv(L), the obtained result and Lemma 3.9 prove Theorem 3.1.

Let (K, v) be a Henselian field, such that char(K̂) = p > 0, and let I/K

be a Zp-extension, such that Î = K̂. Denote by In the extension of K in I of
degree pn, and put vn = vIn , for each n ∈ Z, n ≥ 0. The uniqueness, up-to an
equivalence, of vn implies the following inclusion, for every index n:

(3.3) {ψn(un)u−1
n : un ∈ I∗n, ψn ∈ G(In/K)} ⊆ ∇0(In).

We say that I is a norm-inertial extension of K, if∇0(K) ⊆ N(In/K), for each
n ∈ N. Suppose that H 6= pH, for every H ∈ Is′v(K), H 6= {0}. We conclude
this Section with the proof of the equivalence of the following statements in
case I/K is immediate:

(3.4) (i) I/K is norm-inertial;
(ii) I/In is norm-inertial, for every index n;
(iii) For each γ ∈ v(K), γ > 0, there exists µn(γ) ∈ Ov(In), such that

vn(ϕn(µn(γ))− µn(γ)) < γ, for each ϕn ∈ G(In/K) \ {1}.
The implication (3.4)(ii)→(3.4) (i) is obvious and the implication (3.4)

(iii) →(3.4) (ii) follows from (2.2), [5], II, (2.6) and (2.7), and the fact that
Hn 6= pHn, for every Hn ∈ Is′vn

(In), and each n ∈ N. The implication (3.4)
(i)→(3.4) (iii) can be deduced from the following result:

(3.5) Let (K, v) be a Henselian field, L ∈ I(K(p)/K) a cyclic extension of
K of degree pn, ψ a generator of G(L/K), λ and λ0 be elements of Mv(L) and
Mv(K), respectively, such that v(λ0) ∈ v(K)\pv(K) and NL

K(1+λ) = 1+λ0,
where NL

K is the norm map. Then vL(ψj(λ)−λ) ≤ v(λ0), for j = 1, . . . , pn−1.

It is easy to see that vL(ψ(α) − α) ≤ vL(ψj(α) − α), for any α ∈ L and
each index j, and equality holds in the case where p † j. When p † j, i.e. ψj

generates G(L/K), this leads to the conclusion of (3.5). Thus our assertion is
proved in case n = 1, so we assume further that n ≥ 2. Let k be an integer
with 1 ≤ k < n, Lk the fixed field of ψpk

, and λk = −1 +
∏pk−1

u=0 (1 + ψu(λ)).
Clearly, NL

Lk
(1 + λk) = 1 + λ0. Note also that vL(ψpk

(λ) − λ) ≤ v(λ0),
provided vL(ψpk

(λk) − λk) ≤ v(λ0). Since ψpk

is a generator of G(L/Lk),
these observations enable one to complete the proof of (3.5) by a standard
inductive argument.

At the same time, it is easily deduced from (2.2) (without restrictions on
v(K)) that the fulfillment of (3.4) (iii) ensures that I/K is norm-inertial.
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4 Proof of Theorem 1.1

Let first K be an arbitrary p-quasilocal nonreal field containing a primitive p-th
root of unity unless char(K) = p. Then cd(G(K(p)/K)) ≤ 2 and equality holds
if and only if char(K) 6= p and Br(K)p 6= {0} (see [9], Proposition 5.1, and [40],
Ch. I, 4.2). When K possesses a Henselian valuation v with v(K) 6= pv(K),
this enables one to deduce from [4], (1.2), [8], Lemma 3.6, and [6], Lemma 1.1
(b) (an analogue to a part of the main result of [29]) that cd(G(K(p)/K)) =
r(p)K . At the same time, the assumptions on K, Lemma 3.3 (i) and [8], I,
Lemma 3.5, indicate that K is a nonreal field. These observations, combined
with [45], Lemma 7 (or [9], Corollary 5.3), prove (1.4). Using (1.4), Remark
3.4 and Lemma 3.3 (i), one deduces the assertion of Theorem 1.1 in the special
case where char(K̂) 6= p.

In the rest of our proof of Theorem 1.1, we assume that (K, v) is Henselian
p-quasilocal with v(K) 6= pv(K) and char(K̂) = p. Suppose first that char(K) =
0 and vG(K)(K) 6= pvG(K)(K), G(K) being defined as in Section 2, and fix a
primitive p-th root of unity ε ∈ Ksep. Then char(KG(K)) = 0, so it follows
from Remark 3.4 that G(KG(K)(p)/KG(K)) ∼= Zp unless p /∈ P (KG(K)). In
view of Remark 2.8 and Proposition 2.6, this yields G(K) = pG(K). Hence,
by Proposition 2.5, KG(K)(p)/KG(K) is immediate relative to v̂G(K) unless
p ∈ P (K̂), and by (1.4) and Remark 3.4, applied to (K, vG(K)), G(K(p)/K)
has the following properties:

(4.1) (i) G(K(p)/K) ∼= G(KG(K)(p)/KG(K)), provided that ε /∈ K; when
this occurs, r(p)K ≤ 1 and Br(K)p is isomorphic to Br(KG(K))p or to a divisi-
ble hull of pBr(KG(K))⊕v(K)/pv(K), depending on whether or not r(p)K = 0;

(ii) If ε ∈ K and either p ∈ P (KG(K)) or v(K)/pv(K) is noncyclic, then
r(p)K = 2, G(K(p)/K) is a Demushkin group and Br(K)p

∼= Z(p∞);
(iii) G(K(p)/K) ∼= Zp, if ε ∈ K, p /∈ P (KG(K)) and v(K)/pv(K) is of order

p; in this case, Br(K)p = {0} and finite extensions of K in K(p) are totally
ramified.

When p ∈ P (KG(K)), it also becomes clear that the compositum K ′
G(K) of

the inertial lifts in Ksep, relative to vG(K), of the finite extensions of KG(K) in
KG(K)(p), has the following properties:

(4.2) K ′
G(K) is a Zp-extension of K with v(K ′

G(K)) = v(K); more precisely

K ′
G(K)/K is immediate relative to v unless p ∈ P (K̂).

