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ON KUROSH-AMITSUR RADICALS OF
FINITE GROUPS

Jan Krempa and Izabela Agata Malinowska

Abstract

Between 1952 and 1954 Amitsur and Kurosh initiated the general
theory of radicals in various contexts. In the case of all groups some in-
teresting results concerning radicals were obtained by Kurosh, Shchukin,
Ryabukhin, Gardner and others.

In this paper we are going to examine radical theory in the class of
all finite groups. This strong restriction gives chance to obtain stronger
results, then in the case of all groups. For example, we obtain a complete
description of hereditary and of strongly hereditary radicals in the class
of all finite groups.

1 Preliminaries

All groups considered in this paper are finite. For basics on such groups we
refer to [3, 9]. In this section we recall some notation and quote some results
on groups, for making this paper easily accessible not only for experts in group
theory.

Let G be a group. If H ≤ G is a normal subgroup then we write H CG or
GBH. By (Hi)i=0,...,n we denote a subgroup series:

1 = H0 6 H1 6 · · · 6 Hi−1 6 Hi 6 · · · 6 Hn−1 6 Hn = G (1)

of length n of G. A series (Hi)i=0,1,...,n is a normal series, if Hi C G and a
subnormal series, if Hi−1CHi for all i = 1, . . . , n. A normal series (Hi)i=0,...,n
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is a chief series, if each Hi−1 is maximal among the normal subgroups of G that
are properly contained in Hi. A subnormal series (Hi)i=0,...,n is a composition
series if each Hi−1 is maximal among the proper normal subgroups of Hi. A
subgroup H of a group G is subnormal in G if H is a member of a subnormal
series for G. Cyclic groups of prime order are simple in this paper.

Theorem 1.1. Let G be a group. Then every minimal normal subgroup of G
is a direct product of isomorphic simple groups, while every minimal subnormal
subgroup is a simple group.

As a consequence of Theorem 1.1, for every 1 ≤ i ≤ n, the composition
factor Hi/Hi−1 of a composition series (1) is a simple group, and the chief
factor Hi/Hi−1 of a chief series (1) is a direct product of isomorphic simple
groups.

Theorem 1.2. (Jordan-Hölder) Let G be a group. Then any subnormal (nor-
mal) series of G can be extended to a composition (chief) series, every two
composition (chief) series have the same length and the same set of factors.

The set of all primes is denoted by P, p will always denote a prime, π will
always denote some subset of P and π′ = P \ π.

Let G be a group. Then G is a π-group if all prime divisors of the order of
G belong to π. Thus, G is a π′-group if none of prime divisors of the order of
G belongs to π.

For further information on series of subgroups, subnormal subgroups, and
π-groups we refer to [9].

In the sequel F will denote the class of all finite groups. All considered
classes of groups are subclasses of F and are closed under taking isomorphic
images and contain the trivial group 1. For example, Fπ denotes the class of
all π-groups. In this way we are considering a set of classes of cardinality 2ℵ0 .
Hence our further operations on classes will be operations on sets.

If a group G belongs to a class X, then G will be often called an X-group.
If X is a family of groups, we use (X) to denote the smallest class of groups
containing X. Hence every group from (X) is either isomorphic to a group
from X, or is trivial.

Further S will denote the family of all simple groups. If, T ⊆ S is a famly
of simple groups then (T) will be named a class of simple groups.

We will use here some standard operators with values in classes of groups.
If X is a family of groups then: QX denotes the homomorphic closure of groups
from X, HX denotes the class of all groups isomorphic to subnormal subgroups
of groups from X, HsX denotes the class of all groups isomorphic to subgroups
of groups from X and EX = XX denotes the class of all extensions of groups
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from X by groups from X. By ĒX we denote the smallest class containing X

and closed under extensions. We have ĒX =
∞⋃
n=1

EnX.

Following terms used in radical theory let us agree that a class X is hered-
itary if X = HX and X is strongly hereditary if X = HsX. For some further
results on classes of groups we refer to [1, 3].

