
An. Şt. Univ. Ovidius Constanţa Vol. 17(3), 2009, 197–208

A MODEL OF REGULAR SPARSITY MAP

REPRESENTATION

Ina Naydenova, Zlatinka Covacheva and Kalinka Kaloyanova

Abstract

Sparse data causes the data explosion problem in precomputation
process and decreases the performance of OLAP. The regular sparsity
map is an object that saves information about specific empty domains
of the OLAP hyper-cubes and enables business analysts to define rules
and place data constraints over the multidimensional cube. The pre-
served information can be used for several purposes — data validation,
storage consideration, user-interface improvements. In this paper we
present an approach for a regular sparsity map representation. It allows
implementation of set operations between a regular sparsity map and
multidimensional domains and requires less storage and computational
resources.

1 Introduction

Prior to the start of the Information Age in the late 20th century, business
had to collect data from non-automated sources. Business then lacked the
computing resources necessary to properly analyze the data, and as a result,
companies often made business decisions primarily on the basis of intuition.
The modern technologies of computers and networks have made data collec-
tion and organization much easier. However, the captured data needs to be
converted into information and knowledge to become useful. This puts a new

Key Words: dimension, cube, OLAP, sparsity, map, set operations.
Mathematics Subject Classification: 68P05, 68P15, 68P20.
Received: April 2009
Accepted: October 2009
This reserch was supported by the project SUGrid (National Scientific Research Fund

Reg. No. VU-MI-110/2005).

197

198 INA NAYDENOVA, ZLATINKA COVACHEVA AND KALINKA KALOYANOVA

class of problems related to the data integrity and correctness, results relia-
bility, performance of the analytical query etc. According to the independent
OLAP Survey conducted by Nigel Pendse [8, 9] the top three problems in the
field of Business Intelligence (BI) over the past years are slow query perfor-
mance, poor quality data, and company policy.

In [4] we introduce a new object (“regular sparsity map”) to the multidi-
mensional data model, which model is widely used in BI applications. The map
saves information about specific empty domains of multidimensional cubes and
enables business analysts to define rules and place data constraints over the
multidimensional cube. We also investigate the applicability of the defined ob-
ject in three main directions — data quality, performance issues and human
interface facilities.

With the purpose of map implementing and furthermore utilization, we
develop a method of map preservation that allows implementation of set oper-
ations between a map and multidimensional domains and requires less storage
and computational resources than the point-by-point based approach.

2 The regular sparsity map

To explain what a regular sparsity map is, first of all we will introduce some
definitions.

2.1 Multidimensional data model definition

A popular conceptual model that influences the front-end tools, database ar-
chitecture and design, and the query engines for OLAP is the multidimensional
view of data in the data warehouse. In a multidimensional model, there is a
set of numeric measures that are the objects of analysis. Examples of such
measures are sales, revenue, profit, number of clients etc. Each of the numeric
measures depends on a set of dimensions, which provide the context for the
measure. For example, the dimensions associated with a sale amount can be
the store, product, and the date when the sale was made. The dimensions
together are assumed to uniquely determine the measure. Thus, the multidi-
mensional data views a measure as a value in the multidimensional space of di-
mensions. Often, dimensions are hierarchical; time of sale may be organized as
a day-month-quarter-year hierarchy, product as a product-category-industry
hierarchy [2].

Regardless of common basis of the model there are a lot of formal defini-
tions. One can find a multidimensional model specified as a set of dimensions,
measures and data cubes with corresponding definitions of objects schemes,
domains and applicable operators in [6] or using a multidimensional space

A MODEL OF REGULAR SPARSITY 199

(Cartesian product of relational attribute projections) structured by the gen-
eralization order between tuples (cube lattice as a convex space is considered)
in [1]. Since even tabular data, such as relations, can be thought of as multidi-
mensional, many definitions incorporate this point of view: multidimensional
database algebra, specified over table schemes, is defined in [3] and [7].

To define a regular sparsity map object we assume a simplified conceptual
cube model that treats data in the form of n−dimensional cubes. The hier-
archy between the various levels of aggregation in dimensions is of no interest
to us.