Statements (4.1), (4.2) and Corollary 2.7 reduce the proof of Theorem 1.1 to
the special case where char(K) = p or char(K) = 0 and the group v(K)/G(K)
is p-divisible. Then it follows from Corollary 2.7 and Remark 2.8 that r(p)K ≥
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2 and v(K)/pv(K) is of order p. This, combined with (2.3), (2.4) (i) and
Lemma 3.3, proves the following assertions:

(4.3) If d(K) contains a noncommutative defectless K-algebra of p-primary
index, then the compositum Up(K) of the inertial extensions of K in K(p) is
a Zp-extension of K. In addition, every D ∈ d(K) and each finite extension
of K in K(p) are defectless over K.

Note also that ∇0(K) ⊆ N(U/K), for every inertial extension U/K; this is
a well-known consequence of (2.2). When U/K is cyclic and U ⊆ K(p), this
enables one to deduce from [31], Sect. 15.1, Proposition b, that Br(U/K) =
{b ∈ Br(K) : [U : K]b = 0} and Br(U/K) is cyclic of order [U : K]. Thereby,
it becomes clear that Br(Up(K)/K) = Br(K)p

∼= Z(p∞), which proves the
assertion of Theorem 1.1 in the case singled out by (4.3).

Suppose now that K has a finite extension L′ in K(p) of nontrivial defect,
choose L′ to be of minimal possible degree over K, and fix a maximal subfield
L of L′ including K. Clearly, L′/L is immediate and [L′ : L] = p, and by
[8], Theorem 4.1, L is p-quasilocal. In addition, it follows from (1.1) and
Lemma 3.3 (i) that CorL/K induces an isomorphism of Br(L)p on Br(K)p.
Observing also that v(K)/pv(K) ∼= v(L)/pv(L) (see, e.g., [4], Remark 2.2),
one concludes that L, vL and p satisfy the conditions of Theorem 3.1, which
yields Br(K)p

∼= Z(p∞), as claimed. For the rest of the proof of Theorem 1.1,
we need the following lemma.

Lemma 4.1. In the setting of Theorem 1.1, suppose that char(K̂) = p and
there exists a finite extension of K in K(p) of nontrivial defect. Then there is
a field I ∈ I(K(p)/K), such that I/K is immediate and [I : K] = p.

Proof. In view of Galois theory and the subnormality of proper subgroups of
finite groups, it suffices to consider the special case in which K has an extension
M in K(p) of degree p2 and defect p. We show that there exists a field I ∈
I(M/K), such that [I : K] = p and I/K is immediate. Let R be an extension
of K in M of degree p. It follows from (2.3) that v(R)/pv(R) ∼= v(K)/pv(K),
so we have v(R) 6= pv(R). If R/K is immediate, there is nothing to prove,
so we assume that this is not the case. Our extra hypothesis guarantees that
M/R is immediate, and since R is p-quasilocal [8], I, Theorem 4.1 (i), one
obtains from Lemma 3.5 (i) and (ii) that v(R)/pv(R) and v(K)/pv(K) are of
order p, R̂ is perfect and p /∈ P (R̂). Note further that, by Lemma 3.3 (ii), M
is the only extension of R in R(p) = K(p) of degree p, which is not totally
ramified. Statement (2.3) and these observations indicate that p /∈ P (K̂) and
R/K is totally ramified. At the same time, by Theorem 3.1, Br(R)p

∼= Z(p∞),
so it follows from (1.1) and Lemma 3.3 (i) that Br(K)p

∼= Z(p∞). Using the
normality of R/K and the equality [M : K] = p2, one proves that M/K is
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abelian. The obtained results, combined with (1.2) (ii) and [9], Lemma 2.1,
imply that G(M/K) ∼= K∗/N(M/K). We show that M/K is noncyclic. It
is clear from Theorem 3.1 and the Henselian property of v that N(M/R) =
{ρ ∈ R∗ : vR(ρ) ∈ pv(R)}. This, combined with Hilbert’s Theorem 90 and
the transitivity of norm maps in the field tower K ⊂ R ⊂ M , implies that
N(M/K) is included in the set Ωp(K) = {α ∈ K∗ : v(α) ∈ pv(K)}. Thus it
turns out that K∗p ⊆ N(M/K), whence K∗/N(M/K) has exponent p. As
G(M/K) ∼= K∗/N(M/K), it is now easy to see that G(M/K) is noncyclic.
By Galois theory, this means that M = RL, for some L ∈ I(M/K) with
[L : K] = p and L 6= R. Clearly, one may assume for the rest of the proof
that L/K is totally ramified. By (1.2), K∗ = N(R/K)N(L/K), K∗/N(R/K)
and K∗/N(L/K) are of order p, and N(M/K) = N(R/K) ∩ N(L/K). As
v(K)/pv(K) is of order p, these observations prove the existence of elements λ
and r of K∗, such that v(λ) = v(r) /∈ pv(K), λ ∈ N(L/K), r ∈ N(R/K) and
the co-sets λN(M/K) and rN(M/K) generate K∗/N(M/K). In addition, it
follows from (1.2) that the set {N(K ′/K) : K ′ ∈ I(M/K)} equals the set of
subgroups of K∗ including N(M/K). Therefore, there is I ∈ I(M/K), such
that [I : K] = p and N(I/K) is generated by N(M/K) and λr−1. Hence,
N(I/K) = Ωp(K), which means that I/K is not totally ramified. As M/R
is immediate, this leads to the conclusion that I/K is also immediate, which
proves Lemma 4.1.

The idea of the remaining part of the proof of Theorem 1.1 is to show
that if finite extensions of K in K(p) are defectless, then every ∆ ∈ d(K) is
defectless over K. Its implementation relies on the following two lemmas.

Lemma 4.2. Let K be a p-quasilocal field, for some p ∈ P. Assume that
Br(K)p is divisible, M is an extension of K in K(p) of degree p, ψ is a
generator of G(M/K) and d(K) contains the algebra (M/K, ψ, c), for some
c ∈ K∗ \ M∗p. Then [(M/K, ψ, c)] = CorM/K([(M1/M, ψ1, c)]), for some
M1 ∈ I(K(p)/M) with [M1 : M ] = p, and some generator ψ1 of G(M1/M).