2 Radicals

All radicals in this paper are understood in the sense of Kurosh and Amitsur.
For details on such radicals of rings and some other universal classes see for
example [5, 7]. For the development of radicals of all groups we refer to [8, 5, 6].
A.G. Kurosh (see [8], page 272) posed the following problem:

Problem 1. Give the complete description of all radicals in the class of all
finite groups.

The aim of this paper is to contribute to Problem 1. Hence, our universal
class will be the class F. So this paper can be considered as a work parallel to
[6]. Some of our results will be similar in spirit to those from [11].

Using ideas from the case of associative rings and of all groups we are going
to show, that in the class F situation is much simpler than in those classes,
but still not completely solved.

Let us start from the very beginning. A class R of groups is a radical class
if it has the following three properties:

(I) R = QR;

(II) For every group G, the join R(G) = 〈H C G | H ∈ R〉 is in R;

(III) R
(
G/R(G)

)
= 1 for every group G.

The subgroup R(G) is called the R-radical (or simply a radical) of G and
G/R(G) is called an R-semisimple ( semisimple) image of G. In this way to
any radical class R corresponds the semisimple class

SR = {G | R(G) = 1}. (2)

As an immediate consequence of condition (II) we obtain

Proposition 2.1 (ADS Property). Let R be a radical class. Then R(G) is a
characteristic subgroup of G for any group G. Thus, if N CG then R(N)CG
and R(N) 6 R(G). In particular the class SR is hereditary.
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The above proposition is valid in the class of all groups. However, in our
class F, this proposition allows to give a simple intrinsic characterization as
radical classes, as semisimple classes. First let us agree for a class C that UC is
the class of all groups G having no homomorphisms onto a nontrivial C-group.
Immediately from the definition we have

Lemma 2.2. If C = HC then the class UC is a radical class, called the upper
radical determined by C.

Theorem 2.3. Let C be a class of groups.

(i) C is a radical class if and only if C = QC = EC.

(ii) C is an R-semisimple class for a radical class R if and only if C = HC =
EC.

Proof. (i) Let C be a radical class. Then, by definition, C = QC. Now let NCG
be such a normal subgroup that N and G/N are C-groups. By definition
N ≤ C(G), hence the C-semisimple group G/C(G) is a homomorphic image
of a C-group G/N. This means that G/C(G) = 1 and G ∈ C. Thus we have
C = EC.

Conversly, let C = QC = EC. If G is a group then as the C-radical of G
put a normal C-subgroup of G of maximal order. It can be checked using
the assumption, that C(G) is the largest normal C-subgroup of G; Moreover,
G/C(G) has trivial C-radical. Hence, by definition, C is a radical class.

(ii) Let C = SR for a radical class R. If G ∈ C and N C G then, by
Proposition 2.1, N ∈ C. Hence, C = HC.

Let G be a group and N CG. If N and G/N belong to C, then

(R(G)N)/N ⊆ R(G/N) = 1.

Thus R(G) ≤ R(N) = 1 and R(G) = 1. This means that C = EC.
Now let C = HC = EC. By the above lemma UC is a radical class and

all groups from C are UC-semismple. Let G be UC-semisimple. Using the
induction on |G| one can check, that G ∈ C. Hence C = SUC is a semisimple
class for the radical class UC.

In our opinion, for any class C, natural are the following classes: the lower
radical class LC containing C, the lower hereditary radical class LhC containing
C, the lower strongly hereditary radical class LshC containing C and the lower
semisimple class, say MC, containing C. Here, according to radical tradition,
the lower means the smallest.

Now, with the help of intersection of classes and Theorem 2.3 we immedi-
ately obtain
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Theorem 2.4. Let C be a class of groups. Then the classes LC, LhC, LshC
and MC exist.

Every family of groups, even empty one, say C, is contained in the smallest
class (C). As a consequence, we can extend operators L, Lh, Lsh and M to
arbitrary families of groups in a natural way. Then, the operators L, Lh, Lsh

and M became closure operators. The operators U and S are also extendable to
any family of groups, being equal to the composition UM and SL, respectively.