• Dimension is a non-empty finite set;

• Multidimensional space S over dimensions D1,D2, . . . ,Dn (n ≥ 1) is
the Cartesian product S = D1 × D2 × · · · × Dn. It contains n−tuples
(x1, x2, . . . , xn), where x1 ∈ D1, x2 ∈ D2, . . . , xn ∈ Dn.

• Rectangular domain in multidimensional space S is a subset M ⊆ S,
M = A1 × A2 × · · · × An, where A1 ⊆ D1, A2 ⊆ D2, . . . , An ⊆ Dn;

• ∅ is a special value named “empty value”;

• Fact F is a set, where ∅ ∈ F ;

• Cube is a function C : S → F , where S is a multidimensional space, F
is a fact;

• Cell in the cube C : S → F is a pair c = (t, f), where t ∈ S, C(t) = f .
The cell is empty if f = ∅ and non-empty otherwise;

• Set of empty cells in the cube C : S → F is the set E(C) = {t ∈
S | C(t) = ∅}, E(C) ⊆ S.

We might be building a cube for a supermarket, where one dimension (D1)
is geography (individual stores), another one (D2) is time (months), another
one (D3) is customers and the last one is products (D4). Measures in the
observed fact (F) are the quantity sold and the revenue. If in “April 2008”
customer “Andrew” bought “2 bars” of “chocolate” in store “Boyana” for “3
euro”, then we have a non-empty cell ((“Boyana”, “April 2008”, “Andrew”,
“chocolate”), (“2 bars”, “3 euro”)) in the cube. If in the same month he did
not buy any “ice-cream” from this store, we have an empty cell ((“Boyana”,
“April 2008”, “Andrew”, “ice-cream”), ∅).

200 INA NAYDENOVA, ZLATINKA COVACHEVA AND KALINKA KALOYANOVA

2.2 Sparsity definition

Many cells in an OLAP cube are not populated with data. The more empty
cells found in a cube, the sparser the cube data is. This is measured by the
density coefficient.

Density coefficient of cube C : S → F is a ratio ωC =
|S| − |E(C)|

|S|
.

If we have 60 stores, 500 products, 70,000 customers and 12 months in a
year, our cube has a potential 60× 500× 70, 000× 12 = 25, 200, 000, 000 cells,
but we might only have 360,000,000 non-empty cells in our measure (40 000
customers shopping 12 months a year, buying average on 25 products at 30
stores) making our cube (360, 000, 000/25, 200, 000, 000) × 100 = 1.4% dense.

2.3 Regular sparsity map definition

A closer scrutiny reveals that there could be some difference between empty
cells in terms of the causes provoking the cell’s emptiness. We divide the
cube’s sparsity into two types: random and regular sparsity. If a cell is empty
because of the semantics of the modelled business area (the semantics enforces
lack of value), then we witness “regular sparsity”. If the cell is empty, but
it is possible it had a value, “random sparsity” is what we have. Missing
data in random sparsity usually expresses zero values, whereas the regular
sparsity expresses inapplicable values. In [5] we point out several forms of
regular sparsity (irrelevant dimensions, segmentation of dimensions, dimension
changes over time).

To formally distinguish regular from random sparsity, we introduce the
following definition:

Regular sparsity map of the cube C : S → F is the set RC ⊆ E(C) ⊆ S.

A regular sparsity map (or shortly map) RC determines the cells which
are empty because of regular sparsity (business rules, formal requirements,
natural dependences, etc.).

The set difference E(C)\RC determines the cells which are empty because
of random sparsity.

In the previous example we can observe random and regular sparsity. The
store “Boyana” offers 3,000 products. “Andrew” has bought only 50 of them.
For the rest 2,950 products we have empty cells because of the random sparsity
(in fact their value is zero). For the 7,000 unavailable products we have empty
cells because of the regular sparsity. If Z ⊂ D4 is the list of available products
in “Boyana”, then RC = {(d1, d2, d3, d4) ∈ S | d1 = “Boyana”, d4 /∈ Z}.

