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THE TOTAL TORSION ELEMENT GRAPH

OF A MODULE OVER A COMMUTATIVE

RING

Shahabaddin Ebrahimi Atani and Shokoofe Habibi

Abstract

The total graph of a commutative ring have been introduced and
studied by D. F. Anderson and A. Badawi in [1]. In a manner analogous
to a commutative ring, the total torsion element graph of a module
M over a commtative ring R can be defined as the undirected graph
T (Γ(M)). The basic properties and possible structures of the graph
T (Γ(M)) are studied. The main purpose of this paper is to extend the
definition and some results given in [1] to a more general total torsion
element graph case.

1 Introduction

The study of the set of torsion elements of a module over a commutative ring
can often be a frustrating one. Almost immediately one runs into the ugly
issue of a profound lack of algebraic structure, highlighted by (typically) a
lack of closure under addition. This unfortunate lack of algebraic structure
is most disturbing in such an important subset within a module over a ring.
In this paper, we introduce and study the total torsion element graph of a
module over a commutative ring with the tools and methods of graph theory.

The study of algebraic structures using the properties of graphs has become
an exciting research topic in the recent years, leading to many fascinating re-
sults and questions. Among the most interesting graphs are the zero-divisor
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graphs, because these involve both ring theory and graph theory. By studying
these graphs we can gain a broader insight into the concepts and properties
that involve both graphs and rings. There are many papers on assigning a
graph to a ring and the relations between them. It was Beck (see [3]) who
first introduced the notion of a zero-divisor graph for commutative ring. This
notion was later redefined by D.F. Anderson and P.S. Livingston in [2]. Since
then, there has been a lot of interest in this subject and various papers were
published establishing different properties of these graphs as well as relations
between graphs of various extensions (see [1, 2, 3]). Let R be a commuta-
tive ring, Reg(R) its set of regular elements, Z(R) its set of zero-divisors,
and Nil(R) its ideal of nilpotent elements. The total graph of R denoted by
T (Γ(R)) was introduced by D.F. Anderson and A. Badawi in [1], as the graph
with all elements of R as vertices, and two distinct vertices x, y ∈ R are adja-
cent if and only if x + y ∈ Z(R). They study the three (induced) subgraphs
Nil(Γ(R)), Z(Γ(R)), and Reg(Γ(R)), with vertices Nil(R), Z(R), and Reg(R),
repectively [1].

Throughout this paper all rings are commutative with non-zero identity
and all modules unitary. Let M be a module over a ring R. We use T (M) to
denote the set of torsion elements of M ; (that is, T (M) = {m ∈ M : rm =
0 for some 0 6= r ∈ R}; we use T (M)∗ to denote the set of non-zero torsion
elements ofM . So, if R is an integral domain, then T (M) is a submodule ofM .
We will use Tof(M) = M − T (M) to denote the set of non-torsion elements
of M . In the present paper, we introduce and investigate the total torsion
element graph of M , denoted by T (Γ(M)), as the (undirected) graph with all
elements of M as vertices, and for distinct m,n ∈ M , the vertices m and n
are adjacent if and only if m+ n ∈ T (M) (this definition is the same as that
introduced in [1]). Let Tof(Γ(M)) be the (induced) subgraph of T (Γ(M)) with
vertices Tof(M), and let Tor(Γ(M)) be the (induced) subgraph of T (Γ(M))
with vertices T (M). This paper is motivated by the results in [1]. The study of
T (Γ(M)) breaks naturally into two cases depending on whether or not T (M)
is a submodule of M . For every case, we complettely characterize the girths
and diameters of T (Γ(M)), Tor(Γ(M)), and Tof(Γ(M)) (see Sections 2 and
3).