As another consequence of Theorem 2.3 one can obtain a Galois corre-
spondence between radical and semisimple classes. Namely, with the help of
Formula (2) and Lemma 2.2 one can prove the following result

Theorem 2.5. For any semisimple class S and radical class R we have

SUS = S and USR = R.

In view of Theorem 2.5 we shall say that R and S are corresponding
radical and semisimple classes if R = US and S = SR.

Now let’s characterize groups belonging to lower radical and lower semisim-
ple classes.

Lemma 2.6. Let C be a class of groups. For a group G the following conditions
are equivalent:

(i) G ∈ LC;

(ii) G has a subnormal series with factors in QC;

(iii) Every nontrivial homomorphic image of G contains a nontrivial subnor-
mal subgroup from QC;

(iv) G ∈ ĒQC.

Proof. Clearly (i)⇒ (ii) and (i)⇒ (iii), because of Theorem 2.3 and Proposi-
tion 2.1.

On the other hand, if G satisfies condition (ii) or (iii) then, by Theorem 2.3
and Proposition 2.1, G has no nontrivial LC-semisimple homomorphic image.
Hence G ∈ LC.

It is evident that (ii)⇔ (iv).

Lemma 2.7. Let C be a class of groups. For a group G the following conditions
are equivalent:
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(i) G ∈MC;

(ii) G has a subnormal series with factors in HC;

(iii) Every nontrivial normal subgroup of G has a nontrivial homomorphic
image in HC;

(iv) Every nontrivial subnormal subgroup of G has a nontrivial homomorphic
image in HC;

(v) G ∈ ĒHC.

Proof. The above lemma, similarly to the previous one, is an easy consequence
of Theorem 2.3 and Proposition 2.1.

3 Hereditary radicals

An analogue of Lemma 2.6 for hereditary and for strongly hereditary radicals
one can easily obtain by replacing in this lemma the class C by HC or by HsC
respectively, and using the following observation:

Lemma 3.1. Let C be a class of groups.

(i) If C is (strongly) hereditary, then EC is (strongly) hereditary too;

(ii) If C is closed under homomorphisms, then EC is closed under homomor-
phisms too.

As a consequence of Proposition 2.1 and isomorphism theorems we have
the following characterization of hereditary and strongly hereditary radical
classes:

Proposition 3.2. A radical class R is hereditary if and only if H ∩R(G) =
R(H) for every normal subgroup H of every group G.

Proposition 3.3. A radical class R is strongly hereditary if and only if H ∩
R(G) j R(H) for every subgroup H of every group G.

Now we give a full solution of Problem 1 for hereditary and for strongly
hereditary radicals. For this purpose, for a class T of simple groups let FT

denotes the class of all groups with all composition factors in T.

Theorem 3.4. Let R be a radical class. Then the following conditions are
equivalent:
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(i) R is a hereditary radical;

(ii) R is the lower radical of a hereditary class;

(iii) R is the lower radical of a class of simple groups;

(iv) R = FT where T is the class of all simple R-groups.

Proof. (i) ⇒ (iv). Let R be a hereditary radical and let G ∈ R. Then, by
induction on |G|, one can check that G ∈ FT, where T is the class of all simple
R-groups. The inclusion FT ⊆ R is evident.

The implications (iv)⇒ (iii) and (iii)⇒ (ii) are obvious.
(ii)⇒ (i). Let X be a hereditary class and R = LX. Then R is hereditary

by Theorem 2.3 and Lemma 3.1.

For strongly hereditary radicals we have a characterization that needs some
more notions. If H is a subgroup of a group G and N C H then the factor
group H/N is called a section of G and this section is simple if H/N is a
simple group. Let us agree that a class T of groups is full if for every group
G ∈ T every simple section of G also belongs to T.

Theorem 3.5. Let R be a radical class. The following conditions are equiv-
alent:

(i) R is a strongly hereditary radical;

(ii) R is a lower radical of a strongly hereditary class of groups;

(iii) R = FT where T is a full class of simple groups;

(iv) The class T of all simple R-groups is full and R = FT.