Proof. Suppose first that char(K) = p. By the Artin-Schreier theorem (cf.
[27], Ch. VIII, Sect. 6), then M = K(ξ), where ξ is a root of the polynomial
Xp −X − a, for some a ∈ K∗. Clearly, a can be chosen so that (M/K, ψ, c)
is isomorphic to the p-symbol K-algebra K[a, c), in the sense of [43]. Since
M/K is separable, there exists η ∈ M of trace TrM

K (η) = c. This implies that
the polynomial Xp −X − η has no zero in M , whence, by the Artin-Schreier
theorem, its root field over M is a cyclic extension of M of degree p. Since, by
a known projection formula (see [28], Proposition 3 (i)), CorM/K([M [η, c)]) =
[K[a, c)], these observations prove Lemma 4.2 in the case of char(K) = p.
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In the rest of the proof, we assume that char(K) = 0, ε is a primitive
p-th root of unity in Ksep, [K(ε) : K] = m and s is an integer satisfying the
equality ϕ(ε) = εs, where ϕ is a generator of G(K(p)(ε)/K(p)). Then it
follows from (1.1), Lemma 3.3 (i) and [8], I, Theorems 3.1 (i) and 4.1 (iii),
that ind(A) = ind(A′) whenever A ∈ d(M), A′ ∈ d(K), [A] ∈ Br(M)p and
CorM/K([A]) = [A′]. When ε ∈ K, F/K is cyclic of degree p, by Kummer
theory, and by the assumption on c, F 6= M , which implies MF/M is cyclic
and [MF : M ] = p. Since M is p-quasilocal, these observations enable one to
deduce the assertion of Lemma 4.2 from Lemma 3.3.

Suppose now that ε /∈ K and, for each R ∈ I(K(p)/K), let Rε = {r ∈
R(ε)∗ : ϕ(r)r−s ∈ R(ε)∗}. It follows from Albert’s theorem (see [1], Ch. IX,
Theorem 6) that M(ε) is generated over K(ε) by a p-th root of some ele-
ment µ ∈ Kε. In addition, it becomes clear that µ can be chosen so that the
symbol K(ε)-algebra Aε(µ, c; K(ε)) is isomorphic to (M/K, ψ, c) ⊗K K(ε).
As p > 2, one also sees that µ ∈ N(M(ε)/K(ε)), whence µ equals the
norm N

M(ε)
K(ε) (µ1κ), for some µ1 ∈ Mε, κ ∈ K(ε) (see [11], Lemma 3.1).

Denote by M ′
1 the extension of M(ε) obtained by adjunction of the p-th

roots of µ1 in Ksep. Since µ1 /∈ M(ε)∗p, Albert’s theorem indicates that
M ′

1 = M1(ε), for some M1 ∈ I(K(p)/M) with [M1 : M ] = p. Thereby, it
becomes clear that the symbol M(ε)-algebra Aε(µ1, c;M(ε)) is isomorphic to
(M1/M, ψ1, c) ⊗M M(ε), for some generator ψ1 of G(M1/M). Applying the
projection formula for symbol algebras (cf., e.g., [42], Theorem 3.2), one con-
cludes that CorM(ε)/K(ε)([Aε(µ1, c; M(ε))]) = [Aε(µ, c;K(ε))]. Using also the
K(ε)-isomorphism Aε(µ, c; K(ε)) ∼= (M/K,ψ, c) ⊗KK(ε) (and the fact that
m | (p−1)), one obtains from the RC-formula that CorM/K([M1/M,ψ1, c)]) =
[(M/K, ψ, c)], as claimed by Lemma 4.2.

Lemma 4.3. Let (K, v) be a Henselian p-quasilocal field with char(K) = 0,
char(K̂) = p and v(K) 6= pv(K). Assume that finite extensions of K in K(p)
are totally ramified, (M, c) is a pair satisfying the conditions of Lemma 4.2,
and F is an extension of K in Ksep obtained by adjunction of a p-th root of
c. Then the extension MF/M is totally ramified of degree p.

Proof. We retain notation as in the proof of Lemma 4.2. In view of Kummer
theory, there is nothing to prove in case ε ∈ K, so we assume that ε /∈ K.
Then it follows from Lemma 3.3 (iii) that Rε ⊆ ∇0(R(ε))R(ε)∗p, for each R ∈
I(K(p)/K). Applying Albert’s theorem, Lemma 3.3 and [42], Theorems 2.5
and 3.2, as in the proof of Lemma 4.2, one obtains the following result:

(4.4) The M(ε)-algebra Aε(r, c; M(ε)) lies in d(M(ε)) if and only if
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Aε(N
M(ε)
ε (r), c; K(ε)) ∈ d(K(ε)); equivalently, r ∈ N(FM(ε)/M(ε)) if and

only if N
M(ε)
K(ε) (r) ∈ N(F (ε)/K(ε)).

We prove that MF/M is totally ramified by assuming the opposite. In view of
(2.3) and Lemma 3.3 (iii), this requires that MF/M is inertial or immediate,
and since m | (p − 1), MF (ε)/M(ε) must be subject to the same alterna-
tive. It follows from the Henselity of vK(ε) that if F (ε)/K(ε) is inertial, then
I0(K(ε)) ⊆ N(F (ε)/K(ε)). Applying now [31], Sect. 15.1, Proposition b,
one concludes that (M1/M,ψ1, c) /∈ d(K). Since (M/K,ψ, c) ∈ d(K), this
contradicts Lemma 4.2, and thereby proves that MF (ε)/M(ε) is not inertial.
The final step towards the proof of Lemma 4.3 relies on the fact that Mε is a
module over the integral group ring Z[G(M(ε)/K(ε))]. In view of (4.4), this
ensures that θ(r)r−1 ∈ N(MF (ε)/M(ε)) whenever θ ∈ G(M(ε)/K(ε)) and
r ∈ Mε. Assuming now that MF/M is immediate (or equivalently, that F/K
is immediate), using the condition on the finite extensions of K in K(p), and
arguing as in the proof of (3.1) and Lemma 3.9, one obtains from this result
that ∇0(K(ε)) ⊆ N(F (ε)/K(ε)). This, however, contradicts the fact that
(M/K, ψ, c) ∈ d(K), so Lemma 4.3 is proved.

Remark 4.4. Assume that (K, v) is a Henselian field, such that char(K) =
p, v(K)/pv(K) is of order p and finite extensions of K in K(p) are totally
ramified. Then, by the proofs of [43], Lemmas 2.2, 3.2 and 3.3, the assertion
of Lemma 4.3 remains valid without the assumption that K is p-quasilocal
(when Ksep is replaced by its algebraic closure). Hence, by the proof of [43],
Proposition 3.2, d(K) does not contain cyclic K-algebras of index p. This,
combined with [2], Ch. VII, Theorem 28, implies Br(K)p = {0}.