A MODEL OF REGULAR SPARSITY 201

3 The problem

In [4] we investigate the applicability of the regular sparsity map for develop-
ment of business constraints enforcement module, non-additive data compres-
sion, composite dimension selection, automatic selection of relevant dimension
elements etc. The applications development is related to the question of how
the map could be represented. The utilization of the regular sparsity map
requires a proper model that is convenient and easy for use by:

1) the people that will construct a map;
2) the software that will use the map in different applications.
From the humans’ point of view the regular sparsity map is a set of business

rules.
Our analysis shows that almost all applications of the regular sparsity map

require an algorithm that performs set operations between a regular sparsity
map and a multidimensional domain. So the software for an extraction of the
regular sparsity map information has to be able to answer questions of the
following type:

We have a regular sparsity map RC ⊆ E(C) ⊆ S of the cube C : S → F ,
S = D1 × D2 × · · · × Dn.

An input rectangular domain I: I ⊆ S, I = A1 ×A2 × · · · ×An, A1 ⊆ D1,
. . . , An ⊆ Dn.

We are interested in which cells of the domain I {c = (t, f)|t ∈ I, C(t) = f}
are empty because of the regular sparsity: IE = I ∩ RC .

We are also interested in which cells of the domain I {c = (t, f)|t ∈
I, C(t) = f} are potentially not empty: INE = I \ RC .

One solution is the regular sparsity model to store the set of tuples cov-
ered by the map (point-by-point approach). Then we can apply union or
minus operation over tuples covered by the map and the tuples covered by the
input domain I. Unfortunately, in real-life cases the number of empty cells
in a map often exceeds 1013. The performance of set operations depends on
the cardinality of its arguments, so this solution is unsatisfactory: the case
of 1.4% dense cube (the example above) requires 24,840,000,000 empty cells
coordinates to be processed.

So our task is to find another representation of a regular sparsity map and
a more efficient way to perform set operations with rectangular domains in a
multidimensional space.

4 The map representation approach

To perform more efficiently set operations with rectangular domains, we pro-
pose an algorithm that works with dimension subsets instead of dimension

202 INA NAYDENOVA, ZLATINKA COVACHEVA AND KALINKA KALOYANOVA

elements. In our solution the input rectangular domain I is split into a set of
rectangular sub-domains, each of which is entirely inside or outside the map.
To facilitate the process of the input domain splitting, we represent the regular
sparsity map R as a union of nonintersecting rectangular domains.

4.1 Business constraints representation

A convenient approach is the map to be constructed on a set of rules. Each
rule describes a set of cells that should be empty. The union of these sets
forms the regular sparsity map.

The simplest type of a rule that can be described by the users is in the
following form:

(1) IF D1 ∈ {d11, d12, . . .} AND D2 ∈ {d21, d22, . . .} AND . . . THEN the
cell is EMPTY;

In such way the rule defines exactly one rectangular domain:

R1 = A1 × A2 × · · · × An, A1 = {d11, d12, . . .} ⊆ D1, . . . , An ⊆ Dn.

This form is flexible enough to describe all regular sparsity business constraints
that we meet in our practice. But usually it is not so convenient for business
analysts who are expected to define map rules.

Here we show how the model of business constraints description could be
extended so that it would be more convenient and, at the same time, the rules
could be transformed into the form (1).

Example of rule definition with different Boolean operations

Let us imagine that we have the following business constraints over the cube
C : S → F , S = D1 × D2 × D3, where D1 is the dimension Stores, D2 is
Products and D3 Time, F is the quantity sold:

Store “Vitosha” does not offer cigarettes. Before January 2008, store
“Vidim” did not offer peanuts. Store “Elemag” does not offer peanuts at
all.

The business analysts define the existing constraints over the cube C with
the help of the following rules:

Rule 1: IF Store = “Vitosha” THEN Product 6= “cigarettes”.
Rule 2: IF (Time < “January 2008” AND Store = “Vidim”) OR (Store

= “Elemag”) THEN Product 6= “peanuts”.
The above rules describe dependences in the form of Boolean implication

(IF A THEN B). For regular sparsity domains, the value of the implication
is false. So, we are looking for an expression in the form of “A AND NOT B”
to describe empty cells of the cube:

A MODEL OF REGULAR SPARSITY 203

Rule 1) IF Store = “Vitosha” AND Product = ”cigarettes” THEN the cell
is empty;

Rule 2) This rule can be transformed into two rules in the form (1). To
separate them we are looking for an expression in a disjunctive normal form:

IF (Time < “January 2008” AND Store = “Vidim” AND Product =
“peanuts”) OR (Store = “Elemag” AND Product = “peanuts”) THEN the
cell is empty.

