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STRONG CONVERGENCE OF AN

ITERATIVE ALGORITHM FOR

λ-STRICTLY PSEUDO-CONTRACTIVE

MAPPINGS IN HILBERT SPACES

Mengqin Li and Yonghong Yao

Abstract

Let H be a real Hilbert space. Let T : H → H be a λ-strictly pseudo-
contractive mapping. Let {αn} and {βn} be two real sequences in (0, 1).
For given x0 ∈ H, let the sequence {xn} be generated iteratively by

xn+1 = (1− αn − βn)xn + βnTxn, n ≥ 0.

Under some mild conditions on parameters {αn} and {βn}, we prove
that the sequence {xn} converges strongly to a fixed point of T in Hilbert
spaces.

1 Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of
H. Recall that a mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖,

for all x, y ∈ C. And T : C → C is said to be a strictly pseudo-contractive
mapping if there exists a constant 0 ≤ λ < 1 such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + λ‖(I − T )x− (I − T )y‖2, (1.1)
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for all x, y ∈ C. For such a case, we also say that T is a λ-strictly pseudo-
contractive mapping. It is clear that, in a real Hilbert space H, (1.1) is
equivalent to

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2 −
1− λ

2
‖(I − T )x− (I − T )y‖2, (1.2)

for all x, y ∈ C. We use F (T ) to denote the set of fixed points of T .
It is clear that the class of strictly pseudo-contractive mappings strictly

includes the class of non-expansive mappings. Iterative methods for non-
expansive mappings have been extensively investigated in the literature; see
[1]-[11],[13] and the references therein. Related work can be found in [12],[14]-
[22].

However iterative methods for strictly pseudo-contractive mappings are
far less developed than those for non-expansive mappings though Browder
and Petryshyn initiated their work in 1967; the reason is probably that the
second term appearing in the right-hand side of (1.1) impedes the conver-
gence analysis for iterative algorithms used to find a fixed point of the strictly
pseudo-contractive mapping T . However, on the other hand, strictly pseudo-
contractive mappings have more powerful applications than non-expansive
mappings do in solving inverse problems; see Scherzer [12]. Therefore it is
interesting to develop the iterative methods for strictly pseudo-contractive
mappings. As a matter of fact, Browder and Petryshyn [2] show that if a
λ-strictly pseudo-contractive mapping T has a fixed point in C, then starting
with an initial x0 ∈ C, the sequence {xn} generated by the recursive formula:

xn+1 = αxn + (1− α)Txn, n ≥ 0,

where α is a constant such that λ < α < 1, converges weakly to a fixed point
of T .

Recently, Marino and Xu [7] have extended Browder and Petryshyn’s re-
sult by proving that the sequence {xn} generated by the following Mann’s
algorithm:

xn+1 = αnxn + (1− αn)Txn, n ≥ 0

converges weakly to a fixed point of T , provided the control sequence {αn}
satisfies the conditions that λ < αn < 1 for all n and

∑
∞

n=0(αn − λ)(1 −
αn) = ∞. However, this convergence is in general not strong. Very recently,
Mainge [6] studied some new iterative methods for strictly pseudo-contractive
mappings. He obtained some strong convergence theorems by using the new
iterative methods.

It is our purpose in this paper that we introduce a new iterative algorithm
for λ-strictly pseudo-contractive mappings as follows:
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Let H be a real Hilbert space. Let T : H → H be a λ-strictly pseudo-
contractive mapping. Let {αn} and {βn} be two real sequences in (0, 1). For
given x0 ∈ H, let the sequence {xn} be generated iteratively by

xn+1 = (1− αn − βn)xn + βnTxn, n ≥ 0. (1.3)

Under some mild conditions, we prove that the proposed iterative algorithm
(1.3) converges strongly to a fixed point of a λ-strictly pseudo-contractive
mapping T in Hilbert spaces.

2 Preliminaries

In this section, we collect the following well-known lemmas.

Lemma 2.1. Let H be a real Hilbert space. Then there holds the following
well-known results:

(i) ‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2 for all x, y ∈ H;

(ii) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉 for all x, y ∈ H.

You can find the following lemma in [7],[22].

Lemma 2.2. (Demi-closed principle) Let C be a nonempty closed convex of
a real Hilbert space H. Let T : C → C be a λ-strictly pseudo-contractive
mapping. Then I−T is demi-closed at 0, i.e., if xn ⇀ x ∈ C and xn−Txn →
0, then x = Tx.

Lemma 2.3. ([7]) Let H be a real Hilbert space. If {xn} is a sequence in H

weakly convergent to z, then

lim sup
n→∞

‖xn − y‖2 = lim sup
n→∞

‖xn − z‖2 + ‖z − y‖2, ∀y ∈ H.

Lemma 2.4. ([16]) Assume {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− γn)an + γnδn, n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑

∞

n=0 γn = ∞;

(ii) lim supn→∞
δn ≤ 0 or

∑
∞

n=0 |δnγn| < ∞.

