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Bifurcation and numerical study in an EHD
convection problem

Ioana DRAGOMIRESCU

Abstract

A bifurcation study for the eigenvalue problem governing the sta-
bility of an oil insulated layer [7] in an EHD convection problem is
performed. The analytical and numerical study is then completed us-
ing a Galerkin type spectral method based on Legendre and Chebyshev
polynomials, leading to good numerical results.

1 The physical problem

The investigated physical model is one of the two EHD models of Roberts
[10], based on the Gross’experiments [7] which are concerned with a layer of
insulating oil confined between two horizontal conducting planes and heated
from above and cooled from below. The experimental investigations showed
that the presence of a vertical electric field of sufficient strength across the
layer, lead to a tesselated pattern of motions, in a manner similar to that of
the classical Bénard convection [13]. Gross [7] suggested that this phenomenon
may be due to the variation of the dielectric constant of the fluid with the
temperature.

In the first model investigated by Roberts [10] the dielectric constant is
allowed to vary with the temperature. The homogeneous insulating fluid is
assumed to be situated in a layer of depth d (the fluid occupies the region
between the planes z = ±0.5d, which are maintained at uniform but different
temperatures), with vertical, parallel applied gradients of temperature and
electrostatic potential. The uniform electric field is applied in the z direction.
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For a constant density, ρ0, Newtonian fluid (apart from the thermal buoy-
ancy term) the momentum, the continuity and the energy equations governing
the temperature field are⎧⎨⎩

ui,t + ujui,j = gi + ν∆ui,
ui,i = 0,
T,t + uiT,i = κ∆T,

(1)

where ui,t ≡ ∂ui

∂t
, ujui,j ≡ uj

∂ui

∂xj
, T,t ≡ ∂T

∂t
.

The physical parameters have the following meanings: κ is the thermal
diffusivity coefficient, ν is the viscosity,

gi = −w,i − E2

8πρ0
(
∂ε

∂T
)ρT,i − g[1 − α(T − T0)]ki,

with g representing the gravity, α the thermal expansion coefficient, k =

(0, 0, 1), w =
p

ρ0
− E2

8π
(

∂ε

∂T
)ρ, ρ is the density, ε given for an isotropic ma-

terial by D = εE, where D the electric displacement and E the electric field.
The unknown fields are the velocity field u, the pressure p and the temperature
T .

For an analysis based upon normal mode representations, the equation
governing the EHD convection is [13]

(D2 − a2 − σ)(D2 − a2 − Prσ)(D2 − a2)2F = La4F − Raa2(D2 − a2)F (2)

with the boundary conditions on F

F = D2F = D(D2 − a2 − Prσ)F = 0

((D2 − a2)(D2 − a2 − σ)(D2 − a2 − Prσ) + Raa2)(DF ± kaF ) = 0
at z = ±0.5.

(3)
Here, the unknown function F is the amplitude of the temperature pertur-

bation Θ, i. e. Θ = F (z)e(i(lx+my)+st), Pr is the Prandtl number, k =
εm

ε̂
,

with εm the value of the dielectric field at the temperature Tm = 0 and ε̂ the

electric constant of the solid in z >
1
2
, a is the wavenumber, a2 = l2 + m2,

Ra is the Rayleigh number, L is a parameter measuring the potential differ-
ence between the planes. Roberts [10] investigated only the stationary case,
i.e. σ = 0, so the eigenvalue problem consists from an eight-order differential
equation

(D2 − a2)4F − La4F + Raa2(D2 − a2)F = 0 (4)
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and the boundary conditions

F = D2F = D(D2−a2)F = ((D2−a2)3 +Raa2)(DF ±kaF ) = 0 at z = ±0.5.
(5)

He found that when the smallest Rayleigh number, Ramin = mina Ra(a), varies
from −1000 to 1707.762, L decreases from 3370.077 to 0.

The second model [10] was also been investigated by Turnbull [14], [15].
In this case, the variation of the dielectric constant is not important but the
fluid is weakly conducting and its conductivity varies with temperature.

The eigenvalue equation has the form [13]

(D2 − a2)3F + Raa2F + Ma2DF = 0 (6)

with M a dimensionless parameter measuring the variation of the electrical
conductivity with temperature. The boundary conditions, written for the case
of rigid boundaries at constant temperatures, read

F = D2F = D(D2 − a2)F = 0 at z = ±0.5 (7)

P.H. Roberts [10] found that when M is increasing from 0 to 1000, Ramin is
increasing from 1707.062 to 2065.034.

