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A VERSION OF THE GABRIEL-POPESCU
THEOREM

Constantin Năstăsescu, Costel Chiteş

Abstract

The aim of this article is to prove another version of the celebrated
Gabriel-Popescu theorem and to present some applications.

Introduction

Let C be a Grothendieck category with the generator U . Denote by A the ring
EndC(U) of endomorphisms of U and by S the functor HomC(U,−) from the
category C to the category Mod−A of right A-modules. Let T : Mod−A −→ C

be a left adjoint of S (such a T always exists according to Gabriel). Denote
by Φ : T ◦ S −→ 1C and by Ψ : 1Mod−A −→ S ◦ T the functorial morphisms
associated to the adjoint functors S and T .

The Gabriel-Popescu Theorem. With the above notations the following
assertions hold:

1. Φ is a functorial isomorphism.

2. The functor S is fully faithful.

3. The functor T is exact.
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Let Ker(T ) = {M ∈ Mod−A |T (M) = 0}. This is a localizing subcategory
of Mod − A (i.e. it is closed under subobjects, quotient objects, extensions
and arbitrary direct sums). The Gabriel-Popescu Theorem says that C is
equivalent to the quotient category of Mod−A by the localizing subcategory
Ker(T ).

We know at least three proofs of this theorem.

The first is the original proof of P. Gabriel and N. Popescu which appears
in [4]. More detailed presentations can be found in [13] and [14].

The second one is a very short proof given by M. Takeuchi [15]. The reader
can find detailed presentations of this proof in [10] and [11].

The third proof belongs to B. Mitchell [9]. It is based on a result of
Grothendick from [6] saying that a Grothendick category has enough injective
objects.

In this paper, using the Gabriel-Popescu Theorem, we give a short proof of
the fact that any Grothendieck category C is a quotient category of Funct(U,Ab),
where U is a family of generators for C. This result appears in [5] with quite
a long proof that follows closely the initial proof of the Gabriel-Popescu The-
orem.

1 Preliminaries

In this section we review some preliminary results. For more details, the reader
is referred to [16] and [1].

Let R be a ring (not necessarily with unit). We say that:
(1) R has enough units if for all finite non-empty subset X of R there exists

an idempotent e ∈ R such that X ⊆ eRe.
(2) R has enough right idempotents if there exists an orthogonal family

{ei}i∈I of idempotents (i.e. eiej = δijei, for all i, j ∈ I) such that R =⊕
i∈I Rei.
(3) R has enough idempotents if there exists an orthogonal family {ei}i∈I

of idempotents such that R =
⊕

i∈I Rei =
⊕

i∈I eiR.

A ring with enough right idempotents has enough units (see [1]). As a
consequence, any ring with enough idempotents is a ring with enough units.

Let R be a ring with enough units. We define the category MOD − R as
follows: the objects are the right R-modules with the property MR = M and
the morphisms are the right R-module morphisms. We list some properties of
MOD−R:

(i) If R has a unity, MOD−R is the category of unitary right R-modules.
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(ii) If R is a ring with enough units, MOD−R is a localizing subcategory
of Mod−R (see [1]).

In fact, MOD − R is similar to the category of unitary modules over a
unitary ring (there are some differences: for example, if (Mi)i∈I is a family
of objects in MOD − R, the direct product is obtained by multiplying the
cartesian product

∏
i∈I Mi by R; so the direct product of the given family in

MOD−R is (
∏

i∈I Mi)R).

2 A Version of the Gabriel-Popescu Theorem

Let A be a Grothendick category and U = {Ui}i∈I be a family of generators
for A. We construct a ring RU with enough idempotents as follows. As an
additive group, RU =

⊕
i,j∈I HomA(Ui, Uj); the multiplication is defined by

the rule: if f ∈ HomA(Ui, Uj) and g ∈ HomA(Uk, Ul), then fg = f ◦ g if
i = l and 0 otherwise. If we put ei = 1Ui

, i ∈ I, then {ei}i∈I is a family of
orthogonal idempotents. One can easily see that

RU =
⊕

i∈I

RUei =
⊕

i∈I

eiRU,

hence RU is a ring with enough idempotents.
We denote by MOD − RU the category of RU-right modules M which

satisfy MRU = M . In this category, (eiRU)i∈I is a family of finitely generated
projective generators. Moreover,

HomRU
(eiRU, ejRU) ∼= ejRUei

∼= HomA(Ui, Uj).