We begin with some notation and definitions. For a graph Γ by E(Γ) and
V (Γ) we denote the set of all edges and vertices, respectively. We recall that a
graph is connected if there exists a path connecting any two distinct vertices.
At the other extreme, we say that Γ is totally disconnected if no two vertices
of Γ are adjacent. The distance between two distinct vertices a and b, denoted
by d(a, b), is the length of the shortest path connecting them (if such a path
does not exist, then d(a, a) = 0 and d(a, b) = ∞). The diameter of graph Γ,
denoted by diam(Γ), is equal to sup{d(a, b) : a, b ∈ V (Γ)}. A graph is complete
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if it is connected with diameter less than or equal to one. The girth of a graph
Γ, denoted gr(Γ), is the length of a shortest cycle in Γ, provided Γ contains a
cycle; otherwise; gr(Γ) = ∞. We denote the complete graph on n vertices by
Kn and the complete bipartite graph on m and n vertices by Km,n (we allow
m and n to be infinite cardinals). We will sometimes call a K1,m a star graph.
We say that two (induced) subgraphs Γ1 and Γ2 of Γ are disjoint if Γ1 and Γ2

have no common vertices and no vertex of Γ1 (respectively, Γ2) is adjacent (in
Γ) to any vertex not in Γ1 (respectively, Γ2). A general reference for graph
theory is [4]. Throughout this paper we shall assume unless otherwise stated,
that M is a module over a commutative ring R.

2 The case when T (M) is a submodule of M

In this section, we investigate some properties of the total torsion element
graph of a module M over a ring R such that T (M) is a submodule of M .
Our starting point is the following theorem.

Theorem 2.1. Let M be a module over a commutative ring R such that T (M)
is a submodule of M . Then the following hold:

(1) Tor(Γ(M)) is a complete (induced) subgraph of T (Γ(M)) and Tor(Γ(M))
is disjoint from Tof(Γ(M)).

(2) If N is a submodule of M , then T (Γ(N)) is the (induced) subgraph of
T (Γ(M)).

(3) If (0 :R M) 6= {0}, then T (Γ(M)) is a complete graph.

Proof. (1) follows directly from the definitions. (2) follows from the fact that
T (N) ⊆ T (M) and T (N) = N ∩ T (M). (3) Is clear.

Theorem 2.2. Let M be a module over a commutative ring R such that T (M)
is a submodule of M . Then the following hold:

(1) Assume that G is an induced subgraph of Tof(Γ(M)) and let m and
m′ be distinct vertices of G that are connected by a path in G. Then there
exists a path in G of length 2 between m and m′. In particular, if Tof(Γ(M))
is connected, then diam(Tof(Γ(M))) ≤ 2.

(2) Let m and m′ be distinct elements of Tof(M) that are connected by
a path. If m + m′ /∈ T (M) (that is, if m and m′ are not adjacent), then
m− (−m)−m′ and m− (−m′)−m′ are paths of length 2 between m and m′

in Tof(Γ(M)).

Proof. (1) It is enough to show that if m1,m2,m3, and m4 are distinct vertices
of G and there is a path m1 − m2 − m3 − m4 from m1 to m4, then m1 and
m4 are adjacent. So m1 +m2,m2 +m3,m3 +m4 ∈ T (M) gives m1 +m4 =
(m1 + m2) − (m2 + m3) + (m3 + m4) ∈ T (M) since T (M) is a submodule
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of M . Thus m1 and m4 are adjacent. So if Tof(Γ(M)) is connected, then
diam(Tof(Γ(M))) ≤ 2.

(2) Since m,m′ ∈ Tof(M) and m+m′ /∈ T (M), there exists u ∈ Tof(M)
such that m−u−m′ is a path of length 2 by part (1) above. Thus m+u, u+
m′ ∈ T (M), and hence m − m′ = (m + u) − (u + m′) ∈ T (M). Also, since
m+m′ /∈ T (M), we must have m 6= −m and m′ 6= −m. Thus m− (−m)−m′

andm−(−m′)−m′ are paths of length 2 betweenm andm′ in Tof(Γ(M)).

Theorem 2.3. Let M be a module over a commutative ring R such that T (M)
is a submodule of M . Then the following statements are equivalent.

(1) Tof(Γ(M)) is connected.
(2) Either m+m′ ∈ T (M) or m−m′ ∈ T (M) for all m,m′ ∈ Tof(M).
(3) Either m+m′ ∈ T (M) or m+ 2m′ ∈ T (M) for all m,m′ ∈ Tof(M).

In particular, either 2m ∈ T (M) or 3m ∈ T (M) (but not both) for all m ∈
Tof(M).