B. Straughan [13] also investigated these EHD convection problems, devel-
oping a fully nonlinear energy stability analysis for non-isothermal convection
problems in a dielectric fluid.

2 The bifurcation analysis

The linear stability of the motion or the equilibrium of a fluid in many problem
from hydrodynamic, electrohydrodynamic or hydromagnetic stability theory is
governed by a linear higher-order ordinary differential equation with constant
coefficients and homogeneous boundary conditions. The exact solution of such
equations or, for the case of eigenvalue problems, the exact eigenvalues are
most of the times impossible to find. That is why, numerical methods, usually
implying an infinite number of terms, leading however to an approximative
solution by some specific truncations to a finite number of terms, are used.
However, the theoretical methods can impose restrictions regarding to the
numerical results.

For the considered problem let us introduce the direct method [4] based
on the roots of the characteristic equation.

The characteristic equation associated to (6) is

(λ2 − a2)3 + Ma2λ + Raa2 = 0 (8)
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The general form of the solution of the two-point problem (6) -(7) is writ-
ten in terms of the roots of the characteristic equation (8) associated with the
differential equation (6). In addition, this form depends on the multiplicity of
the characteristic roots. Introducing the general solution into the boundary
conditions, the secular equation is obtained and it depends on the multiplic-
ity of the characteristic roots. As a consequence, the secular equation has
different forms in different regions of the parameter space. Each eigenvalue
is a solution of the obtained secular equation, so the eigenvalue depends on
all other physical parameters. The neutral manifolds (the most convenient
manifolds from the physical point of view), generated by the secular equation
separate the domain of stability from the domain of instability.

Let us consider the general case when the roots of the characteristic equa-
tion λ1, λ2, ..., λ6 are distinct. Then the general solution of (6) has the form

F (z) =
6∑

i=1

Aie
λiz . Introducing it into the boundary conditions (7) we obtain

the secular equation [2]
∆(a, M, Ra) = 0, (9)

where ∆ is a determinant. Its i-th column has the same form in λi as any
other j-th column in λj . If λi = λj , then the i-th and the j-th columns in ∆
are identical. Therefore ∆ ≡ 0. In fact, in this situation, (9) is not entitled to
serve as a secular equation and the direct numerical computations is invalid. In
fact, when the characteristic equation has multiple roots the straightforward
application of numerical method can lead in some cases to false secular points
[4]. When M �= 0, some particular cases interesting from the bifurcation point
of view, arise due to the existence of bifurcation sets of the characteristic
manifold.That is why, these cases have been investigated separately.

Proposition 1 For M = 0, the only secular points are those situated on

NSn : Ra =
((2n − 1)2π2 + a2)3

a2
, ∀n ∈ N.

Proof.
For M = 0, the characteristic equation (8) reduces to

(λ2 − a2)3 + a2 = 0, with a2 = Raa2. (10)

In this classical case [1], the roots of (10) have the form

λ1,2 =
√

a2 + 3
√−a2ε1,2, λ3 =

√
a2 + 3

√−a2,

λ4 = −λ1, λ5 = −λ2, λ6 = −λ3
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so the general solution of (6) has the form

F =
3∑

i=1

Ai cosh(λiz) + Bi sinh(λiz).

Replacing the solution F into the boundary conditions (7), we get the secular
equation

∆ =

0 0 0 m1 m2 m3

1 1 1 0 0 0
0 0 0 λ2

1m1 λ2
2m2 λ2

3m3

λ2
1 λ2

2 λ2
3 0 0 0

−λ1µ1m1 −λ2µ2m2 −λ3µ3m3 0 0 0
0 0 0 λ1µ1 λ2µ2 λ3µ3

= 0,

(11)
with mi = tanh(λi/2), µi = λ2

i − a2, i = 1, 2, 3.
When cosh(λi/2) �= 0, i = 1, 2, 3, we can rewrite the secular equation as

∆ = ∆1 ·∆2 with ∆1 = λ1µ1m1(λ2
2−λ2

3)+λ2µ2m2(λ2
3−λ2

1)+λ3µ3m3(λ2
1−λ2

2)
and ∆2 = λ2

1m1(λ3µ3m2−λ2µ2m2)+λ2
2m2(λ1µ1m3−λ3µ3m1)+λ2

3m3(λ2µ2m1−
λ1µ1m2). For a > 0, the equations ∆1 = 0 and ∆2 = 0 have only null solutions
R = 0, so no secular points exists on these surfaces.