Proof. (i)⇒ (iv). Let T be the class of all simple R-groups. By Theorem 3.4
R = FT.

Let G ∈ T, H ≤ G be a subgroup and H/N be a simple section of G for
a maximal normal subgroup N of H. Then, by assumption, H and then H/N
are R-groups, and H/N ∈ T. This means that the class T is full.

(iv)⇒ (iii) is an obvious implication.
(iii)⇒ (ii) Let a class T satisfies the assumed conditions and let T = HsT.

Then T is strongly hereditary. Using the assumption on fullness of T and
composition series it is not hard to check that T ⊆ FT = R. Hence L(T) = R,
as required.

(ii)⇒ (i) This implication is true even on categorical level and follows from
Theorem 2.3 and Lemma 3.1.
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In connection with the above result the following problem seems to be
interesting.

Problem 2. Is a class of simple groups T full if and only if for any G ∈ T all
simple subgroups of G also belong to T ? In other words, let G be a simple
group and G1 = H/N be simple section of G for G 6= H. Is G1 isomorphic to
a subgroup of G ?

If, under the above notation, H/N ' Cp then the answer is yes by a
theorem of Cauchy. Some other special cases were in fact considered in [2].

Example 3.6. The class D of all solvable groups is a strongly hereditary
radical class. It is also a semisimple class closed under taking quotient images.
If G is a nonabelian simple group and H is a nontrivial cyclic subgroup of G,
then 1 = H ∩D(G) 6= D(H) = H. Hence, in Proposition 3.3 only inequality
can be used.

Example 3.7. Let π be a set of prime numbers. Then the class Fπ of all π-
groups is a strongly hereditary radical class. The class Fπ is also a semisimple
class closed under taking quotient images. If, in particular, π = P then Fπ = F.

A group G is called π-separable if every composition factor of G is either
a π-group or a π′-group. A group G is called π-solvable if every composition
factor of G is either a p-group with p ∈ π or a π′-group. These classes are
usually considered outside of radical theory.

Example 3.8. Let π be a set of prime numbers. Then the class of all π-
separable (π-solvable) groups is a strongly hereditary radical class. It is also
a semisimple class closed under taking homomorphic images.

Recall that a group G is called perfect if it coincides with its derived group
G′.

Example 3.9. The class P of all perfect groups is a radical class (see [4]) and
P = U(D). It is not a hereditary radical class since the special linear group
SL(2, 5) is perfect but Z

(
SL(2, 5)

)
is cyclic of order 2, hence nonperfect.

4 Some constructions

In the sequel we’ll concentrate on problems, which were extensively studied
and led to interesting results in the class of associative rings and of all groups.

Let’s begin by the Tangeman-Kreiling lower radical construction. Let C
be a class of groups. We define L[0]C = QC. If L[n−1]C has been defined for
0 < n <∞, then we put L[n]C = E(L[n−1]C).
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Now we recall Kurosh’s construction of lower radicals. For a class C of
groups let L0C = QC. If Ln−1C has been defined for 0 < n <∞, than let LnC
be the class of all groups G such that every nontrivial homomorphic image of
G contains a nontrivial normal subgroup from the class Ln−1C. By induction
on n one can check that L[n]C ⊆ LnC ⊆ LC for every n. From this observation,
Theorem 2.3 and Lemma 2.6 one can prove

Theorem 4.1. For any class C we have LC = ∪∞n=0L[n](C) = ∪∞n=0Ln(C).

The dual constructions are also possible. For any class C let M[0]C = HC,
and M[n]C = E(M[n−1]C) for n > 0. Then, with the help of Lemma 2.7, it can
be checked that MC = ∪∞n=0M[n]C.

Now let M0C = HC and for every n > 0 let MnC be the class of all groups
G such that every nontrivial normal subgroup of G can be homomorphically
mapped onto a nontrivial group from the class Mn−1C. In this case, from
Lemma 2.7, we in fact have MC = M1C.

