
An. Şt. Univ. Ovidius Constanţa Vol. 18(2), 2010, 125–130

INTEGRAL MINIMISATION
IMPROVEMENT FOR MURPHY’S

POLYNOMIAL SELECTION ALGORITHM

Přemysl Jedlička

Abstract

We consider Murphy’s polynomial selection algorithm for the general
number field sieve. One of the steps in this algorithm consists of finding a
minimum of an integral. However, the size of the polynomial coefficients
causes the classical steepest descent algorithm to be ineffective. This
article brings an idea how to improve the steepest descent algorithm so
that it converges better and faster.

Most of today’s security applications are based on our inability to quickly
factorise integers. The fastest known algorithm for splitting a large integer into
the product of primes is the Number Field Sieve [3], [6]. In this algorithm,
we work in a number field K = Q[x]/f , where f ∈ Z[x] is an irreducible
polynomial that has a root modulo the factorised number.

It is a difficult task to find such a polynomial f . More precisely said,
there are infinitely many such polynomials but it is difficult to find good ones;
one of the features of a good polynomial is to have small coefficients. Not
much was known about looking for such good polynomials since Brian Murphy
presented a method for polynomial selection in his thesis [5]. Although there
now exist newer methods [2], this one is still widely used. A way how to achieve
small coefficients of the sought polynomial is to define a multivariate function
based on a definite integral over the polynomial and to find the minimum.
Unfortunately, there was given no hint how to find it.

Key Words: Number field sieve, Polynomial selection, Skewed polynomials, Steepest
descent

2010 Mathematics Subject Classification: 12H04, 65H04
Received: September, 2009
Accepted: January, 2010

125



126 Přemysl Jedlička

The most natural approach is to use the steepest descent method and it is
actually used in many implementations. However, the polynomial f has very
large coefficients (typically about 25 digits) and this brings many difficulties:
the method does not need to converge; and when it does, it can does it so very
slowly.

This article describes how to deal with this special problem. We benefit
from the special form of the function we are working with – it is in fact a
paraboloid with respect to some (the most critical) variables and hence we
can compute directly the minimum when the other variables are fixed. If
this correction is done between each step of the steepest descent algorithm, it
converges faster.

1 Problems appearing in the steepest descent implemen-
tations

Let us denote by N the big number we want to factorise using the number field
sieve. In Murphy’s thesis [5], page 84, there is the following construction: we
have a polynomial fm with a root m modulo N . We perform slight changes
to the polynomial, called a translation by a number t and a rotation by a
polynomial P :

f(x) = fm(x− t) + P (x)(x− t−m).

Then we consider the homogeneous polynomial associated with f

F (x, y) = ydf(x
y ).

We would like to “minimise” the values of the polynomial over some area,
without loss of generality a rectangle of area 1. That means, we want to find
optimal values of P , t and s so that the integral

∫ √
s−1

−√s−1

∫ √
s

−√s

F 2(x, y) dxdy

is minimal. This is done by a multi-variate minimisation algorithm.
It is probable that every implementation of this problem should use the

steepest descent method somehow. However, the direct implementation of this
method is not very good. The coefficients of the polynomial fm have many
digits and hence some of the coefficients of F 2 are extremely large (about
1050). Such sizes are not common in everyday numerical analysis.

Two types of problems can occur. In both, informally said, we have a
valley, or more precisely a very deep canyon and we start our minimisation
algorithm on a side of this valley (canyon). The side is very steep and therefore
the differential shows we should continue right downhill (see Figure 1).



INTEGRAL MINIMISATION IMPROVEMENT FOR MURPHY’S
POLYNOMIAL SELECTION ALGORITHM 127

Figure 1: Very deep valley in the multivariate polynomial (using contour lines)

The worst situation is when the valley is “narrower” than the minimal
step. Then by making a step (even the minimal one) in the direction of the
differential, we jump over the valley, eventually reaching a spot on the opposite
side of the valley that is higher than the spot of the origin. Thus the algorithm
ends here, far from finding a suitable minimum.

Figure 2: A slow convergence in the valley

The better situation when the valley is not that extremely narrow. We
make a step across the valley ending on the other side in a lower spot. Now
we have to turn back and cross the valley again ending close to the spot of
origin (see Figure 2). Nevertheless, we keep getting lower hence there is no
need to stop the algorithm or alter the step length. We continue zig-zagging
and we eventually converge to a local minimum but after a very long time. It
does not help if we eventually try to change the step length. The sides are
much steeper than the valley itself and hence we do zig-zagging always unless



128 Přemysl Jedlička

we are really at the bottom of the valley. However, even if we happen to be
there in one step, there is no guarantee we will not be on a side of the valley
after the next step.

