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Notes on linear combinations of two tripotent,

idempotent, and involutive matrices that
commute

Halim ÖZDEMİR and Murat SARDUVAN

Abstract

The aim of this paper is to provide alternate proofs of all the results of
our previous paper [2] in the particular case when the given two matrices
A1 and A2 in the linear combination A = c1A1 + c2A2 commute.

1 Introduction and Preliminaries

Let C and Cm,n denote the sets of complex numbers and m × n complex
matrices. Moreover, C∗ will mean C \ {0}.

Now, consider a linear combination of the form

A = c1A1 + c2A2, (1.1)

where A1,A2 ∈ Cn,n are nonzero matrices and c1, c2 ∈ C∗.
The aim of this paper is to provide alternate proofs of all the results of

our previous paper [2] in the particular case that A1 and A2 in (1.1) are
commuting matrices, i.e. A1A2 = A2A1.

Recall that a matrix B ∈ Cn,n is said to be similar to a matrix A ∈ Cn,n if
there exists a nonsingular matrix P ∈ Cn,n such that

B = P−1AP.
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If a matrix A ∈ Cn,n is similar to a diagonal matrix, then A is said to be
diagonalizable. It is clear that the spectrums of an idempotent, a tripotent,
and an involutive matrices are contained in {0, 1}, { −1, 0, 1}, and { −1, 1},
respectively. Then, any tripotent or idempotent or involutive matrix is di-
agonalizable [1, Corollary 3.3.10]. Two diagonalizable matrices A, B ∈ Cn,n

are said to be simultaneously diagonalizable if there is a single similarity ma-
trix P ∈ Cn,n such that P−1AP and P−1BP are both diagonal. Two di-
agonalizable matrices are commuting if and only if they are simultaneously
diagonalizable [1, Theorem 1.3.12]. Hence, we can write A of the form (1.1)
as P (c1Λ + c2M)P−1 with Λ and M diagonal matrices, where the main di-
agonal entries of Λ and M are the eigenvalues of A1 and A2, respectively.
Consequently, direct calculations show that a linear combination of the form
(1.1) is a tripotent matrix, an idempotent matrix, and an involutive matrix if
and only if

(c1Λ + c2M)3 − (c1Λ + c2M) = 0,

(c1Λ + c2M)2 − (c1Λ + c2M) = 0,

and
(c1Λ + c2M)2 = I,

respectively. By carrying out necessary arrangements, we obtain equivalently

(c1λi + c2µi) (c1λi + c2µi − 1) (c1λi + c2µi + 1) = 0, (1.2)

(c1λi + c2µi) (c1λi + c2µi − 1) = 0, (1.3)

and
(c1λi + c2µi − 1) (c1λi + c2µi + 1) = 1, i = 1, 2, . . . , n, (1.4)

where λi and µi are diagonal entries of Λ and M, respectively. We may,
without loss of generality, assume that any multiple eigenvalues of A1 and A2

occur contiguously on the main diagonal of Λ and M, respectively.

2 Main Results

Let A1, A2 be tripotent matrices. Firstly we consider the trivial case where
A1 is a scalar multiple of A2. If A1 is a scalar multiple of A2 , say A1 = cA2

for c ∈ C∗, then

A1 = A3
1 = (cA2)

3 = c3A3
2 = c3A2 = c2cA2 = c2A1.

Since A1 �= 0, we obtain 1 = c2. Due to the fact that an involutive matrix is
always a tripotent matrix, we also obtain 1 = c2 in case A1 and A2 are involu-
tive matrices. Since c1A1+c2A2 = (cc1 + c2)A2 is tripotent (or involutive), a
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similar argument proves (cc1 + c2) ∈ { −1, 0, 1}. Thus, the case where A1 is a
scalar multiple of A2 is also excluded from further considerations in Theorems
2.1-2.4. Now we may give the main results.

Theorem 2.1 [2, Theorem 2.1] For nonzero c1, c2 ∈ C∗ and involutive matri-
ces A1,A2 ∈ Cn,n such that A1 �= ±A2 and A1A2 = A2A1, let T be their
linear combination of the form

T = c1A1 + c2A2. (2.1)

Then the matrix T of the form (2.1) is tripotent if and only if

(c1, c2) ∈ {( −1/2,−1/2) , ( −1/2, 1/2) , (1/2,−1/2) , (1/2, 1/2)} .