Example 4.2. For a prime p let C = (Cp). Then LC is the class of all p-
groups. If Gn is an elementary Abelian p-group of rank 2n then, by induction
on n, one can check that Gn ∈ L[n]C and n is minimal with this property. On
the other hand, Gn ∈ L1C but not to L0C.

From the point of view of lower semisimple classes we have Gn ∈ M[n]C
and n is minimal with this property, but Gn ∈M1C, and not to M0C.

The following natural question, formulated for all groups by B.J. Gardner
in [6] should be asked in this place:

Problem 3. Let 0 < n <∞. Does there exist a homomorphically closed class
C such that Ln(C) = L(C) and n is the smallest with this propery?

Example 4.3. Let D be the class of all solvable groups. Our groups are finite.
Hence, for the class C of cyclic groups we have LC = D = L2C, and for the
class A of abelian groups we have LA = D = L1A.

Remark. It is known (see [5, §1.16]) that in the case of all groups L3C 6= L2C,
where C is the class of all cyclic groups.

Let us go back to our universal class F. Keeping in mind the above remark
we can formulate the following question related to Problem 3:

Problem 4. Does there exist a class C such that L3C 6= L2C?

As a partial solution of this problem and a generalization of Example 4.2
we have

Theorem 4.4. If C is a hereditary class, then L2C = L3C = LC.
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Proof. By Lemmas 2.6 and 3.1 LC is a hereditary radical and every simple
LC-group belongs to L0C.

Now let G ∈ LC and let 1 6= H be a nontrivial homomorphic image of G. If
N is a minimal normal subgroup of H then, by assumption, N is an LC-group.
On the other hand, from Theorem 1.1 we know that N is a direct product of
isomorphic simple group. Hence N ∈ L1C. This means that G ∈ L2C. The
other needed inclusions are obvious.

The example 4.3 shows that in the above theorem LC need not be equal
to L1C.

As in ring case let us agree that a group G is unequivocal if R(G) = G or
R(G) = 1 for every radical R.

Theorem 4.5. A group G is unequivocal if and only if all composition factors
of G are isomorphic.

Proof. Assume that G is a group such that all its composition factors are
isomorphic to a simple group A, and suppose that R is a radical class. If
A ∈ R then, by Lemma 2.6, G ∈ R, and R(G) = G. If A 6∈ R, then A ∈ SR
and by Lemma 2.7, G ∈ SR. Hence R(G) = 1 and G is unequivocal.

Assume now that 1 6= G is an unequivocal group. Let A be a minimal
subnormal subgroup of G. Then, by Theorem 1.1, A is a simple group and is
a composition factor of G. Put R = L(A). Then, by Lemma 2.6, R(G) 6= 1.
Hence, by assumption, R(G) = G. In this way, by the definition of R, it follows
that all composition factors of G are isomorphic to A.

More generally, one can ask for a given group G and a subgroup H ≤ G,
whether H is a radical in G. An answer to this question is not difficult. We
have

Proposition 4.6. A subgroup H ≤ G is a radical in G if and only if H is
normal and there is no nontrivial homomorphism ϕ : H −→ G/H such that
ϕ(H) is subnormal in G/H.

Next question considered on the level of associative rings is to describe all
classes being radical and semsimple. As an easy consequence of Theorem 3.4,
Theorem 2.3, Lemma 2.6 and Lemma 2.7 we have

Theorem 4.7. Let R be a class of groups. The following conditions are
equvalent:

(i) R is a radical semisimple class;

(ii) R is a hereditary radical class;
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(iii) R is a semisimple class closed under homomorphisms;

(iv) There exists a class T of simple groups, such that R = LT;

(v) R = FT for a class T of simple groups;

(vi) R = HR = QR = ER.

5 Wreath product

Let F 6 G be groups. Then G will be called an outer extension of F if F CG
and for every x ∈ G \ F the automorphism of F induced by conjugation of G
by x is an outer automorphism of F .