Let now (K, v) be a Henselian p-quasilocal with char(K) = 0 and char(K̂) =
p, and suppose that p ∈ P (K), v(K)/pv(K) is of order p and finite extensions
of K in K(p) are defectless. As noted at the beginning of this Section, then
r(p)K ≥ 2. Assume further that Br(K)p 6= {0} and fix a primitive p-th root
of unity ε ∈ Ksep. Since K is p-quasilocal, this implies the existence of a
cyclic algebra D ∈ d(K) of index p. As in the proofs of Lemmas 4.2 and
4.3, it is seen that D ⊗K K(ε) is K(ε)-isomorphic to Aε(a, b; K(ε)), for some
a ∈ K∗, b ∈ Kε. In addition, it turns out that, by the proof of Albert’s
cyclicity criterion for an algebra ∆ ∈ d(K) of index p (see [31], Sect. 15.5, or
[11], (3.3)) that if Aε(a, b; K(ε)) ∼= Aε(a; b0; K(ε)), for some b0 ∈ ∇0(K(ε)),
then there exists b′0 ∈ Kε, such that Aε(a, b′0;K(ε)) ∼= Aε(a, b; K(ε)) and
vK(ε)(b′0 − 1) ≥ vK(ε)(b0 − 1). Considering now Aε(a, b; K(ε)) as in the proof
of [43], Proposition 3.3 (see also [39], Ch. 2, Lemma 19), and using Lemma
4.3 and the inequality r(p)K ≥ 2, one obtains the following result:



76 I. D. Chipchakov

(4.5) The K-algebra D is defectless.

We are now in a position to complete the proof of Theorem 1.1. Statements
(4.1), (1.4) and (4.5), combined with Lemma 3.3 (ii) and Remark 3.4, as well
as with Remark 4.4 and the observation preceding the statement of Lemma
4.1, prove Theorem 1.1 (iii). The conclusion of Theorem 1.1 (i) follows from
Lemma 3.3, Remark 3.4, the comment on (4.3) and the pointed observation.
It remains for us to prove Theorem 1.1 (ii). Suppose that (K, v) satisfies the
conditions of Lemma 4.1. Then K has an immediate extension I1 in K(p) of
degree p. At the same time, Lemma 3.3 (ii), combined with (2.4) (i), (4.3),
(4.5) and Remark 4.4, indicates that (R, vR) satisfies the conditions of Lemma
4.1 whenever R ∈ I(K(p)/K) and [R : K] ∈ N. Therefore, one proves without
difficulty by induction on n the existence of a unique sequence In, n ∈ N, of
subfields of Ksep, such that I1 = I, In ⊂ In+1, [In+1 : In] = p, and In+1/In

is immediate, for every index n. In view of Galois theory, this implies that
In/K is cyclic and immediate with [In : K] = pn whenever n ∈ N, and the
union I∞ = ∪∞n=1In is the unique immediate Zp-extension of K in Ksep. This,
combined with (4.1), (4.3) and Theorem 1.1 (iii), yields the alternative of
Theorem 1.1 (ii) in the case of char(K̂) = p. Thus Theorem 1.1 is proved.

Remark 4.5. The proof of Theorem 1.1 is considerably easier in the special
case where Ksep = K(p), since then K contains a primitive p-th root of unity
or char(K) = p, which simplifies the consideration of the structure of Br(K)p

(see (4.1) and Remark 3.4). In addition, when char(K̂) = p, (4.5) can be
directly deduced from [43], Theorem 3.1.

5 Brauer groups of Henselian PQL-fields with totally in-
divisible value groups

The purpose of this Section is to describe the isomorphism classes of several
major types of valued PQL-fields considered in this paper. Our first result is
particularly useful in the case of quasilocal fields:

Proposition 5.1. Let (K, v) be a Henselian field, such that v(K) 6= pv(K)
and Br(K)p 6= {0}, for some p ∈ P. Suppose further that finite extensions of
K are p-quasilocal. Then p ∈ P (K) and Br(K)p

∼= Z(p∞). Moreover, every
D ∈ d(K) of p-primary index is a cyclic K-algebra.

Proof. Fix Sylow pro-p-subgroups Gp and G̃p of GK and GK̂ , respectively, and
denote by Kp and K̂p the corresponding fixed fields. Our choice of Kp ensures
that p † [K ′ : K] whenever K ′ ∈ I(Kp/K) and [K ′ : K] ∈ N, so [4], (1.2) and
Remark 2.2, and the results of [31], Sect. 13.4, imply the following:
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(5.1) Br(Kp/K)∩Br(K)p = {0} and the natural embedding of K into Kp

induces a group isomorphism v(K)/pv(K) ∼= v(Kp)/pv(Kp).

Since Br(K)p 6= {0} and, by [8], I, Lemma 8.3, Kp is p-quasilocal, it can be
easily deduced from (5.1), Lemma 3.3 (i) and Theorem 1.1 that Br(Kp) ∼=
Z(p∞) ∼= Br(K). In view of [8], I, Theorem 3.1 (i), it remains to be seen
that p ∈ P (K). When p = char(K), this follows from Lemma 2.2, so we
assume further that p 6= char(K). As Br(K)p 6= {0}, Theorem 2 of [30],
Sect. 4, requires the existence of an algebra D ∈ d(K) of index p. Fix an
element θ ∈ K∗ so that v(θ) /∈ pv(K) and denote by Lθ some extension of
K in Ksep generated by a p-th root of θ. Also, let ε ∈ Ksep be a primitive
p-th root of unity. Since [K(ε) : K] | (p − 1), we have D ⊗K K(ε) ∈ d(K(ε))
and [Lθ : K] = [Lθ(ε) : K(ε)] = p. Observing also that Lθ(ε) is cyclic over
K(ε), one obtains from the p-quasilocal property of K(ε) that Lθ(ε) embeds in
D⊗K K(ε) as a K(ε)-subalgebra. Thus it becomes clear that Lθ is isomorphic
to a K-subalgebra of D, so it follows from Albert’s criterion (cf. [31], Sect.
15.5) that D is a cyclic K-algebra. This shows that p ∈ P (K), so Proposition
5.1 is proved.