Proof. (1) ⇒ (2) Let m,m′ ∈ Tof(M) be such that m + m′ /∈ T (M). If
m = m′, then m−m′ ∈ T (M). Otherwise, m− (−m′)−m′ is a path from m
to m′ by Theorem 2.2 (2), and hence m−m′ ∈ T (M).

(2) ⇒ (3) Let m,m′ ∈ Tof(M), and suppose that m + m′ /∈ T (M).
By assumption, since (m + m′) − m′ = m /∈ T (M), we conclude that m +
2m′ = (m + m′) + m′ ∈ T (M). In particular, if m ∈ Tof(M), then either
2m ∈ T (M) or 3m ∈ T (M). Both 2m and 3m cannot be in T (M) since then
m = 3m− 2m ∈ T (M), a contradiction.

(3) ⇒ (1) Let m,m′ ∈ Tof(M) be distinct elements of M such that m +
m′ /∈ T (M). By hypothesis, since T (M) is a submodule of M and m +
2m′ ∈ T (M), we get 2m′ /∈ T (M). Thus 3m′ ∈ T (M) by hypothesis. Since
m + m′ /∈ T (M) and 3m′ ∈ T (M), we conclude that m 6= 2m′, and hence
m − 2m′ − m′ is a path from m to m′ in Tof(Γ(M)). Thus Tof(Γ(M)) is
connected.

Example 2.4. Let R = Z4 denote the ring of integers modulo 4 and let
M = Z8 be the ring of integers modulo 8. Then M is an R-module with the
usual operations, and T (M) = {0̄, 4̄} is a submodule of M . An inspection will
show that 1R+1R ∈ Z(R), M/T (M) = {T (M), 1̄+T (M), 2̄+T (M), 3̄+T (M)}
and Tof(M) = (1̄ + T (M)) ∪ (2̄ + T (M)) ∪ (3̄ + T (M)). Moreover, since
5̄+2̄, 5̄− 2̄ /∈ T (M), we conclude that Tof(Γ(M)) is not connected by Theorem
2.3.

Our next theorem gives a complete description of T (Γ(M)). We allow α
and β to be infinite, then of course β − 1 = (β − 1)/2 = β.
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Theorem 2.5. Let M be a module over a commutative ring R such that T (M)
is a submodule of M .

(1) If 2 = 1R +1R ∈ Z(R), then Tof(Γ(M)) is the union of β − 1 disjoint
Kα’s.

(2) If 2 = 1R + 1R /∈ Z(R), then Tof(Γ(M)) is the union of (β − 1)/2
disjoint Kα,α’s.

Proof. (1) We first note that m+T (M) ⊆ Tof(M) for every m /∈ T (M) since
T (M) is a submodule of M . Now Assume that 2 ∈ Z(R) and let m ∈ Tof(M).
Since (m+m1)+(m+m2) = 2m+m1+m2 ∈ Tof(M) for all m1,m2 ∈ T (M)
(note that since (2r)m = r(2m) = 0 for some non-zero element r of R, we
get 2m ∈ T (M)), we must have the coset m + T (M) is a complete subgraph
of Tof(Γ(M)). Now we show that distinct cosets form disjoint subgraphs of
Tof(Γ(M)) since ifm+m1 andm′+m2 are adjacent for somem,m′ ∈ Tof(M)
andm1,m2 ∈ T (M), thenm+m′ = (m+m1)+(m′+m2)−(m1+m2) ∈ T (M),
and hence m−m′ = (m+m′)−2m′ ∈ T (M) since T (M) is a submodule of M
and 2m ∈ T (M). Therefore, m+ T (M) = m′ + T (M), a contradiction. Thus
Tof(Γ(M)) is the union of β−1 disjoint (induced) subgraphs m+T (M), each
of which is a Kα, where α = |T (M)| = |m+ T (M)|.