Lemma 5.1. Let F CG be groups. Then G is an outer extension of F if and
only if CG(F ) = Z(F ).

Proof. ⇒ Let c ∈ CG(F ). Then the inner automorphism of G induced by c is
trivial on F , thus it is inner. Hence, by assumption, c ∈ F . By the choice of
c we then have CG(F ) ⊆ Z(F ). The converse inclusion is trivial.
⇐ Let G be not an outer extension of F and let x ∈ G\F be such that the

inner automorphism σx induced by x is inner on F and is induced by f ∈ F.
Then f−1x induces the identity on F. Thus f−1x ∈ CG(F ). On the other hand
f−1x 6∈ F. Hence CG(F ) 6= Z(F ).

In the sequel we are going to use a type of outer extensions, namely regular
wreath products. We recall a definition of it here.

The (regular) wreath product of groups A by B is defined as follows: Let
AB = F be the group of all functions from B to A with natural pointwise
multiplication. Then F is the direct product of |B| isomorphic copies of A.
Now let b ∈ B. If f ∈ F, define σb(f) = f b by

f b(x) = f(xb−1) for all x ∈ B.

The set of automorphisms {σb : b ∈ B} is a group isomorphic to B in a natural
way. We shall identify these groups. The wreath product W = A o B of A by
B is the semidirect product of F by this group of automorphisms; that is,
W = BF with the relations

bfcg = bcf cg for all b, c ∈ B and f, g ∈ F.

This semidirect product is an outer extension of F . We shall refer to F as the
base group of W . Further information on the wreath product can be found in
[3, 10]. We will use the following observation, a consequence of Lemma 5.1.
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Proposition 5.2. Let A and B be nontrivial groups and let W = A o B. If
1 6= N CW , then N intersects F nontrivially.

Proof. Let 1 6= N CW . If N ∩ F = 1, then with the help of the assumption
N ⊆ CW (F ). However, by definition, W is an outer extension of F = AB .
Hence, by Lemma 5.1 1 6= N ⊆ Z(F ) ⊆ F .

As a consequence we can connect radicals with wreath products.

Lemma 5.3. Let A,B be groups and R be a radical class. Then

(i) If A,B ∈ R, then A oB ∈ R.

(ii) If A,B ∈ SR, then A oB ∈ SR.

(iii) If A ∈ R and B ∈ SR, then R(A oB) is the base group of A oB.

(iv) If R is hereditary, 1 6= A ∈ SR and B ∈ R, then A oB ∈ SR.

Proof. The first three parts follow by Theorem 2.3. The last part follows by
Proposition 5.2.

Using wreath product we can give the following result

Example 5.4. Let G be a nonabelian simple group and let C = (G). If we
take W = G oG, then one can see that W ∈ L[2]C ⊆ L2C, but has no normal
subgroup isomorphic to G. Hence, W 6∈ L[1]C and even W 6∈ L1C. In this way
we see that in Theorem 4.4 we can not replace L2C by L1C.

The group W also shows that in Lemma 2.6(ii), subnormal series can not be
replaced by normal series and in (iii) of the same lemma subnormal subgroups
can not be replaced by normal subgroups.

In general, for a radical class R, R(A) does not always contain all R-
subgroups of A. We now consider radical classes for which this is the case.

Let us agree (see [6]) that a radical class R is strict if B 6 R(A) whenever
B ∈ R and B 6 A. The following characterization of strict radicals is well
known, and is an easy consequence of results from Section 2:

Proposition 5.5. A radical class R is strict if and only if its semisimple class
SR is strongly hereditary. If in particular X is a strongly hereditary class of
groups, then its upper radical is strict.

Example 5.6. The class P of all perfect groups is a strict radical class since
SP = D is the class of all solvable groups.

As on the level of all groups (see [5, 6]) we have
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Theorem 5.7. The only hereditary, strict radical classes are {1} and the
whole class F.

Proof. Let R 6= {1} be a strict hereditary radical class. Due to Jordan-Hölder
theorem it is enough to prove that S ⊆ R.