Remark 5.2. In the setting of Proposition 5.1, let v(K)/pv(K) be of order
p, and for each finite extension L of K in Ksep, put Xp(L) = {χ ∈ CL : pχ =
0}, where CL is the continuous character group of GL. Denote by κL the
canonical pairing Xp(L)×v(K)/pv(K) →p Br(L) (see, e.g., the proof of [8], I,
Lemma 1.1), and by corL/K the homomorphism of Xp(L) into Xp(K) induced
by the corestriction map CL → CK . It is clear from Proposition 5.1 that
ρK/L maps Br(K)p surjectively upon Br(L)p, and by a well-known projection
formula (stated in [41], page 205, for a proof, see, e.g., [46], Proposition 4.3.7),
the compositions κK ◦corL/K and CorL/K ◦κL coincide. Choose as we can (by
Remark 4.5) L so that p† [L : K] and there is a field IL ∈ I(L(p)/L), such that
[IL : L] = p and v(IL) = v(L). Then it follows from [42], Theorem 3.2, and
the noted property of ρK/L that CorL/K induces an isomorphism Br(L)p

∼=
Br(K)p. Fix a generator σL of G(IL/L) and an element π ∈ K∗ so that
v(π) /∈ pv(K). The preceding observations show that CorL/K([IL/L, σL, π)]) ∈
Br(IK/K), for some IK ∈ I(K(p)/K) with [IK : K] = p and v(IK) = v(K).
Hence, by Lemma 3.3 (ii), IL = IKL, which yields p ∈ P (K) independently
of the proof of (4.5).

It is known (and easy to see, e.g., from Scharlau’s generalization of Witt’s
decomposition theorem or from [8], I, Corollary 8.5) that every divisible sub-
group T of Q/Z is isomorphic to Br(KT ), provided that (K, v) is a Henselian
discrete valued field with a quasifinite residue field and KT is the compositum
of the inertial extensions of K in Ksep of degrees not divisible by any p ∈ P,
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for which Tp 6= {0}. This, combined with our next result, describes the iso-
morphism classes of Brauer groups of Henselian quasilocal fields with totally
indivisible value groups.

Corollary 5.3. Let (K, v) be a Henselian quasilocal field, such that v(K) is
totally indivisible. Then K is nonreal, K̂ is perfect, every D ∈ d(K) is cyclic
and Br(K) is divisible and embeddable in Q/Z. Moreover, P (K) contains
every p ∈ P, for which Br(K)p 6= {0}.
Proof. Our concluding assertion and the one concerning Br(K) follow from
Proposition 5.1. The statements that K̂ is perfect and K is nonreal are implied
by Lemma 3.3, the assumption on v(K) and [8], I, Lemma 3.6. Note finally
that all D ∈ d(K) are cyclic. Since it suffices to prove this only in the special
case where [D] ∈ Br(K)p, for some p ∈ P (see [31], Sect. 15.3), the assertion
can be viewed as a consequence of Proposition 5.1.

Corollary 5.4. Under the hypotheses of Corollary 5.3, let L/K be a finite
abelian extension and L0 the maximal extension of K in L, for which [L0 : K] is
not divisible by any p ∈ P with Br(K)p = {0}. Then E∗/N(L/K) ∼= G(L0/K).

Proof. This follows at once from (1.2) (ii), Theorem 1.1 and [9], Lemma 2.1.

Corollary 5.5. An abelian torsion group T with T2 6= {0} is isomorphic to
Br(K), for some Henselian PQL-field (K, v) such that v(K) is totally indivisi-
ble, if and only if T is divisible and T2

∼= Z(2∞). When this holds, T ∼= Br(F ),
for some Henselian discrete valued PQL-field (F, w).

Proof. Theorem 3.1 shows that Br(K)2 ∼= Z(2∞) whenever (K, v) is a Henselian
2-quasilocal field with v(K) 6= 2v(K) and Br(K)2 6= {0}. This, combined with
[7], Theorem 4.2, proves our assertion.

Let T be an abelian torsion group and S0(T ) = {π ∈ P : Tπ = {0}}.
Assume that 2 ∈ S0(T ) and denote by S1(T ) the set of those p ∈ P \ S0(T ),
for which S0(T ) contains the prime divisors of p− 1. Clearly, if T 6= {0}, then
S1(T ) contains the least element of P\S0(T ). Using Theorem 3.1, Lemma 3.5
(i) and [7], Theorem 4.2, one obtains the following results:

(5.2) (i) If T is divisible with Tp
∼= Z(p∞), for every p ∈ S1(T ), then there

exists a Henselian PQL-field (K, v), such that Br(K) ∼= T , v(K) is totally
indivisible and char(K̂) = 0;
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(ii) If Br(F ) ∼= T , for some Henselian PQL-field (F, w) with w(F ) totally
indivisible, then Tp

∼= Z(p∞) and F contains a primitive p-th root of unity, for
each p ∈ S1(T ), p 6= char(F̂ );

(iii) The group T satisfies the condition in (i) if and only if T ∼= Br(L), for
some Henselian real-valued PQL-field (L, ω).

The conclusion of (5.2) (iii) is not necessarily true without the condition
that ω(L) ≤ R. Indeed, let T be an abelian torsion group with T2 = {0},
Sπ(T ) = S1(T ) \ {π}, for some π ∈ S1(T ), and S′π(T ) the set of those p′ ∈
P \ S0(T ), for which the coset of π in Z/p′Z = Fp′ has order in F∗p′ not
divisible by any p ∈ P \ Sπ(T ). Fix an algebraic closure Qπ of the field Qπ of
π-adic numbers, and for each subset Π of P, put Π′ = Π∪{π}, Π = P\Π, and
denote by UΠ the compositum of inertial extensions of Qπ in Qπ of degrees not
divisible by any π̄ ∈ Π. It is well-known that Uπ/Qπ is a Galois extension with
G(Uπ/Qπ) isomorphic to the topological group product

∏
p∈Π Zp. This implies

that Uπ(p′)/Qπ is Galois, for each p′ ∈ P. Observing also that G(UΠ/Qπ) is
a projective profinite group [20], Theorem 1, one concludes that, for each
Π ⊆ P, there exists a field FΠ ∈ I(UΠ′(π)/UΠ), such that UΠ′ .FΠ = UΠ′(π)
and UΠ′ ∩ FΠ = UΠ. This observation, combined with (4.1), Proposition 2.5
and Theorem 1.1, enables one to obtain the following result (arguing in the
spirit of the proof of (5.2) and Corollary 5.5):

(5.3) T ∼= Br(K), for some Henselian PQL-field (K, v), such that v(K) is
totally indivisible and char(K̂) = π, if and only if T is divisible with Tp′ ∼=
Z(p′∞), for every p′ ∈ S′π. When T has the noted properties and Tπ 6∼= Z(π∞),
char(K) = 0 and G(K) = πG(K). Moreover (K, v) can be chosen so that
KG(K) = FSπ(T ) and v̂G(K) extends the natural valuation of Qπ.