In particular, EndR(eiRU) ∼= eiRUei
∼= EndA(Ui). Also, if U =

⊕
i∈I Ui, then

it is clear that RU is a non-unital subring of EndA(U).
The family U can be viewed as a small subcategory of A with objects Ui, i ∈

I. Consider the category Funct(U,Ab) which is equivalent to MOD−RU (see
[3]).

In this section we give a short proof of the following result which, as noted
in the introduction, may be found, for example, in [5]:

Theorem 2.1. Let A be a Grothendick category and U = {Ui}i∈I a family
of generators for A. Consider the canonical functor F : A −→ MOD − RU

with F (M) =
⊕

i∈I HomA(Ui,M), for M ∈ A. Then F has a left adjoint
exact functor G and G ◦ F ∼= 1A. In particular, G induces an equivalence
between A and the quotient category MOD−RU/Ker(G), where Ker(G)={M ∈
MOD−RU |G(M) = 0} is a localizing subcategory of MOD−RU.
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We note that for U = {U}, we obtain the classical Gabriel-Popescu Theo-
rem. We have F (Ui) = eiRU and G(eiRU) = Ui.

Proof. Our proof is made up of two steps.

Step 1. We construct a ring R with enough right idempotents associated to
the family of generators U. Let A = EndA(U), where U =

⊕
i∈I Ui. Following

[8], we can consider the family of orthogonal idempotent elements {ηi}i∈I of A,
where ηi : U −→ U , ηi = εi ◦ πi, with εi and πi being the canonical injections
and projections. For any X ∈ A and f ∈ HomA(U,X), consider the set

HomA(U,X) = {f ∈ HomA(U,X) |Supp(f) < ∞},

where Supp(f) = {i ∈ I | f ◦ ηi 6= 0}. We denote by R = EndA(U) the set
HomA(U,U), which is a non-unital subring of the endomorphism ring A =
EndA(U). In fact, R is a left idempotent ideal of A and R =

⊕
i∈I Rηi is a

ring with enough right idempotents [8]. Hence HomA(U,X) = HomA(U,X)R.
Moreover, if every Ui is a small object (i.e. the covariant functor HomA(X,−)
commutes with direct sums), then R =

⊕
i∈I Rηi =

⊕
i∈I ηiR, so R is a ring

with enough idempotents (see [8]).
Consider the category MOD−R (the right R-modules M with MR = M).

From [1, Proposition 1.1] we have the following sequence of categories and
adjoint functors:

A
S // Mod−A

t //

T

dd MOD−R

−⊗RA

hh ,

where S and T are the functors from the Gabriel-Popescu theorem and t is
defined by t(N) = NR, for all N ∈ Mod − A, and it is a right exact adjoint
functor of −⊗R A such that t ◦ (−⊗R A) ' 1Mod−R.

For any object X ∈ A, we define the functor S′ = t ◦ S by S′(X) =
HomA(U,X)R = HomA(U,X).

For the second step, we need some preliminary results.

Proposition 2.2. Let A be a Grothendieck category, {Ui}i∈I be a family of
generators of A and S, T , t, S′ be the above functors. Then the following
assertions hold:

1. T ′ = T ◦ (−⊗C A) is a left adjoint functor of S′ = t ◦ S.

2. T ′ is an exact functor.

3. T ′ ◦ S′ ' 1A.
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Moreover, S′ induces an equivalence between the category A and the quotient
category of MOD−R corresponding to the torsion class Ker(T ′).

A proof of this result, consisting of making a series of simple constructions
and applying the Gabriel-Popescu Theorem, can be found in [1]. An alternate
proof, which follows closely the initial proof of the Gabriel-Popescu Theorem
from [4], is given in [8].

For the convenience of the reader we sketch the proofs of the parts in the
above proposition which are important in the sequel.

(1) This follows immediately from the Gabriel-Popescu Theorem and the
fact that the composition of adjoint functors gives adjoint functors (see [7]).

(2) Let 0 //M ′ u //M
v //M ′′ //0 be an exact sequence in MOD−

R. By applying the functor −⊗R A, we obtain the exact sequence

M ′ ⊗R A
u⊗A //M ⊗R A

v⊗A //M ′′ ⊗R A //0 .

If we put X = Ker(u⊗A), then we have t(X) = t(Ker(u⊗A)) ' Ker(u) = 0.
Therefore, XR = 0 or X(RA) = 0. For RA ∈ Ker(T ), we have X ∈ Ker(T ),
so T (X) = 0. Hence, T ′ is an exact functor.