(2) Let m ∈ Tof(M). Then no two distinct elements in m + T (M) are
adjacent. Suppose not. Let (m+m1)+(m+m2) = 2m+(m1+m2) ∈ T (M) for
m1,m2 ∈ T (M). This implies 2m ∈ T (M). Then r(2m) = (2r)m = 0 for some
non-zero element r of R. This implies 2r = 0 since m /∈ T (M), so 2 ∈ Z(R),
which is a contradiction. Also, the two cosets m + T (M) and −m + T (M)
are disjoint (since 2m /∈ T (M), and each element of m + T (M) is adjacent
to each element of −m + T (M). Therefore, (m + T (M)) ∪ (−m + T (M)) is
a complete bipartite (induced) subgrah of Tof(Γ(M)). Moreover, if m + x1

is adjacent to m′ + x2 for some m,m′ ∈ Tof(M) and x1, x2 ∈ T (M), then
m+m′ ∈ T (M)∗, and hence m+ T (M) = −m′ + T (M). Thus Tof(Γ(M)) is
the union of (β−1)/2 disjoint (induced) subgraphs (m+T (M))∪(−m+T (M)),
each of which is a Kα,α, where α = |T (M)| = |m+ T (M)|.

Theorem 2.6. Let M be a module over a commutative ring R such that T (M)
is a submodule of M with M − T (M) 6= ∅. Then

(1) Tof(Γ(M)) is complete if and only if either |M/T (M)| = 2 or

|M/T (M)| = |M | = 3

.
(2) Tof(Γ(M)) is connected if and only if either |M/T (M)| = 2 or

|M/T (M)| = 3
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.

(3) Tof(Γ(M)) (and hence Tor(Γ(M)) and T (Γ(M)) is totally discon-
nected if and only if T (M) = {0} and 2 ∈ Z(R).

Proof. Let |M/T (M)| = β and |T (M)| = α.

(1) Let Tof(Γ(M)) be complete. Then by Theorem 2.5, Tof(Γ(M)) is
a single Kα or K1,1. If 2 ∈ Z(R), then β − 1 = 1. Thus β = 2, and
hence |M/T (M)| = 2. If 2 /∈ Z(R), then α = 1 and (β − 1)/2 = 1. Thus
T (M) = {0} and β = 3; hence |M/T (M)| = |M | = 3. Conversely, suppose
first that M/T (M) = {T (M), x+T (M)}, where x /∈ T (M). Then x+T (M) =
−x+T (M) gives 2x ∈ T (M), and hence (2r)x = 0 for some non-zero element r
of R; so 2r = 0. Thus 2 ∈ Z(R). Let m,m′ ∈ Tof(M). Then m+ x,m′ + x ∈
T (M) (since m + x + T (M),m′ + x + T (M) 6= x + T (M)); so m + m′ =
(m+ x) + (m′ + x)− 2x ∈ T (M) since 2 ∈ Z(R) and T (M) is a submodule of
M . Thus Tof(Γ(M)) is complete. Next, suppose that |M/T (M)| = |M | = 3;
we show that 2 /∈ Z(R). Suppose not. There exists a non-zero element r of
R such that r + r = 0; so rm + rm = 0 for every element m of M , which is
a contradiction since M is a cyclic group with order of 3. Thus 2 /∈ Z(R),
and hence Tof(Γ(M))) is complete. Thus, every case leads to Tof(Γ(M)) is
complete.

(2) Let Tof(Γ(M)) be connected. Then by Theorem 2.5, Tof(Γ(M)) is a
single Kα or Kα,α. Thus by Theorem 2.5, either β−1 = 1 if 2 ∈ Z(R) or (β−
1)/2 = 1 if 2 /∈ Z(R); hence β = 2 or β = 3, respectively. Thus |M/T (M)| =
2 or |M/T (M)| = 3. Conversely, by part (1) above we may assume that
|M/T (M)| = 3. We show first that 2 /∈ Z(R). Suppose that 2 ∈ Z(R) and let
M/T (M) = {T (M), x+T (M), y+T (M)}, where x, y /∈ T (M). SinceM/T (M)
is a cyclic group with order of 3, we conclude that x+y+T (M) = T (M); hence
x and y are adjacent, a contradiction since Tof(Γ(M)) is the union of 2 disjoint
(induced) subgraphs x+T (M) and y+T (M). Thus 2 /∈ Z(R). By hypothesis,
M/T (M) = {T (M), x+T (M), 2x+T (M)}, where x /∈ T (M) and 3x ∈ T (M).
Let m,m′ ∈ Tof(M). Without loss of generality that we may assume that
x+ T (M) 6= m+ T (M) and m+m′ /∈ T (M). Then 2x+ T (M) = m+ T (M).
If x+T (M) = m′+T (M), then m+m′+T (M) = 3x+T (M) = T (M), which
is a contradiction. So we may assume that 2x + T (M) = m′ + T (M). Then
m− (m+m′−6x)−m′ is a path in Tof(Γ(M)) since (2m−4x)+(m′−2x) ∈
T (M) and (m− 2x) + (2m′ − 4x) ∈ T (M). Thus Tof(Γ(M)) is connected .