Using the assumption and Theorem 3.4 we have a simple R-group, say B.
If S * R, then let A be a simple R-semisimple group. Then A o B ∈ SR by
Lemma 5.3. Since R is strict then by Proposition 5.5 it follows that B ∈ SR
and we have a contradiction with the choice of B.

Remark. The above theorem was proved by B.J. Gardner in the universal class
of all groups. He used a free product of groups in the proof (see [5]).

We already know from Section 2, that for any subset π ⊆ P, the class Fπ
is strongly hereditary and semisimple. Hence by Proposition 5.5, the upper
radical of the class Fπ is strict with the semisimple class Fπ.

Theorem 5.8. For any subset π ⊆ P let Dπ be the class of all solvable π-
groups. Then:

(i) The class Dπ is strongly hereditary and semisimple;

(ii) The upper radical of the class Dπ is strict;

(iii) If R is a strict radical with the semisimple class SR ⊆ D then there
exists a subset π ⊆ P such that SR = Dπ.

Proof. The statements (i) and (ii) follow directly from the equality Dπ = Dπ∩
Fπ and Proposition 5.5.

(iii) Let R be a strict radical with SR ⊆ D and π be the set of all primes
p with Cp ∈ SR. Then by Proposition 5.5 Dπ j SR.

Now let G ∈ SR, and p | |G|. By Cauchy’s Theorem there exists a subgroup
H of G such that H ∼= Cp. Then Cp ∈ SR, because SR is a strongly hereditary
class. Thus p ∈ π, and by definition G ∈ Dπ. Hence SR = Dπ as required.

As a consequence we obtain that there exists 2ℵ0 strict radicals in the class
F.

Proposition 5.9. Let R be a strict radical class.

(i) If C2 ∈ R, then there exists a set of odd numbers π ⊆ P such that
SR = Dπ.

(ii) If for some n > 1 An ∈ R, then Ak ∈ R for all k > n.
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(iii) If An ∈ SR, then Ak ∈ SR for all k 6 n. In particular Fπ ⊆ SR with
π = {p ∈ P | p 6 n}.

(iv) If An ∈ SR for all n > 5 then SR = F.

Proof. (i) By famous Theorem of Feit and Thompson every group of odd order
is solvable. Hence, by Proposition 5.5 SR ⊆ D and by Theorem 5.8(iii) there
exists a subset π ⊆ P such that SR = Dπ.

(ii)-(iii) It is evident because Sk 6 Sk+1 for every k > 1 and Cp 6 Sk for
all p 6 k.

(iv) It is evident by Caylay’s embedding Theorem.

If either T = (S) or T = {1} then, by the existence of composition series,
the associated radical LT is trivial. This is not true in the class of all groups
and in the class of associative rings.

It is known on the level of rings and of all groups, that every partition
of simple objects gives at least two radicals related to this partition. Similar
result, up to the exception mentioned above, is true for finite groups.

Theorem 5.10. Let T ⊂ S be a proper subclass of simple groups. Then the
lower radical LT is different from the upper radical U(S \ T).

Proof. Let A ∈ T and B ∈ S \ T. If R = LT then, by Lemma 5.3(iv), the
group B oA ∈ SR. Hence, R(B oA) = 1.

On the other hand, if U = U(S \ T), then U(B oA) = B oA, because there
is no homomorphism of B oA onto a group from S \ T.

As a consequence of earlier results we have

Theorem 5.11. There exists a nonhereditary radical R ⊆ D. Every heredi-
tary radical R ⊆ D is strongly hereditary.

Proof. Let C = {S3, C2}. Then the radical LC is not hereditary, because C3 6∈
LC.

The second claim follows immediately from Theorem 3.5, because solvable
simple groups are cyclic of prime order, hence they form a full class.

One can easily observe, that the class N of all nilpotent groups is neither
radical nor semisimple, because it is not closed under extensions. However, as
an easy consequence of the structure of nilpotent groups we have

Theorem 5.12. The only nontrivial radicals R ⊆ N are classes Fp, where
p ∈ P.
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