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COMPUTING THE RELIABILITY OF

SYSTEMS WITH STATISTICAL

DEPENDENT ELEMENTS

Doina Perpelea

Abstract

Starting from the structure function of a coherent system S, un-

der the disjunctive-conjunctive form, Φ(x1, x2, ..., xk) =
m
∨

j=1

lj

∧
i=1

xji
and

the vector’s probability distribution T = (T1, ..., Tk) that represents
the system’s elements reliability or the distributions of the variables
Ti conditioned by the variables Tj , j 6= i, one determines a procedure of
estimating the variable’s probabilities TS = max

j=1,m

{ min{Ti}}
i∈{j1,...,jlj

}

which rep-

resent the reliability of the system. The procedure is based on the
Metropolis-Hastings or Gibbs algorithms for the generation of selection
values of vector T . One also proposes a method of approximate gen-
eration of the random variables with continuous and limited density, a
useful method in generating the Gibbs selections.

1 Introduction

The mathematical description of the reliability of a system can be carried out
on a global level, ignoring the structure of the system, or on the structural
level, taking into consideration the elements of the system and the relations
among them (see [1], [3], [4], [5]). The reliability study on the structural level
aims at establishing a relationship between the reliability of the system and the
reliability of its elements. In the reliability statistical study, the functioning

Key Words: reliability function; estimate; Monte Carlo methods; Markov chains.
Mathematics Subject Classification: 60J10, 62M05, 65C05
Received: March, 2009
Accepted: September, 2009

155



156 Doina Perpelea

durations of the system’s elements, or the system functioning duration, are
described by random variables that are denominated as functions of reliability.
Further on, we consider a system with k elements and we note with Ti(i =
1, 2, ..., k) the reliability function of ith component and with TS the reliability
function of the system S. One associates to each component i, i = 1, 2, ..., k a
binary variable xi, so that:

xi =

{

1 if component i works

0 if component i is defective,

for i = 1, 2, ..., k.

Similarly, we associate to the system a binary variable S (state variable) as it
follows:

S =

{

1 if the system works

0 if the system is defective

With the above notations, the relation between the system state and the com-
ponents of the system can be expressed by a Boolean function, that we call
the structure function, thus:

S = Φ(x1, x2, ..., xk). (1)

Similarly one can define a functional relation between the reliability function
TS of the system and the reliability functions Ti(i = 1, ..., k) of the components:

TS = ξ(T1, ..., Tk). (2)

A system whose components are related in series, which, from the reliabil-
ity point of view means that the system works if and only if all its components
work, has the structure function Φ(x) = x1∧x2∧ ...∧xk, (x = (x1, x2, ..., xk)),
and the reliability function TS = min(T1, ..., Tk). A system whose compo-
nents are related in parallel, which, from the reliability point of view means
that the system works if and only if one of its components works, has the
function of structure Φ(x) = x1 ∨ x2 ∨ ... ∨ xk, and the reliability function
TS = max(T1, ..., Tk).

One calls route, a vector x, x = (x1, x2, ..., xk) for which Φ(x) = 1 and it
corresponds to crowd C(x) = {i, xi = 1}. A route x is minimal if whatever
would be y < x we have Φ(y) = 0, where y < x means yi ≤ xi, i = 1, 2, ..., k
cu yi < xi for a certain i. Physically, a minimal route is a minimal crowd of
elements whose functioning assures the functioning of the system.

The structure function is under the disjunctive-conjunctive form if
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Φ(x1, x2, ..., xk) =
m
∨

j=1

lj
∧

i=1
xji

, (3)

where conjunctions

lj
∧

i=1
xji

, j = 1, ...,m

are determined by crowds C(x) of the minimal routes.
In other words, the system is functioning if there is j ∈ {1, ...,m} and

xji
= 1, i ∈ {1, ..., lj}. Therefore, the system functions if for at least a minimal

route x all the elements xi, i ∈ C(x), function.
If the random variable Ti represents the functioning time of the element i,

i = 1, 2, ..., k, then out of the relation (3) it results that, on the moment t, the
system works if

max
j=1,m

{min{Ti}} > t
i∈{j1,...,jlj

}

. (4)

Thus, the random variable TS = max
j

{min
i
{Ti}} represents the functioning

time of the system and on moment t

Φ(x1, ..., xk) =

{

1 if TS > t

0 if TS ≤ t.