(3) Tof(Γ(M)) is totally disconnected if and only if it is a disjoint union
of K1’s. So by Theorem 2.5, |T (M)| = 1 and |M/T (M)| = 1, and the proof
is complete.
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By the proof of the Theorem 2.6, the next theorem gives a more explicit
description of the diameter of Tof(Γ(M)).

Theorem 2.7. Let M be a module over a commutative ring R such that T (M)
is a submodule of M .

(1) diam(Tof(Γ(M))) = 0 if and only if T (M) = {0} and |M | = 2.
(2) diam(Tof(Γ(M))) = 1 if and only if either T (M) 6= {0} and

|M/T (M)| = 2

or T (M) = {0} and |M | = 3.
(3) diam(Tof(Γ(M))) = 2 if and only if T (M) 6= {0} and |M/T (M)| = 3.
(4) Otherwise, diam(Tof(Γ(M))) = ∞.

Proposition 2.8. Let M be a module over a commutative ring R such that
T (M) is a submodule of M . Then gr(Tof(Γ(M))) = 3, 4 or ∞. In particular,
gr(Tof(Γ(M))) ≤ 4 if Tof(Γ(M))) contains a cycle.

Proof. Let Tof(Γ(M)) contains a cycle. Then since Tof(Γ(M)) is disjoint
union of either complete or complete bipartite graphs by Theorem 2.5, it must
contain either a 3-cycle or a 4- cycle. Thus gr(Tof(Γ(M))) ≤ 4.

Theorem 2.9. Let M be a module over a commutative ring R such that T (M)
is a submodule of M .

(1) (a) gr(Tof(Γ(M))) = 3 if and only if 2 ∈ Z(R) and |T (M)| ≥ 3.
(b) gr(Tof(Γ(M))) = 4 if and only if 2 /∈ Z(R) and |T (M)| ≥ 2.
(c) Otherwise, gr(Tof(Γ(M))) = ∞.
(2) (a) grT (Γ(M))) = 3 if and only if |T (M)| ≥ 3.
(b) grT (Γ(M))) = 4 if and only if 2 /∈ Z(R) and |T (M)| = 2.
(c) Otherwise, grT (Γ(M))) = ∞.

Proof. Apply Theorem 2.5, Proposition 2.8, and Theorem 2.1 (1).

Remark 2.10. (1) If M is a free module over an integral domain R, then
M is torsion-free; so T (M) = {0}. Also, note that 2 ∈ Z(R) if and only
if charR = 2. Therefore, if M is a torsion-free R-module and charR = 2,
then Tof(Γ(M)) is the union of β − 1 disjoint K1’s, and if charR 6= 2, then
Tof(Γ(M)) is the union of (β − 1)/2 disjoint K1,1’s.

(2) Let M be an R-module and N a submodule of M . Call N a pure
submodule of M if IN = N ∩ IM for each ideal I of R. An R-module M is
pure multiplication module provided for each proper pure submodule N of M ,
N = IM for some ideal I of R. Now let M be a pure multiplication module
over an integral domain R. Then either M is torsion or torsion-free (see [5,
Proposition 2.3]). Then either T (Γ(M)) = Tor(Γ(M)) or by part (1) above,
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either Tof(Γ(M)) is the union of β − 1 disjoint K1’s, or Tof(Γ(M)) is the
union of (β − 1)/2 disjoint K1,1’s.

(3) Assume that R is a principal ideal domain which is not a field and
let M be an R-module of finite length. Then (0 :R M) 6= 0 by [6, 7.46]; so
T (Γ(M))) is complete by Theorem 2.1 (3).