(3) Let X be an object of A. Consider the canonical morphism of A-
modules:

γ : S(X)R⊗R A −→ S(X), γ(x⊗ a) = xa,

for any x ∈ S(X)R and a ∈ A. If we apply the functor t to the exact sequence

0 //Ker(γ) //S(X)R⊗R A
γ //S(X) //Coker(γ) //0 ,

then we obtain t(Ker(γ)) = t(Coker(γ)) = 0. It follows that Ker(γ)R =
Coker(γ)R = 0, and Ker(γ)(RA) = Coker(γ)(RA) = 0, so Ker(γ), Coker(γ) ∈
Ker(T ). In conclusion, T (γ) is an exact isomorphism for T , hence T ′S′(X) '
T (t(S(X))⊗R A) ' T (S(X)) ' X.

We need two more lemmas.

Lemma 2.3. Let R =
⊕

i∈I Rηi be a ring with enough right idempotents. The
following assertions hold:

1. ηR is a finitely generated projective R-module, for every idempotent η ∈
R.

2. The family {ηiR}i∈I is a system of small projective generators of Mod−
R.
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Proof. (1) Let η ∈ R be an arbitrary idempotent. We will prove first that ηR
is R-projective. Consider the following diagram in MOD−R:

ηR

h

}}||
||

||
||

f

²²
M

g // M ′ // 0

.

If f(η) = m′, then f(η) = g(m), for a given m ∈ M . For every r ∈ R,
h : ηR −→ M , ηr 7→ mηr, is a morphism of right R-modules and g ◦h = f , so
the diagram is commutative. Hence, ηR is R-projective.

Let ηR =
⋃

i∈I Mi, where {Mi}i∈I is filtering family of subobjects of ηR.
Because η ∈ ηR, there exists an i ∈ I such that η ∈ Mi. Therefore, ηR ⊆
MiR = Mi, so ηR is finitely generated in MOD−R.

(2) We will prove that {ηiR}i∈I is a family of generators for MOD − R.
Since ηiR is generated by one element, it is a small object in MOD − R for
any i ∈ I.

Consider M ∈ MOD−R, M ′ ⊆ M with M ′ 6= M , and x ∈ M \M ′. Then
MR = M and x =

∑
i∈I miη

x
i . From the orthogonality relation xηx

j = mjη
x
j

we obtain that there exists an i ∈ I such that miη
x
i 6∈ M ′. So there exists

m ∈ M with mηi 6∈ M ′ for some i ∈ I. Therefore, we have Im(f) * M ′, where
f : ηiR −→ M , ηir 7→ mηir, since f(ηi) = m · ηi 6∈ M ′. Hence {ηiR}i∈I is a
family of generators for MOD−R.

Lemma 2.4. If A is a category with a family of small projective generators
then it is equivalent to a category of modules over a ring with enough idempo-
tents.

Proof. The proof follows from Proposition 2.2.

Now we continue the proof of the main theorem.
Step 2. If R is the ring constructed in Step 1, then U′ = {ηiR}i∈I is a

family of finitely generated projective generators for the category MOD − R.
We have the ring isomorphism RU′ ∼= RU.

Using Lemma 2.4, we conclude that MOD−R is equivalent to MOD−RU.
The equivalence is given by the scalar restriction functor i∗ : MOD − R −→
MOD − RU with the functor − ⊗RU

R as its inverse, where i : RU −→ R is
the inclusion morphism. According to Proposition 2.2, we have the following
sequence of categories and adjoint functors:

A
S // Mod−A

t //

T

dd MOD−R
i∗ //

−⊗RA

hh MOD−RU

−⊗RU

ii .
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We put F = i∗ ◦ t ◦ S : A −→ MOD−RU and G = T ◦ (−⊗R A) ◦ (−⊗RU
) :

MOD − RU −→ A. We have F (X) =
⊕

i∈I HomA(Ui, X) for any X ∈ A.
From the above lemmas, we conclude that G is a left adjoint for F . Moreover,
G is an exact functor and G ◦ F ∼= 1A, so the proof ends.

As an immediate corollary of Theorem 2.1, we obtain the following result
from [5]:

Corollary 2.5. Let A be a Grothendick category and U = {Ui}i∈I a family
of generators for A. Then A is a quotient category of Funct(U, Ab).

Proof. Since we know from a result of Gabriel (in [3]) that Funct(U, Ab) is
equivalent to MOD − RU, the conclusion follows now if we apply Theorem
2.1.

We recall some facts about semiartinian categories and the Loewy series.
Details can be found, for example, in [11].

Let A be a category. An object M ∈ A is called semiartinian if for every
subobject M ′ of M with M ′ 6= M , M/M ′ contains a simple object.