Then limn→∞ an = 0.
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3 Main Results

Theorem 3.1. Let H be a real Hilbert space. Let T : H → H be a λ-strictly
pseudo-contractive mapping such that F (T ) 6= ∅. Let {αn} and {βn} be two
real sequences in (0, 1). Assume that the following conditions are satisfied:

(C1) limn→∞ αn = 0;

(C2)
∑

∞

n=0 αn = ∞;

(C3) βn ∈ [ǫ, (1− λ)(1− αn)) for some ǫ > 0.

Then the sequence {xn} generated by (1.3) strongly converges to a fixed point
of T .

Proof. First, we prove that the sequence {xn} is bounded.
Take p ∈ F (T ). From 1.3), we have

‖xn+1 − p‖ = ‖(1− αn − βn)(xn − p) + βn(Txn − p)− αnp‖

≤ ‖(1− αn − βn)(xn − p) + βn(Txn − p)‖+ αn‖p‖. (3.1)

Combining (1.1) and (1.2), we have

‖(1− αn − βn)(xn − p) + βn(Txn − p)‖2

= (1− αn − βn)
2‖xn − p‖2 + β2

n‖Txn − p‖2

+2(1− αn − βn)βn〈Txn − p, xn − p〉

≤ (1− αn − βn)
2‖xn − p‖2 + β2

n[‖xn − p‖2 + λ‖xn − Txn‖
2]

+2(1− αn − βn)βn[‖xn − p‖2 −
1− λ

2
‖xn − Txn‖

2]

= (1− αn)
2‖xn − p‖2 + [λβ2

n − (1− λ)(1− αn − βn)βn]‖xn − Txn‖
2

= (1− αn)
2‖xn − p‖2 + βn[βn − (1− αn)(1− λ)]‖xn − Txn‖

2

≤ (1− αn)
2‖xn − p‖2,

which implies that

‖(1− αn − βn)(xn − p) + βn(Txn − p)‖ ≤ (1− αn)‖xn − p‖. (3.2)

It follows from (3.1) and (3.2) that

‖xn+1 − p‖ ≤ (1− αn)‖xn − p‖+ αn‖p‖

≤ max{‖xn − p‖, ‖p‖}.

By induction, we have

‖xn − p‖ ≤ max{‖x0 − p‖, ‖p‖}.
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Hence, {xn} is bounded.
Taking y = p in (1.1), we have

‖Tx− p‖2 ≤ ‖x− p‖2 + λ‖x− Tx‖2

⇒ 〈Tx− p, Tx− p〉 ≤ 〈x− p, x− Tx〉+ 〈x− p, Tx− p〉+ λ‖x− Tx‖2

⇒ 〈Tx− p, Tx− x〉 ≤ 〈x− p, x− Tx〉+ λ‖x− Tx‖2

⇒ 〈Tx− x, Tx− x〉+ 〈x− p, Tx− x〉 ≤ 〈x− p, x− Tx〉+ λ‖x− Tx‖2

⇒ (1− λ)‖Tx− x‖2 ≤ 2〈x− p, x− Tx〉. (3.3)

From (1.3), (3.3) and Lemma 2.1, we have

‖xn+1 − p‖2 = ‖(1− αn − βn)xn + βnTxn − p‖2

= ‖(xn − p)− βn(xn − Txn)− αnxn‖
2

≤ ‖(xn − p)− βn(xn − Txn)‖
2 − 2αn〈xn, xn+1 − p〉

= ‖xn − p‖2 − 2βn〈xn − Txn, xn − p〉+ β2
n‖xn − Txn‖

2

−2αn〈xn, xn+1 − p〉

≤ ‖xn − p‖2 − βn(1− λ)‖xn − Txn‖
2 + β2

n‖xn − Txn‖
2

−2αn〈xn, xn+1 − p〉

= ‖xn − p‖2 − βn[(1− λ)− βn]‖xn − Txn‖
2

−2αn〈xn, xn+1 − p〉. (3.4)

Since {xn} is bounded, so there exists a constant M ≥ 0 such that

−2〈xn, xn+1 − p〉 ≤ M for all n ≥ 0.

Consequently, from (3.4), we get

‖xn+1 − p‖2 − ‖xn − p‖2 + βn[(1− λ)− βn]‖xn − Txn‖
2 ≤ Mαn. (3.5)

Now we divide two cases to prove that {xn} converges strongly to p.

Case 1. Assume that the sequence {‖xn−p‖} is a monotonically decreas-
ing sequence. Then {‖xn − p‖} is convergent. Clearly, we have

‖xn+1 − p‖2 − ‖xn − p‖2 → 0,

this together with (C1) and (3.5) imply that

‖xn − Txn‖ → 0. (3.6)

By Lemma 2.2 and (3.6), it is easy to see that ωw(xn) ⊂ F (T ), where ωw(xn) =
{x : ∃xni

⇀ x} is the weak ω-limit set of {xn}. This implies that {xn}
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converges weakly to a fixed point x∗ of T . Indeed, if we take x∗, x̃ ∈ ωw(xn)
and let {xni

} and {xmj
} be sequences of {xn} such that

xni
⇀ x∗ and xmj

⇀ x̃, respectively.