The condition cosh(λi/2) �= 0, i = 1, 2, 3 is not fulfilled only for i = 3, i.e.
cosh(λ3/2) = 0 ⇔ cos(λ3/2) = 0 ⇔ λ2

3 = −(2n−1)2π2, which implies that the
secular curve is NSn. And, indeed, the critical values of the Rayleigh number
Ra belong to NS1 only, identical to the classical one from Chandrasekhar [1].

Let us consider the surface S0 defined by the points (a, M, Ra) = (a, M, a4).
In this case we have the following result.

Proposition 2 Let us define the surfaces

Si : M =
(33 ∓ 3

√
21)

√
90 ± 10

√
21a3

250
, i = 1, 2.

The surface S0∩Si, i = 1, 2, is a bifurcation set of the characteristic manifold
defined by (8). The points on S0 ∩ Si, i = 1, 2, are not secular.

Proof. If (a, M, Ra) ∈ S0 then Ra = a4 and one of the roots of the charac-
teristic equation is, for instance, λ1 = 0. Assuming that M �= 0 and that the
wavenumber a is also a positive number, a > 0, λ1 is not a double root of (8).
The search of multiple roots reduces then to the equation

λ5 − 3λ4a2 + 3λ2a4 + Ma2 = 0. (12)
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No multiple roots of algebraic multiplicity order greater than 2 exists. The
double roots of (12) must also be roots of its derivative. In these conditions the

possible double roots are λ2,3 = λ = − 1
10

√
90 ± 10

√
21a only for (a, M, Ra) ∈

Si, i = 1, 2, i.e. the surfaces S0 ∩ Si, i = 1, 2, are bifurcation sets for the
characteristic equation (8). In the case of multiple roots, the general form of

the solution of (6) is F (z) =
n∑

i=1

Pi(z)eλiz , where Pi is an algebraic polynomial

of mi − 1 degree, mi being the algebraic multiplicity of λi, in our case F (z) =

A + (B + Cz)eλz +
6∑

i=4

Aie
λiz.

Formally, the secular equation is deduced from (9), by writing the column i
for λi while the columns i+1, i+2,..., i+mi−1 are obtained by differentiating
l, l = 1, 2, ..., mi −1 times the (i+ l)-th column of (9) with respect to λi+l and
then replacing λi+l by λi.

However, the numerical evaluations show that secular points exists on these
surfaces.

3 Study based on spectral methods

The second part of our study regards the numerical treatment of the two-point
problem (6) - (7) using spectral methods.

Large classes of eigenvalue problems can be solved numerically using spec-
tral methods, where, typically, the various unknown fields are expanded upon
sets of orthogonal polynomials or other orthogonal functions. The convergence
of such methods is in most cases easy to assure and they are efficient, accu-
rate and fast. Our numerical study is performed using a weighted residual
(Galerkin type) spectral method.

Introducing the new function U = (D2 − a2)F , the generalized eigenvalue
problem ⎧⎨⎩

(D2 − a2)2U = −Raa2F − Ma2DF,
(D2 − a2)F = U,
F = U = DU = 0 at z = ±0.5

(13)

is obtained. Following [8], we consider the orthogonal sets of functions

{φi}i=1,2,...,N : φi(z) =
∫ z

−0.5 L∗
i (t)dt, verifying φi(±0.5) = 0,

{βi}i=1,2,...,N : βi(z) =
∫ z

−0.5

∫ s

−0.5
L∗

i (t)dtds,

verifying
βi(±0.5) = Dβi(±0.5) = 0,



Bifurcation and numerical study 53

with L∗
i = Li(2x) the shifted Legendre polynomials on (−0.5, 0.5) and Li the

Legendre polynomials on (−1, 1).
The unknown functions from (13), U, F , are written as truncated series of

functions βi, and, respectively φi,

U =
N∑

i=1

Uiβi(z), F =
N∑

i=1

Fiφi(z).