The independence hypothesis of the random variables Ti leads to mod-
els for which the probability calculus P (TS > t), that represents the system
reliability, depending on the probabilities P (Ti > t), i = 1, 2, ..., k, is calcu-
lated according to well-defined procedures depending on the system structure
function and the probabilities of the reliability functions of the elements (see
[1], [3], [5]). Unfortunately there is a large range of systems for which the
independence hypothesis within the defecting time does not concord with re-
ality, the defecting time of an element being dependent on the functioning or
non-functioning of other elements. For example, for elements related in par-
allel and that perform the same task, the falling of one of them may lead to
overload for the others and shortens the defecting time.

In general, the probability calculus of variable TS defined by relation (4)
through analytical means becomes complicated because both of the depen-
dency structure between the variables of T = (T1, ..., Tk) and the structure
function Φ.

Monte Carlo methods offer a solution of estimating the probabilities of TS

when one knows the repartition of vector T or the conditioned repartitions of
components of T .
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What is new in this paper is the application of Markov Chain Monte Carlo
methods (MCMC) for computing the reliability systems with statistic depen-
dent elements. For reliability distributions having characteristic proprieties
(continuous and bounded on the positive real numbers) the Metropolis algo-
rithms used in the general case, (see [7], [14]) are adjusted for those target
distributions (see Section 3, Algorithm 2). In this case it is established a
proposed distribution which is valid for all reliability distributions and it is
demonstrated the correctness of the algorithms for this distribution (see Sec-
tion 3, Proposition 1). In the practical cases it is easier to establish the density
of Ti for an element i, conditioned by the rest of the elements and Gibbs algo-
rithms (see [7], [14]) if there is a procedure to obtain samples from conditional
distributions. The Theorem 2, Section 4, is useful to construct the Algorithm
5 which in combination with Gibbs algorithms makes possibly the employ-
ment of Gibbs algorithm in general case. The Theorem 1, Section 2, proves
the correctness of the Algorithm 1 which constructs estimations for reliability
function with specified accuracy. In the exposed example are compared the
histograms for the samples from normal distribution generated with rejection
algorithm (see [10], [11]) and Algorithm 5, Section 4. It is also exposed the
result of the T test.

2 Reliability calculus through Monte Carlo methods

One considers ξ the real function defined on Dk, with D the positive real axis,
according to the law

ξ(t1, ..., tk)
def
= max

j=1,m
{ min{ti}}

i∈{j1,...,jlj
}

, ti ∈ D, i = 1, ..., k, (5)

and (ts1, ..., t
s
k), s = 1, 2, ..., n, are n Bernoulli selection values on the random

vector T = (T1, ..., Tk). It results that the value t∗s = ξ(ts1, ..., t
s
k), s = 1, 2, ..., n,

represent a Bernoulli selection of volume n on the random variable TS which
gives the defecting time of the system.

For p(t) = P (TS > t), the probability of functioning of the system on
moment t, t > 0, the statistics

p̂(t) =
1

n

n
∑

s=1

λ(t,∞)(t
∗
s), (6)

with λA as the indicator function, represents an unbiased estimate of the
parameter p(t) ( see [8], 14]); moreover the variance of p̂(t),D2(p̂(t)) is given
by the relation
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D2(p̂(t)) =
1

n
p(t)(1 − p(t)) =

1

n
p(t) · q(t), (7)

i.e. the product between the defecting probability and the non-defecting prob-
ability divided by the volume of selection.