If M is an object of A, we construct by transfinite induction, an ascending
chain of subobjects of M as follows. Let α be an arbitrary ordinal.

If α = 0, we set L0(M) = 0.
If α = 1, we set L1(M) = s0(M), where s0 is the the socle of M , i.e. the

sum of all the simple subobjects of M .
If α = β + 1, then Lα(M) is the subobject of M given by

Lα(M)/Lβ(M) = s0(M/Lβ(M).

If α is a limit ordinal (i.e. it has no predecessor), we set

Lα(M) =
⋃

β<α

Lβ(M).

In this way, we obtain an ascending chain of subobjects of M

0 = L0(M) ⊆ L1(M) ⊆ . . . ⊆ Lα(M) ⊆ Lα+1(M) ⊆ . . .

indexed by the set of ordinal numbers. This chain is called the Loewy se-
ries associated to M . The semisimple objects Lα+1(M)/Lα(M) are called
the factors of the Loewy series. The smallest ordinal number that satisfies
Lα(M) = Lα+1(M) = . . . is called the Loewy length of the series and it is
denoted by λ(M).
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It is clear that for two ordinal numbers ξ < η ≤ λ(M) we have that
Lξ(M) 6= Lη(M). If there is an ordinal ξ with Lξ(M) = M , then we say that
M is of defined Loewy length.

Some well-known properties of semiartinian categories and of the Loewy
series are listed below:

1. If M este the direct sum of the family of subobjects (Mi)i∈I , then

Lα(M) =
⊕

i∈I

Lα(Mi),

for any ordinal number α.

2. If N is a subobject of M , the following assertions hold:

(a) λ(N) ≤ λ(M).

(b) If M is of defined Loewy length, then λ(M/N) ≤ λ(M).

(c) λ(M) ≤ λ(N) + λ(M/N).

3. If M is semiartinian object, then s0(M) is an essential subobject of M .

4. Let N be a subobject of M . Then M is semiartinian if and only if N
and M/N are semiartinian.

5. A direct sum of semiartinian objects is a semiartinian object.

6. An object M is semiartinian if and only if M is of defined Loewy length.

7. If 0 → M ′ → M → M ′′ → 0 is an exact sequence of objects, then the
sequence 0 → s0(M ′) → s0(M) → s0(M ′′) → 0 is also exact.

If A is a semiartinian Grothendick category (i.e. any object is semiartinian)
with the family of generators U = {Ui}i∈I , let λ(A) = sup{λ(M) |M ∈ A} =
sup{λ(Ui) | i ∈ I}. Then λ(A) is an ordinal number and it always exists.

Corollary 2.6. Let A be a semiartinian Grothendick category and U = {Ui}i∈I

a family of generators of A such that λ(A) < ∞ and the Ui’s are injective ob-
jects. Then A is a semiperfect category (i.e. any simple object is contained in
a projective one). In particular, A has enough projective objects.

Proof. Following the steps of the proof of [1, Theorem 4.1] and applying The-
orem 2.1, we obtain the desired conclusion.
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Let C be a coalgebra over a field k. We denote by CM the category of left
comodules over the coalgebra C. For details on coalgebras and comodules, the
reader is referred to [2]. If M ∈C M, we consider the Loewy series of M :

0 = M0 ⊆ M1 ⊆ . . . ⊆ Mn ⊆ . . . ⊆ M.

We have that
⋃∞

i≥0 Mi = M (see [12]), so the Loewy length has the property
λ(M) ≤ ω, where ω is the first transfinite ordinal. If λ(M) = n < ∞, we say
that M is a comodule of finite length. If M = C (as a left C-comodule), the
series 0 = C0 ⊆ C1 ⊆ . . . ⊆ Cn ⊆ . . . ⊆ C is called the coradical filtration of
the coalgebra C.

Corollary 2.7. Let C be a coalgebra with a finite coradical filtration. If C is
a generator of CM, then C is a quasi-co-Frobenius coalgebra.

Proof. C can be written as the sum of a family of injective indecomposable
objects {Ui}i∈I in CM, because C is a coalgebra that has the coradical filtra-
tion of finite length n ≥ 1. From λ(C) = n, we obtain that λ(Ui) ≤ n, for
all i ∈ I, hence EndCM(Ui) is a semiprimary ring, for all i ∈ I (i.e. it is a
local ring with the Jacobson radical of nilpotence degree smaller or equal to
n). Since the conditions of the Corollary 2.6 hold in our case, we deduce that
the category CM is semiperfect, so from [12, Theorem 3.1] we obtain that C
is quasi-co-Frobenius.
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