3 The case when T (M) is not a submodule of M

In this section, we study the total torsion element graph of a module M
over a commutative ring R such that T (M) is not a submodule of M . Let
R = Z4 denote the ring of integers modulo 4 and let M = Z12 be the ring of
integers modulo 8. Then M is an R-module with the usual operations, and
T (M) = {0̄, 4̄, 6̄, 8̄} is not a submodule of M . Clearly, Tor(Γ(M)) is connected
with diam(Tor(Γ(M))) = 2. Moreover, since 6̄+ 1̄0 = 4̄ ∈ T (M), we conclude
that the subgraphs Tor(Γ(M)) and Tof(Γ(M)) of T (Γ(M)) are not disjoint.

Theorem 3.1. Let M be a module over a commutative ring R such that T (M)
is not a submodule of M . Then the following hold:

(1) Tor(Γ(M)) is connected with diam(Tor(Γ(M))) = 2.
(2) Some vertex of Tor(Γ(M)) is adjacent to a vertex of Tof(Γ(M)). In

particular, the subgraphs Tor(Γ(M)) and Tof(Γ(M)) of T (Γ(M)) are not dis-
joint.

(3) If Tof(Γ(M)) is connected, then T (Γ(M)) is connected.

Proof. (1) Letm ∈ T (M)∗. Thenm is adjacent to 0. Thusm−0−n is a path in
Tor(Γ(M)) of length two between any two distinct m,n ∈ T (M)∗. Moreover,
there exist nonadjacent m,n ∈ T (M)∗ since T (M) is not a submodule of M ;
thus diam(Tor(Γ(M))) = 2.

(2) By assumption, there exist distinct m,n ∈ T (M)∗ such that m + n /∈
T (M)∗; so m + n ∈ Tof(M). Then −m ∈ T (M) and m + n ∈ Tof(M) are
adjacent vertices in T (Γ(M)) since −m + (m + n) = n ∈ T (M). Finally, the
”‘in particular”’ statement is clear.

(3) By part (1) above, it suffices to show that there is a path from m to
n in T (Γ(M)) for any m ∈ T (M) and n ∈ Tof(M). By part (2) above, there
exist adjacent vertices u and v in Tor(Γ(M)) and Tof(Γ(M)), respectively.
Since Tor(Γ(M)) is connected, there is a path from m to u in Tor(Γ(M));
and since Tof(Γ(M)) is connected, there is a path from v to n in Tof(Γ(M)).
Then there is a path from m to n in T (Γ(M)) since u and v are adjacent in
T (Γ(M)). Thus T (Γ(M)) is connected.

Theorem 3.2. Let M be a module over a commutative ring R such that
T (M) is not a submodule of M . Then T (Γ(M)) is connected if and only if
M =< T (M) > (that is, M =< a1, ..., ak > for some a1, ..., ak ∈ T (M)).
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Proof. Suppose that T (Γ(M)) is connected, and letm ∈ M . Then there exist a
path 0−m1−...−mn−m from 0 tom in T (Γ(M)). Thus m1,m1+m2, ...,mn+
m ∈ T (M). Hence m ∈< m1,m1+m2, ...,mn−1+mn,mn+m >⊆< T (M) >;
thus M =< T (M) >. Conversely, suppose that M =< T (M) >. We show
that for each 0 6= m ∈ M , there exists a path in T (Γ(M)) from 0 to m. By
assumption, there are elementsm1, ...,mn ∈ T (M) such thatm = m1+...+mn.
Set x0 = 0 and xk = (−1)n+K(m1+...+mk) for each integer k with 1 ≤ k ≤ n.
Then xk + xk+1 = (−1)n+k+1mk+1 ∈ T (M) for each integer k with 0 ≤ k ≤
n − 1, and thus 0 − x1 − x2 − ... − xn−1 − xn = m is a path from 0 to m in
T (Γ(M)) of length at most m. Now let 0 6= u,w ∈ M . Then by the preceding
argument, there are paths from u to 0 and 0 to w in T (Γ(M))); hence there
is a path from u to w in T (Γ(M)). Thus, T (Γ(M)) is connected.

Theorem 3.3. Let M be a module over a commutative ring R such that
T (M) is not a submodule of M , and let M =< T (M) > (that is, T (Γ(M)) is
connected). Let n ≥ 2 be the least integer such that M =< m1,m2, ...,mn >
for some m1,m2, ...,mn ∈ T (M). Then diam(T (Γ(M))) ≤ n. In particular,
if M is a cyclic R-module, then diam(T (Γ(M))) = n.