The boundary conditions on U and F are automatically satisfied. Replacing
these expressions in (13), imposing the condition of orthogonality on the vec-
tors (βk, φk)T , k = 1, 2, ..., N , we get an algebraic system in the unknown, but
not all null, coefficients Ui, Fi. The secular equation, written as the deter-
minant of the obtained algebraic system, gives us the values of the Rayleigh
number as a function of the other physical parameters. The smallest values
of the Rayleigh number for various values of the parameters a and M form
the neutral surface that separates the domain of stability from the instability
domain. All the expression of the scalar products resulting in the algebraic
system are given in [3] for the case of shifted Legendre polynomials on (0, 1),
but they are easy to adjust to the interval (−0.5, 0.5). The specific choice of
basis functions led to sparse matrices, with banded sub-matrices of dimension
N × N .

The numerical evaluations of the critical Rayleigh numbers were obtained
for a small number of terms N (N = 6) in the truncated series confirming the
well-known accuracy of spectral methods. We obtained that critical values of
Ra are increasing from 1734.120 to 2082.808 when M is increasing from 0 to
1000, similar to the ones of Roberts [10].

The unknown vector fields from (13) can also be expanded upon complete
sequences of functions in L2(−0.5, 0.5) defined by using Chebyshev polynomi-
als that satisfy the boundary conditions of the problem. Keeping the above no-
tations, the functions φi, i = 1, 2, ..., N, are defined by φi(z) = T ∗

i (z)−T ∗
i+2(z)

and βi, i = 1, 2, ..., N, by βi(z) = T ∗
i (z) − 2(i + 2)

i + 3
T ∗

i+2(z) +
i + 1
i + 3

T ∗
i+4(z) [12]

with T ∗
i , i = 1, 2, ..., N , the shifted Chebyshev polynomials on (−0.5, 0.5)

defined in a similar manner as the shifted Legendre polynomials. All the
evaluations of the scalar products were based on the orthogonality relations∫ 0.5

−0.5

T ∗
n(z)T ∗

m(z)w∗(z)dz =

{ π

2
cnδnm, if i = j,

0, if i �= j,
(14)

with respect to the weight function w∗(z) =
1√

1/4 − z2
.
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a M Ra − SLP Ra − SCP
3.117 0 1734.120 1775.955
3.117 10 1734.154 1775.987
3.117 1000 2082.802 2100.935
1.5 0 3116.286 31199.286
1.5 5 3116.381 3199.289
10 0 11409.157 14909.559
10 100 14414.05 14419.963
10 500 14531.694 14994.747
20 0 166779.036 182878.881

Table 1: Numerical values for the Rayleigh number for various values of the
parameters a, M obtained by spectral methods based on shifted Legendre
(SLP) and shifted Chebyshev (SCP) polynomials.

The numerical results were obtained for a larger number of terms in the ex-
pansion sets (N = 11) and they show that the shifted Legendre based method
is more effective in this case. We can mention that the Chebyshev polynomials
are considered suitable more likely for the tau method or the collocation type
methods. Some numerical evaluations of Ra as a function of a and M are
given in Table 1.

Other sets of complete orthogonal functions based on Chebyshev polyno-
mials and satisfying various boundary conditions can be found in [6], [9].

4 Conclusions

In this paper we performed a bifurcation analysis and a numerical treatment
for an electrohydrodynamic convection problem. When eigenvalue problems
from linear stability theory are investigated only numerically spurious eigen-
value can be encountered, especially when bifurcation sets of the characteristic
manifold occur. In order to detect the false secular points a bifurcation study
of the problem becomes necessary. An example of this type of problems was
investigated in [5], e.g. for an electrohydrodynamic convection problem in the
case of free-free boundaries the numerical methods led to the existence of false
secular points.

The numerical study was performed here by using a Galerkin type spec-
tral method which implied that the boundary conditions are satisfied by the
orthogonal sets of expansion functions. However, when this condition is not
fulfilled, the tau method or the collocation method can also be applied. All
these methods are widely used in the numerical investigation of eigenvalue
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problems governing the linear stability of motions or equilibrium of fluid in
convection problems. From the physical point of view, the evaluations of the
Rayleigh number Ra showed an enlargement of the stability domain when the
parameter M is increasing, the dependence of Ra of M is not however expo-
nential. These evaluations were easy to compute and proved to be similar to
the ones existing in the literature.
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