In the hypothesis that one knows a procedure of generating the Bernoulli
selection values ts = (ts1, ..., t

s
k) using the repartition of the vector T = (T1, ..., Tk),

it results the following algorithm of approximate calculus of the value p(t) that
represents the probability that the system functions on the moment t.

Algorithm 1 1. Initial n := 0; p̂ := 0; K = 1/(ε2 · α) /α a small positive
real number and α a small probability / ;

2. As long as n ≤ K is achieved n := n + 1; generation of (tn1 , ..., tnk ),
independently of previous generations; one calculates

t∗n = ξ(tn1 , ..., tnk );

p̂ := p̂ + λ(t,∞)(t
∗
n);

3. Output p̂ := p̂/n.

Theorem 1 Algorithm 1 calculates an estimate of p(t) with a smaller error
than ε on a safety coefficient of 1 − α.

Proof. From the Steps 1 and 2 of the Algorithm 1, it results that

p̂ =

n
∑

s=1

λ(t,∞)(t
∗
s). (8)

The probability with which λ(t,∞)(t
∗
s) equals 1 is

P (λ(t,∞)(t
∗
s) = 1) = P (TS > t) = p(t). (9)

Out of the variables’ independence t∗1, ..., t
∗
n and identically their repartition,

it results that
∑n

s=1 λ(t,∞)(t
∗
s) is a random variable distributed binomially by

parameters n and p(t).
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So, P (
∑n

s=1 λ(t,∞)(t
∗
s) = k) = Ck

np(t)kq(t)n−k, from where the variance is

M(

n
∑

s=1

λ(t,∞)(t
∗
s)) = np(t)

and the dispersion is D2(
∑n

s=1 λ(t,∞)(t
∗
s)) = np(t)q(t)

After achieving Step 3, p̂ = 1
n

∑n
s=1 λ(t,∞)(t

∗
s) and M(p̂) = p(t),

D2(p̂) =
p(t)q(t)

n
<

1

n
.

Out of the inequality of Markov (see [8])

P (|p̂ − p(t)| ≤ ε) ≥ 1 −
p(t)q(t)

ε2n
≥ 1 −

1

ε2n
. (10)

Out of Step 2, n ≥ 1
ε2α , so 1

ε2n ≤ α.

But 1 − 1
ε2n ≥ 1 − α and relation (10) it results P (|p̂ − p(t)| ≤ ε) ≥ 1 − α.

Remark 1 Algorithm 1 determines a value of n covering through the increase
of dispersion D2(p̂) with 1

n , p(t)q(t) < 1. A smaller value of n in order to
determine the same precision and with the same safe coefficient can be achieved
if one approximates p(t)q(t) with p̂(1 − p̂).

If f(x1, ..., xk) is the repartition density of the vector T = (T1, ..., Tk), a
general procedure of (t1, t2, ..., tk) after the repartition f is the one given by
the rejecting-accepting method exposed in [10],[11]. Considering that Ti ≥ 0,
i = 1, 2, ..., k, a repartition h(x1, ..., xk) which wraps up f on the domain
Dk, D = (0,∞), could be the repartition product of k independent random
variables with values on the domain (0,∞). As an example,

h(x1, ..., xk) =
k

∏

i=1

λie
−λixi , λi > 0, xi > 0, (11)

which is the density of k independent random variables distributed exponen-
tially, for which there are a lot of generating algorithms.

The use of this method is conditioned by two aspects
1. Determining a wrapping up h and a constant M for which Mh ≥ f ;
2. The number of selection values with repartition h rejected until one

accepts one generally increases at the same time with the vector’s dimension.
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3 Using MCMC methods

Markov Chain Monte Carlo methods (MCMC) offers an extremely generous
alternative which is applied to a wide range of target repartitions, repartitions
after which one desires to generate random vectors. One build further on a
variant of the algorithm Metropolis-Hastings (see [7], [14]) applicable for the
definite repartitions on Dk, D = (0,∞), which admit repartition density as
against the Lebesque measure defined on Dk.