Corollary 5.5, statements (5.2) and (5.3), and the classification of divisible
abelian groups (cf. [17], Theorem 23.1) describe the isomorphism classes of
Brauer groups of Henselian PQL-fields with totally indivisible value groups.

6 Applications

The first result of this Section together with Theorem 2.1 of [5], I, characterizes
the quasilocal property in the class of Henselian quasilocal fields with totally
indivisible value groups.

Proposition 6.1. Let (K, v) be a Henselian field, such that char(K̂) = q 6= 0,
and let Kp be the fixed field of some Sylow pro-p-subgroup Gp ≤ GK , for each
p ∈ Π(K). Assume that v(K) 6= pv(K), for every p ∈ Π(K), and K possesses
at least one finite extension in Ksep of nontrivial defect. Then K is quasilocal
if and only if it satisfies the following two conditions:
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(i) K̂ is perfect, q /∈ Π(K̂), v(K)/qv(K) is of order q, and Ksep contains
as a subfield a norm-inertial Zq-extension Y of Kq, such that every finite
extension Lq of Kq in Ksep with Lq ∩ Y = Kq is totally ramified;

(ii) r(p)Kp ≤ 2, for each p ∈ Π(K) \ {q}.
Proof. The Henselian property of (K, v) ensures that K∗

p/K∗p
p
∼= K̂∗

p/K̂∗p
p ⊕

v(K)/pv(K), for each p ∈ P \ {q}. Since v(K)/pv(K) ∼= v(Kp)/pv(Kp) and
v(K) 6= pv(K), this enables one to deduce from (2.3) that Br(Kp) 6= {0} when-
ever r(p)Kp ≥ 2. These observations, combined with (1.4), [45], Lemma 7, [8],
I, Lemma 3.8, indicate that condition (ii) holds if and only if Kp is p-quasilocal,
for each p ∈ Π(K) \ {q}. At the same time, it follows from (2.3) and our as-
sumptions that there exists a finite extension of Kq in Ksep of nontrivial defect.
Suppose that Kq is quasilocal. Then (4.2), Lemma 4.1 and the preceding ob-
servation imply the existence of an immediate Zq-extension Y of Kq in Ksep.
In view of Remark 4.5 and Theorem 4.1, Br(Kq) ∼= Z(q∞), so it follows from
[31], Sect. 15.1, Proposition b and the Henselian property of vKq that Y is
norm-inertial over Kq. Since q does not divide the degrees of the finite exten-
sions of K in Kq, the fulfillment of the remaining part of condition (i) can be
proved by applying Lemmas 3.3 and 3.5 to (Kq, vKq ).

Our objective now is to show that Kq is q-quasilocal, provided that condi-
tion (i) holds. Put w = vKq , denote by H the maximal q-divisible group from
Isw(Kq), and for each n ∈ N, let Yn be the extension of Kq in Y of degree qn.
Since K̂ is perfect, it follows from the assumption on Y/Kq and the choice of
H that µ ∈ N(Yn/Kq), for every n ∈ N whenever µ ∈ K∗

q and vKq (µ) ∈ H. At
the same time, the q-divisibility of H implies that every finite extension Lq of
Kq in Ksep with Lq ∩Y = Kq is totally ramified relative to wH . The obtained
results enable one to deduce from Lemma 3.2 that the residue field of (Kq, wH)
is perfect (of characteristic q or zero). Observing also that wH(Y ) = wH(Kq),
one concludes that Y satisfies one of the following two conditions:

(6.1) (i) Y equals the compositum of the inertial extensions of Kq in Ksep

relative to wH ;
(ii) Y/Kq is norm inertial relative to wH .

The fulfillment of (6.1) guarantees that Kq is quasilocal (see [5], I, Lemma 2.2,
and the proof of [4], Theorem 3.1 (b) (ii)), so we assume further that Y/Kq

satisfies (6.1) (ii). Considering, if necessary, wH instead of w, and using the
observations preceding the statement of (6.1), one obtains a reduction of the
proof of the q-quasilocal property of Kq to the special case in which every
nontrivial group from Isw(Kq) is q-indivisible. We first show that qBr(Kq) =
Br(Y1/Kq). Let L be a finite extension of Y in Ksep. Then it follows from
Galois theory and the projectivity of Zq [20], Theorem 1, that L ⊆ Y.L′q,
for some finite extension L′q of Kq in Ksep, such that L′q ∩ Y = Kq. This
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implies that L/Y is defectless, so it follows from [43], Theorem 3.1, that every
D ∈ d(Y ) is defectless. Observing, however, that Ŷ is perfect, q /∈ P (Ŷ ), and
for each n ∈ N, v(Y )/qnv(Y ) is a cyclic group of order qn, one concludes that
ind(D) divides the defect of D over Y . Thus it turns out that Br(Y ) = {0}
and Br(Kq) = Br(Y/Kq) = ∪∞n=1Br(Yn/Kq). Since Y/Kq is norm-inertial, this
enables one to deduce from (3.4), Hilbert’s Theorem 90 and general properties
of cyclic algebras (cf. [31], Corollary b) that qBr(Kq) = Br(Y1/Kq), as claimed.
Let now Y ′ be an extension of Kq in Ksep, such that Y ′ 6= Y1 and [Y ′ : Kq] = q.
Then Y ′/Kq is totally ramified. Since K̂q is perfect and w(Kq)/qw(Kq) is of
order q, this ensures that K∗

q ⊆ Y ′∗p∇0(Y ′). Observing also that Y Y ′/Y ′

is norm-inertial (as follows from (3.4) and (2.3)), one concludes that K∗
q ⊆

N(Y1Y
′/Y ′). In view of [31], Sect. 15.1, Proposition b, the obtained result

implies that Br(Y1/Kq) ⊆ Br(Y ′/Kq). As Br(Y ′/Kq) ⊆q Br(Kq), this proves
that Br(Y ′/Kq) = Br(Y1/Kq) =q Br(K), which means that Kq is q-quasilocal.
It is now easy to deduce from [8], I, Lemma 8.3, that K is quasilocal when
conditions (i) and (ii) hold, which completes the proof of Proposition 6.1.