Rule 2.1: IF Time < “January 2008” AND Store = “Vidim” AND Product
= ”peanuts” THEN the cube is empty;

Rule 2.2: IF Store = “Elemag” and Product = “peanuts” THEN the cell
is empty.

Using hierarchies and other dimension attributes in rule description

Since the number of elements in one dimension may exceed hundreds, for
the analyst the possibility for an easy choice of sets of dimension elements is
important — by means of filters over different attributes, hierarchical relations
etc. These are elements of the multidimensional model which we have not
considered above, but here is an example which illustrates such possibilities:

In Alaska ice-cream is not sold. In the Region Alaska there are stores
X,Y,Z. This relation is given with an additional stucture — a hierarchy or
dimension over the dimension Stores. Analogously, ice-cream is a category of
dozens of products — p1, . . . , pn.

Rule: IF Store.Region = “Alaska” THEN Product.Category 6= “ice-cream”.
This rule will be transformed to: IF Store ∈ (X,Y,Z) THEN Product /∈

(p1, . . . , pn).

4.2 The map construction

We are going to describe a process of regular sparsity map construction. At
the end of this process the regular sparsity map is presented as a union of non-
intersecting rectangular domains (segmentation approach). For this purpose,
we will introduce what is a segmentation of the multidimensional space, how
to extend a segmentation of the space by a rectangular domain and how to
split a rectangular domain over a space segmentation.

Let S be a multidimensional space over dimensions D1,D2, . . . ,Dn: S =
D1 × D2 × · · · × Dn.

G is a segmentation of the multidimensional space S when:

G(Di) =
{

D1
i ,D2

i , . . . ,Dpi

i

}

: Di =

pi
⋃

j=1

Dj
i and Dj

i ∩Dk
i = { } for k 6= j.

204 INA NAYDENOVA, ZLATINKA COVACHEVA AND KALINKA KALOYANOVA

Extend a segmentation of the space by a rectangular domain:
Let M be a rectangular domain in the space S and let G be a segmentation

of S:

M = A1 × A2 × · · · × An, where A1 ⊆ D1, A2 ⊆ D2, . . . , An ⊆ Dn.

The segmentation G′ is defined as the extension of G by M as follows:

∀i = 1, . . . , n : G′(Di) =
{

Dj
i | Dj

i ∈ G(Di), (Dj
i ∩ Ai = ∅ ∨ Dj

i ⊆ Ai)
}

∪
{

Dj
i ∩ Ai, Dj

i \ Ai| Dj
i ∈ G(Di), Dj

i ∩ Ai 6= ∅, Dj
i \ Ai 6= ∅

}

.

In such way for every Dj
i ∈ G(Di): Dj

i ∩Ai 6= ∅ and Dj
i \Ai 6= ∅ the splitting

of Dj
i is performed by D′ = Dj

i ∩ Ai and D′′ = Dj
i \ Ai. The new segments

D′ and D′′ replace the old segment Dj
i in the set of segments G(Di) of the

dimension Di.
If the result G′ ≡ G, we say that G has been already extended by M .
Splitting of a rectangular domain over a space segmentation:
Let M be a rectangular domain in the space S and G be a segmentation

of S and G has been already extended by M .

¡¡@@
i=1

n

split(M,G) =
{

Dj
i ∈ G(Di)| Dj

i ∩ Ai 6= ∅
}

.

Let RC be a regular sparsity map of the cube C : S → F , S = D1 ×D2 ×
· · · × Dn represented as a union of non-intersecting rectangular domains:

L = {P1, . . . , Pt}, where RC =

t
⋃

j=1

Pj and Pi ∩ Pj = { }, i 6= j.

At the beginning of the construction process the regular sparsity map is empty.
The first rule adds a rectangular domain to the map. Then every time when
a new rule is added to the map, the existing rectangular domains are split to
non-intersecting rectangular domains.

(1) The map is empty: L = { }, R = { }.

In this step we define the following segmentation of the multidimensional
space S: G(Di) = {Di}.

(2) A new business rule is added.

The rule describes exactly one rectangular domain B = A1×A2×· · ·×An.

(a) We extend the segmentation G by the rectangular domain B to G′.