One consider Dk with σ-the body defined by the Borelien crowds from Dk

and Lebesque measure ℓk. On Dk one considers a Markov kernel defined by
a density h(x, y) for which there are procedures of selection generation with
densities h(x, .) whatever x would be fixed. The repartition defined by h(x, .)is
called proposed repartition.
As an example, h(x, y) =

∏k
i=1

1
xi

e−yi/xi , for x = (x1, ..., xk), xi > 0, i =
1, 2, ..., k; y = (y1, ..., yk), yi > 0, i = 1, 2, ..., k.
One generates a Markov chain with Algorithm 2, chain which has the space
of states Dk, is ergodic with invariant (stationary) repartition defined by the
density of probabilityf . The repartition defined by f is called target repartition
and represents the repartition according to which one desires the selections
obtaining.

Algorithm 2 1. One chooses arbitrarily an initial value x1.
2. Given xi, one generates x with repartition h(xi, ·).

One puts

xi+1 =







x with probability α(xi, x)
def
= f(x)h(x,xi)

f(xi)h(xi,x) ∧ 1

xi on the contrary.
(12)

Proposition 1 If the target repartition has the density of probability f posi-
tive and continuous on Dk, then the Markov chain generated by Algorithm 2
with the proposed repartition h continuous and positive, is ergodic and has a
stationary repartition whose density is f .

Proof. The nucleus of the chain passing generated by Algorithm 2 is

K(x,A) =

∫

A

α(x, x′)h(x, x′)ℓk(dx′) + 1x(A)

∫

[1 − α(x, x′)]h(x, x′)ℓk(dx′)

with α(x, x′) = f(x′)h(x′,x)
f(x)h(x,x′) ∧ 1.
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The chain is ℓk- irreducible (see [7], [9], [14]) because f and h are positive.
The chain with the kernel K is reversible and the repartition with density f is
invariant. Since f and h are continuous and positive, it results that the chain
is aperiodic. Out of irreducibility, invariance of f and aperiodicity, it results
that the chain is ergodic (see [2], [9], [12], [14]).

Moreover the Proposition 1, it results the next algorithm of generating the
Bernoulli selections of volume n for the random vector T = (T1, ..., Tk) with
the known repartition density f , continuous and positive.

Algorithm 3 1. One generates Markov Chain {xi}i≥0 with Algorithm 2 us-
ing the target repartition with f density and the h proposed repartition ;

2. One considers the selection values of vector T = (T1, ..., Tk) as being
ts = xm0s+n0 .

In the Algorithm 3, the number n0 is determined through statistic means
and represents the moment when the chain {xi}i≥0 is considered in the equi-
librium state, and m0 is determined through statistical means so that to de-
termine the independence between {ts}s≥0.

The statistical determination of the repartition f of the vector T = (T1, ..., Tk),
in many practical cases, becomes difficult, due to the fact that one must mon-
itor the functioning of the system as a whole, eventually on subcrowds of
elements which correlate among themselves. Practically, from the statistical
point of view it is easier for one to observe the behaviour of an element depend-
ing on those elements which could influence its reliability function. Thus, from
a statistical point of view for an element i it is much easier for one to deter-
mine the function fi of density of Ti, conditioned by the rest of the elements;
considering its dependence on a restrained number of elements. Knowing some
selection generation procedures with densities fi it makes possible the selec-
tion generation of vector T = (T1, ..., Tk) with Gibbs’s algorithm (see [7], [14]).
Thus, one generates an ergodic Markov Chain having as stationary repartition
the repartition of the vector T , after the following algorithm.

Algorithm 4 Starting from an arbitrary initial state x1, one brings up-to-
date the current state xi = (xi

1, ..., x
i
k) to a new state xi+1 as it follows.

For j = 1, ..., k: one simulates xi+1
j from fj(·/xi+1

1 , ..., xi+1
j−1, x

i
j+1, ..., x

i
k).