Since limn→∞ ‖xn − z‖ exists for z ∈ F (T ). Therefore, by Lemma 2.3, we
obtain

lim
n→∞

‖xn − x∗‖2 = lim
j→∞

‖xmj
− x∗‖2

= lim
j→∞

‖xmj
− x̃‖2 + ‖x̃− x∗‖2

= lim
i→∞

‖xni
− x̃‖2 + ‖x̃− x∗‖2

= lim
i→∞

‖xni
− x∗‖2 + 2‖x̃− x∗‖2

= lim
n→∞

‖xn − x∗‖2 + 2‖x̃− x∗‖2.

Hence, x̃ = x∗.
Next, we prove that {xn} strongly converges to x∗.
Setting yn = (1− βn)xn + βnTxn, n ≥ 0. Then, we can rewrite (1.3) as

xn+1 = yn − αnxn, n ≥ 0.

It follows that

xn+1 = (1− αn)yn − αn(xn − yn)

= (1− αn)yn − αnβn(xn − Txn). (3.7)

At the same time, we note that

‖yn − x∗‖2 = ‖xn − x∗ − 2βn(xn − Txn)‖
2

= ‖xn − x∗‖2 − 2βn〈xn − Txn, xn − x∗〉+ β2
n‖xn − Txn‖

2

≤ ‖xn − x∗‖2 − βn[(1− λ)− βn]‖xn − Txn‖
2

≤ ‖xn − x∗‖2.

Applying Lemma 2.1 to (3.7), we have

‖xn+1 − x∗‖2 = ‖(1− αn)(yn − x∗)− αnβn(xn − Txn)− αnx
∗‖2

≤ (1− αn)
2‖yn − x∗‖2 − 2αnβn〈xn − Txn, xn+1 − x∗〉

−2αn〈x
∗, xn+1 − x∗〉

≤ (1− αn)‖xn − x∗‖2 − 2αnβn〈xn − Txn, xn+1 − x∗〉

−2αn〈x
∗, xn+1 − x∗〉. (3.8)
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It is clear that limn→∞〈xn−Txn, xn+1−x∗〉 = 0 and limn→∞〈x∗, xn+1−x∗〉 =
0. Hence, applying Lemma 2.4 to (3.8), we immediately deduce that xn → x∗.

Case 2. Assume that {‖xn − p‖} is not a monotonically decreasing se-
quence. Set Γn = ‖xn − p‖2 and let τ : N → N be a mapping for all n ≥ n0

(for some n0 large enough) by

τ(n) = max{k ∈ N : k ≤ n,Γk ≤ Γk+1}.

Clearly, τ is a non-decreasing sequence such that τ(n) → ∞ as n → ∞ and
Γτ(n) ≤ Γτ(n)+1 for n ≥ n0. From (3.5), it is easy to see that

‖xτ(n) − Txτ(n)‖
2 ≤

Mατ(n)

βτ(n)[(1− λ)− βτ(n)]
→ 0,

thus

‖xτ(n) − Txτ(n)‖ → 0.

By the similar argument as above in Case 1, we conclude immediately that
xτ(n) weakly converges to x∗ as τ(n) → ∞. At the same time, we note that,
for all n ≥ n0,

0 ≤ ‖xτ(n)+1 − x∗‖2 − ‖xτ(n) − x∗‖2

≤ ατ(n)[2βτ(n)〈xτ(n) − Txτ(n), x
∗ − xτ(n)+1〉+ 2〈x∗, x∗ − xτ(n)+1〉

−‖xτ(n) − x∗‖2],

which implies that

‖xτ(n) − x∗‖2 ≤ 2βτ(n)〈xτ(n) − Txτ(n), x
∗ − xτ(n)+1〉+ 2〈x∗, x∗ − xτ(n)+1〉.

Hence, we deduce that

lim
n→∞

‖xτ(n) − x∗‖ = 0.

Therefore,

lim
n→∞

Γτ(n) = lim
n→∞

Γτ(n)+1 = 0.

Furthermore, for n ≥ n0, it is easily observed that Γn ≤ Γτ(n)+1 if n 6= τ(n)
(that is, τ(n) < n), because Γj > Γj+1 for τ(n)+1 ≤ j ≤ n. As a consequence,
we obtain for all n ≥ n0,

0 ≤ Γn ≤ max{Γτ(n),Γτ(n)+1} = Γτ(n)+1.

Hence limn→∞ Γn = 0, this is, {xn} converges strongly to x∗. This completes
the proof.
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From Theorem 3.1, we can obtain the following corollary.

Corollary 3.2. Let H be a real Hilbert space. Let T : H → H be a nonexpan-
sive mapping such that F (T ) 6= ∅. Let {αn} and {βn} be two real sequences
in (0, 1). Assume that the following conditions are satisfied:

(C1) limn→∞ αn = 0;

(C2)
∑

∞

n=0 αn = ∞;

(C3) βn ∈ [ǫ, (1− λ)(1− αn)) for some ǫ > 0.

Then the sequence {xn} generated by (1.3) strongly converges to a fixed point
of T .

Remark 3.3. It is well-known that the normal Mann iteration has only weak
convergence. However, our algorithm which is similar to the normal Mann
iteration has strong convergence.
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