Proof. Let m and m′ be distinct elements in M . We show that there exists a
path from m to m′ in T (Γ(M)) with length at most n. By hypothesis, we can
write m =

∑n

i=1 rimi and m′ =
∑n

i=1 simi for some ri, si ∈ R. Define x0 = m

and xk = (−1)k(
∑n

i=k+1 rimi+
∑k

i=1 simi), so xk+xk+1 = (−1)kmk+1(rk+1−
sk+1) ∈ T (M) for each integer k with 1 ≤ k ≤ n − 1. If we define xn = m′,
then m− x1 − x2 − ...− xn−1 −m′ is a path from m to m′ in T (Γ(M)) with
length at most n.

Finally, assume that M =< m >. Let 0−y1−y2− ...−ym−1−m be a path
from 0 tom in T (Γ(M)) with length m. Thus y1, y1+y2, ..., ym−1+m ∈ T (M),
and hence m ∈< y1, y1 + y2, ..., ym−1 + m >⊆< T (M) >. Thus m ≥ n, as
required.

Theorem 3.4. Let M be a module over a commutative ring R such that
T (M) is not a submodule of M , and let M =< T (M) > (that is, T (Γ(M)) is
connected). Let n ≥ 2 be the least integer such that M =< m1,m2, ...,mn >
for some m1,m2, ...,mn ∈ T (M).

(1) If M is a cyclic module with generator m, then diam(T (Γ(M))) =
d(0,m).

(2) If diam(T (Γ(M))) = n and M is a cyclic R-module with generator m,
then diam(Tof(Γ(M))) ≥ n− 2.

Proof. (1) This follows from Theorem 3.3.
(2) Note that diam(T (Γ(M))) = d(0,m) = n by part (1) above. Let

0−m1 − ...−mn−1 −m be a shortest path from 0 to m in T (Γ(M)). Clearly,
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m1 ∈ T (M). If mi ∈ T (M) for some i with 2 ≤ i ≤ n − 1, then we can
construct the path 0 −mi − ... −mn−1 −m from 0 to m in T (Γ(M)) which
has length less than n, which is a contradiction. Thus mi ∈ Tof(M) for each
integer i with 2 ≤ i ≤ n − 1. Therefore, m2 − m3 − ... − mn−1 − m is a
shortest path from m2 to m in Tof(Γ(M)), and it has length n − 2. Thus
diam(Tof(Γ(M))) ≥ 2.

Theorem 3.5. Let M be a module over a commutative ring R such that T (M)
is not a submodule of M .

(1) Either gr(Tor(Γ(M))) = 3 or gr(Tor(Γ(M))) = ∞.
(2) gr(T (Γ(M))) = 3 if and only if gr(Tor(Γ(M))) = 3.
(3) If gr(T (Γ(M))) = 4, then gr(Tor(Γ(M))) = ∞.
(4) If Char(R) = 2, Tof(Γ(M)) contains a cycle, and 0 6= N(R) $ Nil(R),

then gr(Tof(Γ(M))) = 3, where N(R) = {x ∈ R : x2 = 0}.
(5) If Char(R) = 2, Nil(R) 6= 0, and Tof(Γ(M)) contains a cycle, then

gr(Tof(Γ(M))) ≤ 4.
(6) If Char(R) 6= 2, then gr(Tor(Γ(M))) = 3, 4 or ∞.

Proof. (1) If m + m′ ∈ T (M) for some distinct m,m′ ∈ T (M)∗, then 0 −
m − m′ − 0 is a 3-cycle in Tor(Γ(M)); so gr(Tor(Γ(M))) = 3. Otherwise,
m+m′ ∈ Tof(M) for all distinct m,m′ ∈ T (M). Therefore, in this case, each
m ∈ T (M)∗ is adjacent to 0, and no two distinct m,m′ ∈ T (M)∗ are adjacent.
Thus Tor(Γ(M)) is a star graph with center 0; hence gr(Tor(Γ(M))) = ∞.