Let us take a look, e.g., into the source code of the GGNFS implementa-
tion [4] of the general number field sieve. It happens many times there that the
steepest descent routine returns the same values as the ones we started with
(due to the first problem). The authors tried to deal with it by “perturbing”
the found values, that means by changing the values and trying luck but as
one can imagine, it was not always successful.

2 Solution of the problem

Fortunately, the form of the function , we are dealing with, enables us to
better solve the problem. Actually, it is the coefficients of the rotation poly-
nomial P (x) that bring all the mess into the steepest descent algorithm. Let
us take, P (x) = c2x

2 + c1x + c0, for instance, the process will be analogical
for different polynomials. We have

f(x) = fm(x− t) + (c2x
2 + c1x + c0)(x− t−m).

We denote by S the rectangle [−√s,
√

s] × [−√s
−1

,
√

s
−1] and by FS the

integral ∫∫

S

F 2(x, y) dxdy.

It is a function in five variables: c0, c1, c2, s and t. From the construction of
the function FS , we easily deduce the decomposition

FS = B(t, s) +
2∑

i=0

Bi(t, s)ci +
2∑

i=0

2∑

j=i

Bij(t, s)cicj

where B, Bi and Bij for 0 6 i 6 j 6 2 are functions in variables t and s only.
Let us fix t and s and denote by bij the value of Bij in these fixed values.

The graph of the function forms a quadric in R4, actually it should be a 4-
dimensional paraboloid. It is easy to compute the minimum of this paraboloid
using partial derivatives:

∂FS

∂c0
= b0 + 2b00c0 + b01c1 + b02c2

∂FS

∂c1
= b1 + b01c0 + 2b11c1 + b12c2

∂FS

∂c2
= b2 + b02c0 + b12c1 + 2b22c2



INTEGRAL MINIMISATION IMPROVEMENT FOR MURPHY’S
POLYNOMIAL SELECTION ALGORITHM 129

The minimum is the triple (c0, c1, c2) for which all three partial derivatives are
equal to 0. Therefore we have to solve the system of linear equations given by
the matrix 


2b00 b01 b02 −b0

b01 2b11 b12 −b1

b02 b12 2b22 −b2




which can be done using Gaussian elimination.
The algorithm of the steepest descent is now the following: at each step,

we use the values of t and s to compute the numbers bi and bij . Then we
compute the values of ci and we obtain a point where the partial derivatives
with respect to ci should be 0, for all i (and we should be on the bottom of the
valley). The values of partial derivatives with respect to t and s are “relatively
reasonable” and we can perform a step of the steepest descent changing the
values of t and s. After this step, we can be on a side of the valley again
and hence it is necessary to recompute the values of ci and so further until we
converge close enough to a minimum.

3 Experimental results

We tried both approaches on the implementation of GNFS polynomial selec-
tion in Prague [1]. The results are in Table 1. We applied the algorithm on
many polynomials measuring the average time it took and the average value
of I(F, S) obtained, where I(F, S) = ln

√
FS . The degree of P (x) was chosen

so that the performance of the algorithms is optimal: if the degree of P (x) is
too high, the highest coefficients are set to zero anyway, only the computation
is slower and less exact.

degree degree classical algorithm improved algorithm
of fm(x) of P (x) I(F, S) time I(F, S) time

4 0 37.52 52.4ms 37.49 20.4ms
5 1 44.47 144.6ms 43.94 125.6ms
6 2 52.34 215.5ms 51.29 225.2ms

Table 1: Experimental results for the steepest descent algorithms

We can interpret the results the following way: when there is only one
coefficient of P (x), the valleys are not so narrow, the classical steepest descent
converges (and it is almost as good as the improved version). However it
converges more slowly. The more there are coefficients of P (x), the more
problems occur and the more probable is for the classical algorithm to stop



130 Přemysl Jedlička

long before reaching a minimum. It can even finish sooner than the improved
one but with a much worse result.

References

[1] M. Kechlibar, P. Jedlička, L. Perútka, J. Zvánovec: An implementation of
the general number field sieve

[2] T. Kleinjung: On polynomial selection for the general number field sieve,
Math. of Comput. 75 (256), 2006, 2037–2047

[3] A.K. Lenstra, H.W. Lenstra (eds): “The development of the number field
sieve”, Lecture Notes in Math. 1554 ,1993, Springer-Verlag.

[4] C. Monico: “GGNFS”,
http://www.math.ttu.edu/~cmonico/software/ggnfs/index.html

[5] B.A. Murphy: Polynomial Selection for the Number Field Sieve Integer
Factorisation Algorithm, Ph.D. thesis, The Australian National University,
1999

[6] C. Pomerance: A Tale of Two Sieves, Notices of AMS, 43 (12), 1996,
1473–1485

Czech University of Life Sciences,
Department of Mathematics,
Faculty of Engineering,
Kamýcká 129, 165 21, Praha 6 – Suchdol, Czech Republic
e-mail: jedlickap@tf.czu.cz