By applying Theorem 2 from the next section, of approximating the definite
continuous functions on (0,∞) with the average of some Poisson repartitions,
the Algorithm 4 becomes an applicable general algorithm, by eliminating the
issue of having a generation procedure following the conditioned repartitions.
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Practically, when lacking a generation procedure according to density fi, den-
sity fi is approximated with a mixture of repartitions for which there are
simple algorithms to be generated, for example the Algorithm refal5 (in the
next section).

4 Approximation of continuous functions by medium val-

ues

The main objective is to approximate the value of f(x), with x real number,
x > 0, of a real continuous and bounded function f , through the sum

fn(x) =
∑

k≥0

qk,n pk,n(x), (13)

where

qk,n =
1

n
f(k/n) (14)

and

pk,n(x) = n
(nx)k

k!
e−nx . (15)

The function pk,n(x) represents the density of a random variable Zk = Yk/n
and the variable Yk is an Erlang random variable with parameter k + 1.
Thus, for

∑

k≥0
qk,n = 1, the function fn(x) is the density of a random variable

X which is a mixture of random variables Zk and selections of X are generated
on computer through a simple procedure (see [10],[11]).

Theorem 2 (see [13]) If

f : [0,∞) → (−∞,+∞)

is a continuous and bounded function, then for all x>0,

lim
n→∞

fn(x) = f(x).

For a density function of repartition f : [0,∞) → (0,+∞) there is a real
number r so that

∫ ∞

r
f(x)dx < ε, for a small ε. Then f(x) can be approxi-

mated through f∗
n(x) =

∑s
k=0 f(k/n)

(nx)k

k!
e−nx for the integer numbers n and

s. Since
∫ ∞

0
pk,n(x)dx =

∫ ∞

0
yk

k!
e−y dy = 1 and 1

n

∑s
k=0 f(k/n) ≈

∫ s
n

0
f(x)dx

it results that for s/n > r and qk = qk,n/
∑s

k=1 qk,n, pk(x) = pk,n(x),
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k = 1, . . . , s the function p(x) =
∑s

k=1 qkpk(x) approximates the function
f(x) and p(x) is the density of a random variable X.

The following procedure results for the generation of random numbers with
the distribution density p:

Algorithm 5 1. One generates a whole random number k with a probability
qk.

2. One generates a random number Yk for the density function of distrib-
ution Erlang with parameter k + 1.
(Example, Yk = − ln

∏k
i=0 Ui with Ui random numbers uniformly independent

on interval (0, 1)).
3. Number X = Yk/n will be a random number with the density function

of p distribution.

Example 1 The histograms for the samples from normal distribution gener-
ated with rejection algorithm and Algorithm 5.

One generated 1000 selection values for the normal standard distribution
through a rejection algorithm and Algorithm 4 and one presents further on
the tables of frequencies, the histograms and the t statistics probability.

The table of frequency and the histogram of 1000 random values generated
by the rejection algorithm.

-3 0
-2,8 3
-2,6 0
-2,4 3
-2,2 4
-2 5
-1,8 15
-1,6 17
-1,4 29
-1,2 35
-1 48

-0,8 52
-0,6 58
-0,4 77
-0,2 75
0 70
0,2 75
0,4 72
0,6 69
0,8 59
1 64
1,2 49

1,4 40
1,6 27
1,8 14
2 15
2,2 13
2,4 5
2,6 3
2,8 2
3 1

1
1000
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The table of frequency and the histogram of 1000 random values generated
by the procedure of approximation.

-3 1
-2,8 0
-2,6 5
-2,4 2
-2,2 3
-2 5
-1,8 13
-1,6 21
-1,4 21
-1,2 26
-1 37
-0,8 57
-0,6 71
-0,4 83
-0,2 86
0 76
0,2 62
0,4 86
0,6 70
0,8 50
1 48
1,2 51
1,4 42
1,6 24
1,8 18
2 16
2,2 8
2,4 7
2,6 6
2,8 1
3 2

2
1000

The value of the two queues of the T statistics of the T test of homogeneity,
for the generated data is: 0,418013
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