The following result shows that every nontrivial divisible subgroup of Q/Z
is realizable as a Brauer group of a quasilocal field of the type characterized
by Proposition 6.1. In view of Corollary 5.3, it clearly illustrates the fact that
the study of Henselian quasilocal fields with totally indivisible value groups
does not reduce to the special case covered by [5], II, Theorem 2.1.

Proposition 6.2. Let (Φ, ω) be a Henselian discrete valued field, such that Φ̂
is quasifinite and char(Φ̂) = q > 0, and let T be a divisible subgroup of Q/Z
with Tq 6= {0}. Then there exists a Henselian quasilocal field (K, v) with the
following properties:

(i) Br(K) ∼= T , K/Φ is a field extension of transcendency degree 1, and v
is a prolongation of ω;

(ii) v(K) is Archimedean and totally indivisible, K̂/Φ̂ is an algebraic ex-
tension and K possesses an immediate Zq-extension.

The proof of Proposition 6.2 is constructive and can be found in [5], II, Sect.
4. Our next result gives a criterion for divisibility of value groups of Henselian
quasilocal fields, and for defectlessness of their central division algebras.

Proposition 6.3. Let E be a quasilocal field satisfying one of the following
two conditions:

(i) Every finite group G is isomorphic to a subquotient of GE, i.e. to a
homomorphic image of some open subgroup HG of GE;

(ii) Br(Ep) 6= {0}, for each p ∈ Π(E), Ep being the fixed field of some Sylow
pro-p-subgroup Gp of GE; moreover, if Br(Ep) ∼= Z(p∞), then 2 < r(p)Ep < ∞.
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Assume that E has a Henselian valuation v. Then v(E) is divisible and, in
case (i), every D ∈ d(E) is inertial over E relative to v.

Proof. For each p ∈ P, Ep is p-quasilocal, v(Ep)/pv(Ep) ∼= v(E)/pv(E), and
Ep contains a primitive p-th root of unity unless p = char(E) = p. These ob-
servations, combined with (1.4), imply that if v(E) 6= pv(E) and p 6= char(Ê),
then r(p)Ep

≤ 2. When condition (ii) holds, this contradicts Theorem 1.1,
and thereby proves that v(E) = pv(E) in case p 6= char(Ê). Suppose now
that char(Ê) = p, p ∈ Π(E) and E satisfies condition (ii). We first show
that r(p)Ep = ∞. Assuming the opposite, one obtains from [22], Proposi-
tion 4.4.8, and [9], Corollary 5.3, that char(E) = 0, Br(Ep) ∼= Z(p∞) and
r(p)Ep ≥ 3. It is therefore clear from (4.1) that v(E)/G(E) is p-divisible,
G(E) being defined as in Section 2. At the same time, [14], Proposition 3.4,
and the assumptions on r(p)Ep

require that v(Ep) 6= pv(Ep). Thus it turns
out that v(E) 6= pv(E) and G(E) 6= pG(E), so it follows from Proposition 2.6
that G(E) is cyclic and v(E) is totally indivisible. The obtained contradiction
proves that r(p)Ep

= ∞. Hence, by condition (ii), pBr(Ep) is noncyclic, which
enables one to deduce from (5.2) (ii) and Theorem 1.1 that v(E) = pv(E).
Thus the fulfillment of (ii) guarantees that v(E) is divisible.

We turn to the proof of the divisibility of v(E) in case (i) of Proposition
6.3. Our assumptions indicate that, for each p ∈ P, there are finite extensions
Lp, L′p and L′′p of E in Esep, such that L′p and L′′p are Galois over Lp with
G(L′p/Lp) and G(L′′p/Lp) isomorphic to the alternating groups Altjp and Altkp,
respectively, for some integers j and k with 5 ≤ j < k. It is clear from Galois
theory, the choice of L′p and L′′p , and the simplicity of the groups Altn, n ≥ 5,
that L′pL

′′
p is a Galois extension of Lp with G(L′pL

′′
p/Lp) ∼= Altjp × Altkp.

Denote by Up the compositum of the inertial extensions of Lp in Esep, and put
I ′p = Up ∩L′p, I ′′p = Up ∩L′′p . Note that Up/Lp is Galois and GUp is prosolvable
(see [21], page 135, and, e.g., [5], I, page 3102), which means that G(L′p/I ′p) and
G(L′′p/I ′′p ) are solvable groups. Therefore, the preceding observation also shows
that L′pL

′′
p ⊆ Up. Let now Mp be the fixed field of some Sylow p-subgroup

of G(L′pL
′′
p/Lp), and let H ′

p and H ′′
p be Sylow p-subgroups of G(L′p/Lp) and

G(L′′p/Lp), respectively. Then L′pL
′′
p/Mp is an inertial Galois extension with

G(L′pL′′p/Mp) ∼= H ′
p ×H ′′

p . The obtained result indicates that r(p)
M̂p

≥ 2. As
Mp is quasilocal, this yields v(Mp) = pv(Mp) (see Remark 3.4). Hence, by
the isomorphism v(E)/pv(E) ∼= v(Mp)/pv(Mp), we have v(E) = pv(E), which
proves that v(E) is divisible, as claimed.

It remains to be seen that the fulfillment of condition (i) of Proposition 6.3
ensures that every D ∈ d(E) is inertial. As v(E) is divisible, it suffices to show
that D/E is defectless. In view of (2.3) and (1.1), one may assume, for the
proof, that char(Ê) = q > 0 and Br(Eq) 6= {0}. As shown above, q ∈ P (Êq)
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and v(Eq) = qv(Eq), so Lemma 3.6 and our assumptions indicate that finite
extensions of Eq in Esep are defectless. It is therefore clear from (2.3) that finite
extensions of E in Esep have the same property, so the concluding assertion of
Proposition 6.3 follows from [43], Theorem 3.1.