(2) It suffices to show that gr(Tor(Γ(M))) = 3 when gr(T (Γ(M))) = 3. If
2m 6= 0 for some m ∈ T (M)∗, then 0−m−(−m)−0 is a 3-cycle in Tor(Γ(M)).
Otherwise, 2m = 0 for all m ∈ T (M)∗. We claim that Char(R) = 2. Since
T (M) is not a submodule of M , there are distinct elements m,m′ of T (M)∗

such that m+m′ ∈ Tof(M). Then 2(m+m′) = 0; so 2 = 0, a contradiction.
Thus Char(R) = 2. Let m − m1 − m2 − m be a 3-cycle in T (Γ(M)). Then
t = m + m1, s = m + m2,m1 + m2 ∈ T (M)∗ (clearly, m + m1 6= 0 and
m + m2 6= 0). Moreover, t + s = (m + m1) + (m + m2) ∈ T (M)∗. Thus
0− t− s− 0 is a 3-cycle in Tor(Γ(M)); so gr(Tor(Γ(M)))) = 3.

(3) This follows by parts (1) and (2) above.
(4) By hypothesis, there exist a non-zero element r of R and a positive

integer n (n ≥ 3) such that rn = 0, but rn−1 6= 0. Clearly, 2m = 0 for every
m ∈ M . Let m ∈ Tof(M). Since rn−1(rm) = 0 and r + 1 is a unit of R,
we conclude that rm ∈ T (M) and m + rm ∈ Tof(M). Moreover, rm +m 6=
rn−1m +m (otherwise, r2m = 0; so m ∈ T (M), a contradiction). Thus m −
(rm+m)−(rn−1m+m)−m is a 3-cycle in Tof(Γ(M)); so gr(Tof(Γ(M))) = 3.

(5) Let 0 6= r ∈ Nil(R). By assumption, there is a path s − m − t in
Tof(Γ(M)). If s and t are adjacent vertices in Tof(Γ(M)), then we are done.
So we may assume that s and t are not adjacent in Tof(Γ(M)). It is easy to
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see that rm, rs, rt ∈ T (M), and rm+m, rs+s and rt+ t are distinct elements
of Tof(M) (since 1+ r is a unit in R). Clearly, 2m = 0 for every m ∈ M . We
split the proof into four cases.

Case 1. rm + m 6= t and rt + t 6= m. If rm + m + t ∈ T (M), then
(rm+m)−m− t− (rm+m) is a 3-cycle in Tof(Γ(M)). If rt+ t+m ∈ T (M),
then (rt+ t)− t−m− (rt+ t) is a 3-cycle in Tof(Γ(M)). So we may assume
that rm+m+t, rt+t+m /∈ T (M). Then (rm+m)−m−t−(rt+t)−(rm+m)
is a 4-cycle in Tof(Γ(M)).

Case 2. rm+m = t and rt+ t 6= m. Since rt+ t+m = r(t+m) ∈ T (M),
we must have (rt+ t)− t−m− (rt+ t) is a 3-cycle in Tof(Γ(M)).

Case 3. rm+m 6= t and rt+ t = m. By an argument like that the Case
2, we conclude that (rm+m)−m− t− (rm+m) is a 3-cycle in Tof(Γ(M)).

Case 4. rm + m = t and rt + t = m. If rs + s + m ∈ T (M), then
(rs+ s)− s−m− (rs+ s) is a 3-cycle in Tof(Γ(M)). If rm+m+ s ∈ T (M),
then (rm+m)−m−s−(rm+m) is a 3-cycle in Tof(Γ(M)). So we may assume
that rm+m+s, rs+s+m /∈ T (M). Then (rs+s)−s−m−(rm+m)−(rs+s)
is a 4-cycle in Tof(Γ(M)).

(6) We may assume that Tof(Γ(M)) contains a cycle. So there is a path
m−m1−m2 in Tof(Γ(M)). If m and m2 are adjacent, then we have a 3-cycle
in Tof(Γ(M)). So we may assume that m + m2 /∈ T (M). It is clear that
either m + m1 6= 0 or m1 + m2 6= 0 (otherwise m = m2, a contradiction).
Without loss of generality that we can assume that m + m1 6= 0. Then
m − m1 − (−m1) − m − (−m) is a 4-cycle in Tof(Γ(M)), and the proof is
complete.
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