A MODEL OF REGULAR SPARSITY 205

(b) For every Pi ∈ L we split the rectangular domain Pi over the seg-
mentation G′: ∀Pi ∈ L : split(Pi, G

′).

This procedure can increase the number of nonintersecting rectan-
gular domains: L = {P1, . . . , Pt′}, t′ ≥ t.

(c) We also split a rectangular domain B over G′: split(B,G′).

This action splits B to a union of nonintersecting rectangular do-
mains according to the segmentation of dimensions in RC .

¡¡@@
i=1

n

split(B,G′) = {B1, . . . , Bm} =
{

Dj
i ∈ G′(Di)| Dj

i ∩ Ai 6= ∅
}

,

B =
m
⋃

i=1

Bi, where Bi ∩ Bj = { } for i 6= j,

∀i, j : Pi = Bj or Pi ∩ Bj = { }.

(d) The union operation that should be applied between the map RC

and the rectangular domain B, is applied between the sets of pieces
L and split(B,G′). The assignment L := L ∪ split(B,G′) is func-
tionally equivalent to the assignment RC := RC ∪ B.

(3) Repeat Step 2 while there are new rules.

4.3 Set operations between a regular sparsity map and a rectan-
gular domain

Let us have a regular sparsity map RC ⊆ E(C) ⊆ S of the cube C : S → F ,
S = D1 × D2 × · · · × Dn and an input rectangular domain I : I ⊆ S,
I = A1×A2×· · ·×An, A1 ⊆ D1,. . . , An ⊆ Dn. We are interested in the result
of a union, intersection or minus operation between the input rectangular
domain and the regular sparsity map: I ◦ RC | ◦ ∈

{

∪,∩, \
}

.

To perform this operation we do the same steps as we do to add a rectangu-
lar domain to the map. The only difference is that the result of the operation
is not preserved in the map definition.

Let G be a segmentation of a multidimensional space S already extended
by the map rules.

According to our map representation RC =
t
⋃

j=1

Pj , where Pj = Hj
1 ×Hj

2 ×

· · · × Hj
n, Hj

i ∈ G(Di) and Pi ∩ Pj = { }, i 6= j, L = {P1, . . . , Pt}.

Then I ◦ RC = split(I,G) ◦ L.

206 INA NAYDENOVA, ZLATINKA COVACHEVA AND KALINKA KALOYANOVA

5 Comparison with point-by-point approach

The segmentation approach enables us to operate with rectangular domains
instead of points in a multidimensional space. Of course, in the worst case the
rectangular domains in the map are points. In such case because of the time
necessary for a map construction and preservation of space segmentations, the
segmentation approach is even worse than the point-by-point approach. But
in the real-life systems this is an impossible situation. Typically cubes have
between 5 and 16 dimensions [10] and the number of cube cells exceeds 4E+17,
whereas the number of rules usually is more than 10, but not more than 100.

This is why we do not try to formally prove the advantages of the segmen-
tation approach but just describe and expose them.

Storage consideration

Point-by-point approach: We will preserve a map as a list of tuples in a
multidimensional space S.

If the map is RC = {(d1, . . . , dn), di ∈ Di}, then the storage magnitude
is of order n · θ · |RC |, where n is the number of dimensions, θ is an average
storage size for one identifier (of a dimension element or a dimension segment).

Segmentation approach: We will preserve a map as tuples of segment
identifiers and the space segmentation as pairs (dimension element, segment
identifier) for each dimension.

The storage magnitude is of order n · θ · |L| + 2θ ·
n
∑

i=1

|Di|.

We do some computations in a real life information system. Here are the
results for a typical OLAP cube from that system with 9 dimensions (see Table
1) and 6 business rules:

n = 9, |RC | = 218, 854, 686, 744, |L| = 248,
∑n

i=1 |Di| = 650,
n · |RC | = 1, 969, 692, 180, 696, n · |L| + 2

∑n

i=1 |Di| = 3, 532.

Table 1. Sample cube dimensions
Dimension name Cardinality
Company 6
Product 296
Channel 10
Geography 246
Gender 3
Partytype 3
Age 12
Branch of business 62
Deposit Size 12

A MODEL OF REGULAR SPARSITY 207

Set operation computation
When the number of arguments of operations with sets is too great, in order
to perform the entire operation in the operation memory one has to use algo-
rithms which read and write information in the much slower external memory.
On the one hand, this makes them less efficient by order than the operation
which are performed entirely in the operation memory. On the other hand,
the increase in the number of arguments leads to an increase in the number of
necessary input-output operations, which is why these algorithms are strongly
sensitive to the number of arguments.