Our next result characterizes p-adically closed fields in the class of Henselian
quasilocal fields with residue fields of characteristic p; it essentially gives an
answer to a question posed to the author by Serban Basarab.

Proposition 6.4. For a Henselian field (K, v) with char(K̂) = p > 0 and
v(K) 6= pv(K), the following conditions are equivalent:

(i) (K, v) is p-adically closed;
(ii) K is quasilocal, char(K) = 0, r(p)K ∈ N and either r(p)K ≥ 3 or

G(K(p)/K) is a free pro-p-group with r(p)K = 2.

Proof. Note that condition (i) of Proposition 2.6 holds when (K, v) satisfies
condition (i) or (ii) of Proposition 6.4 (see (4.1), [45], page 725, and [34],
Theorem 3.1). Therefore, one may assume for the proof that char(K) = 0,
K̂ is finite and the subgroup G(K) ≤ v(K) is cyclic. This enables one to
deduce from (1.4) and Remark 2.8 that if K is quasilocal, then vG(K)(K) =
v(K)/G(K) is divisible. In view of [34], Theorem 3.1, the obtained results
prove that (ii)→(i). Assume now that (K, v) is p-adically closed. This ensures
that v(K)/G(K) is divisible, which implies finite extensions of K in Ksep are
inertial relative to vG(K). Therefore, GK

∼= GKG(K) (see [21], page 135), so it
follows from [8], I, Theorem 8.1, that K is quasilocal if and only if so is KG(K).
As K̂ is finite and G(K) is cyclic, the assertion that KG(K) is quasilocal can
be deduced from (2.1) (i), Propositions 2.1 and [5], I, Corollary 2.5. Finally,
the isomorphism GK

∼= GKG(K) , combined with (2.6) (ii) and [40], Ch. II,
Theorems 3 and 4, indicates that G(K(p)/K) and r(p)K satisfy condition (ii),
so the implication (i)→(ii) and Proposition 6.4 are proved.

The concluding result of this Section supplements Theorem 1.1 by showing
that Brauer groups of quasilocal fields with Henselian valuations whose residue
fields are separably closed and imperfect do not necessarily embed in Q/Z. In
addition to Proposition 6.3, it simultaneously indicates that central division
algebras over such fields are not necessarily defectless.

Proposition 6.5. Assume that (Φ, ω) is a Henselian field, such that ω(Φ) =
Z, Φ̂ is quasifinite and char(Φ̂) = q > 0. Then there exists a Henselian field
(K, v) with the following properties:

(i) v(K) = Q, char(K̂) = q and [K̂ : K̂q] = q;
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(ii) GK is a pro-q-group and qBr(K) ∼= K̂∗/K̂∗q; in particular, qBr(K) is
infinite;

(iii) K is quasilocal and has a unique immediate Zq-extension I∞ in Ksep;
for each finite extension L of K in Ksep of nontrivial defect, L ∩ I∞ 6= K;

(iv) K/Φ is a field extension of transcendency degree 1.

Proof. Let Φ be an algebraic closure of Φ. By the proof of [5], II, Theorem 1.2,
there exists a field K̃ ∈ I(Φ/Φ), such that Φ/K̃ is an immediate Zq-extension
relative to vK̃ ; in particular, one can apply (3.4) (iii) to the fields from I(Φ/K̃)
the conditions of [5], II, Lemma 3.1. Put ṽ = vK̃ and let k̃ be the residue field of
(K̃, ṽ). Denote by vX the Gauss valuation of the rational function field K̃(X),
which extends ṽ so that vX(f(X)) = 0, for each f(X) ∈ Oṽ[X] \Mṽ[X], and
fix a Henselization (F, v) of (K̃(X), vX). The definition of vX shows that the
residue class of X is transcendental over k̃. Let Gq be a Sylow pro-q-subgroup
of GF , K the fixed field of Gq and v = wK . Arguing in the spirit of the proof
of the quasilocal property of the field Kq (considered in [5], II, Sect. 4), one
obtains first that Br(K̃1K/K) =q Br(K), where K̃1 is the extension of K̃ in
Γ of degree q. This is used for proving that K, v and I∞ = ΦK have the
properties required by Proposition 6.5.

Remark 6.6. Let F0 be a global field, w0 a discrete valuation of F0, q =
char(F̂0), F a completion of F0 with respect to ω0, and w the valuation of
F continuously extending w0. It is well-known that tr(F/F0) is (uncount-
ably) infinite. Fix a purely transcendental extension Fn of F0 in F so that
tr(Fn/F0) = n ≥ 0, n ≤ ∞, denote by Φn the separable closure of Fn in
F , and let ωn be the valuation of Φn induced by w. Then ωn is discrete and
Henselian and Φ̂n

∼= Fq. Therefore, one can find an extension Rn of Φn with
the properties required by Proposition 6.5. When n ∈ N, our construction
ensures that tr(Rn−1/F0) = n.

For each m ∈ N, the quasilocal fields Rn, n ∈ N, in Remark 6.6 have
infinitely many nonisomorphic algebras Dn,m ∈ d(Rn) of index pm. By [6],
Theorem 4.1 and Corollary 8.6, for each admissible pair (n,m), all Dn,m share,
up-to Rn-isomorpisms, a common set of maximal subfields, and a common
class of splitting fields algebraic over Rn. Since Rn is of transcendency degree
n+1 or n+2 over its prime subfield, for each n < ∞, this raises interest in the
open problem of whether there exist finitely generated fields F which possess
infinitely many nonisomorphic D ∈ d(F ) with some of the noted two properties
of the algebras Dm,n (see [24], and for the case of quaternion algebras [35],
[18] and [33], Remark 5.4). The corresponding problem for arbitrary fields
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has an affirmative solution (found by Van den Bergh-Schofield [44], Sect. 3,
and Saltman, see [19], Sect. 5.5). In view of [8], I, Corollary 8.5, a complete
solution to the general problem is obtained by applying the latter assertion of
(1.3) (i), to a field E0 of zero characteristic and to a divisible abelian torsion
group T with infinite components Tp, for all p ∈ P.
Acknowledgment. Partially supported by Grant MI-1503/2005 of the Bul-
garian National Science Fund.
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