With the point-by-point approach due to the large number of arguments
— of order |RC | — it is very easy to exceed this critical threshold.

With the segmentation approach the number of arguments is of order |L|.

6 Conclusions

Sparsity refers to a natural phenomenon evident in all multidimensional data
to some degree: not all of the cells in the logical cube will ever contain data. It
is very common for a relatively small percentage of the possible combinations
to actually store data. To provide a practical baseline expectation for spar-
sity, the authors in [10] examine data sparsity in a variety of industry-specific
models including insurance claim analysis, telecom call analysis, revenue-per-
user-analysis and a medical device company’s sales analysis. The research
shows that data density in all cases is significantly less than 1 percent - i.e.,
extremely sparse.

Cube sparsity causes the data explosion problem and has many impacts
on the storage size, calculations, loading and query performance. The current
methods for overcoming of data explosion work mainly on physical level and
do not take into account the nature of sparsity. In [5] we discuss an idea of
the regular sparsity map in order to avoid some difficulties related to the user
requirements and the high-dimensionality of the requested reports. Then in
[4] we formally define the “regular sparsity map” object and investigate the
possible object application. Here, we present a model of map representation
that allows practical implementation of set operations between a map object
and rectangular domains over a multidimensional space. By virtue of this
model we are in the process of regular sparsity map applications development.

References

[1] A. Casali, R. Cicchetti, L. Lakhal, Cube lattices: a framework for multidi-

mensional data mining, in: Proceedings of the 3rd SIAM International Confer-
ence on Data Mining, San Francisco, California, USA, May 2003, pp. 304–308.

208 INA NAYDENOVA, ZLATINKA COVACHEVA AND KALINKA KALOYANOVA

[2] S. Chaudhuri, U. Dayal, An overview of data warehousing and OLAP tech-

nology, SIGMOD Record, 26 (1997), 65–74.

[3] M. Gyssens, L. V. S. Lakshmanan, A foundation for multi-dimensional

databases, in: Proceedings of 23rd International Conference on Very Large Data
Bases, Athens, Greece, August 1997, pp. 106–115.

[4] I. Naydenova, Regular sparsity map, submitted to Information Technologies
and Control magazine, Bulgaria, November 2008.

[5] I. Naydenova, K. Kaloyanova, Some extensions to the multidimensional

data mode, in: Proceedings of the IEEE John Vincent Atanasoff 2006 Interna-
tional Symposium on Modern Computing, Sofia, Bulgaria, October 2006, pp.
63–68.

[6] T. B. Nguyen, A. M. Tjoa, R. R. Wagner, An object oriented multidimen-

sional data model for OLAP, in: Proceedings of the First International Confer-
ence on Web-Age Information Management, Shanghai, China, June 2000, pp.
69–82.

[7] D. Pedersen, K. Riis, T. B. Pedersen, A powerful and SQL-compatible data

model and query language for OLAP, in: Proceedings of the 13th Australasian
Database Conference, Melbourne, Australia, January 2002, pp. 121–130.

[8] N. Pendse, The OLAP Survey 6, http://www.survey.com/olap/, 2006, 21 pp.

[9] N. Pendse, The problems with OLAP, DM Review Magazine, March 2007.

[10] J. Potgieter, OLAP data scalability, DM Review Magazine, October 2003.
Available at: http://www.dmreview.com/dmdirect/20031031/7636-1.html

Ina Naydenova
Institute for Parallel Processing
Bulgarian Academy of Science, Sofia, Bulgaria
e-mail: naydenova@gmail.com

Zlatinka Covacheva
Higher College of Technology, Muscat, Oman &
Higher College of Telecommunications and Post, Sofia, Bulgaria
e-mail: zkovacheva@hotmail.com

Kalinka Kaloyanova
”St. Kliment Ohridski” University of Sofia
Faculty of Mathematics and Informatics, Sofia, Bulgaria
e-mail: kkaloyanova@fmi.uni-sofia.bg