Proof. Solving (1.2) for possible pairs of (λi, µi) we obtain the values and
equations in Table 1 which is arranged according to the pairs of (c1, c2) com-
monly fulfilling (1.2).

Table 1: All possible (c1, c2) pairs associated with (λi, µi) pairs in Theorem 2.1

Cases (c1, c2) (λi, µi)

I
�

1
2
, 1

2

�
,
�

1
2
,− 1

2

�
(1, 1), (1,−1),� − 1

2
, 1

2

�
,
� − 1

2
,− 1

2

�
(−1, 1), (−1,−1)

II(a) c1 = −c2 or c1 = −c2 + 1 (1, 1),
or c1 = −c2 − 1 (−1,−1)

II(b) c1 = c2 or c1 = c2 + 1 (1,−1) ,
or c1 = c2 − 1 (−1, 1)

Moreover, the matrix T of the form (2.1) satisfies T3 = T if and only if
(
c3
1 + 3c1c

2
2 − c1

)
A1 +

(
c3
2 + 3c2

1c2 − c2

)
A2 = 0. (2.2)

Combining the pairs of (c1, c2) in Table 1 with (2.2), the following results are
obtained: T of the form ( 2.1) is always tripotent for Case I. For Cases II(a)-
(b), we obtain simply either the case that A1 is a scalar multiple of A2 (which
has been excluded from considerations in Theorem 2.1) or Case I (which means
that Cases II(a)-(b) contain Case I), again. Hence, the proof is complete.

Theorem 2.2 [2, Theorem 2.2 (a)] For nonzero c1, c2 ∈ C∗ and involutive
matrices A1,A2 ∈ Cn,n such that A1 �= ±A2 and A1A2 = A2A1, let P be
their linear combination of the form

P = c1A1 + c2A2. (2.3)

Then the matrix P of the form (2.3) is idempotent if and only if:
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(a) (c1, c2) = ( −1/2,−1/2) and −A1 − A2 = I + A1A2,
(b) (c1, c2) = ( 1/2, 1/2) and A1 + A2 = I + A1A2,
(c) (c1, c2) = ( −1/2, 1/2) and −A1 + A2 = I − A1A2,
(d) (c1, c2) = ( 1/2,−1/2) and A1 − A2 = I− A1A2.

Proof. Solving (1.3) for possible pairs of (λi, µi) we obtain the values in Table
2 which is arranged according to the pairs of (c1, c2) commonly fulfilling (1.3).

Table 2: All possible (c1, c2) pairs associated with (λi, µi) pairs in Theorem 2.2

Cases (c1, c2) (λi, µi)

I
� − 1

2
,− 1

2

�
(1,−1), (−1, 1), (−1,−1)

II
�

1
2
, 1

2

�
(1, 1), (1,−1), (−1, 1)

III
� − 1

2
, 1

2

�
(1, 1), (−1, 1), (−1,−1)

IV
�

1
2
,− 1

2

�
(1, 1), (1,−1), (−1,−1)

Moreover, the matrix P of the form (2.3) satisfies P2 = P if and only if
(
c2
1 + c2

2

)
I+2c1c2A1A2 − c1A1 − c2A2 = 0. (2.4)

Combining the pairs of (c1, c2) in Table 2 with (2.4), the following results are
obtained: P = 1

2 (I + A1A2) for Cases I and II, which are parts (a) and (b),
and P = 1

2 (I− A1A2) for Cases III and IV, which are parts (c) and (d).
These complete the proof.

Theorem 2.3 [2, Theorem 2.3] For nonzero c1, c2 ∈ C∗ and nonzero tripotent
matrices T1,T2 ∈ Cn,n such that T1 �= ±T2 and T1T2 = T2T1, let A be their
linear combination of the form

A = c1T1 + c2T2. (2.5)

Then the matrix A of the form (2.5) is involutive if and only if:

(a) (c1, c2) = (1, 1) or (c1, c2) = (−1,−1) and T2
1 + 2T1T2 + T2

2 = I and
T1 and T2 are not involutive,
(b) (c1, c2) = (1,−1) or (c1, c2) = (−1, 1) and T2

1 − 2T1T2 + T2
2 = I and T1

and T2 are not involutive,
(c) (c1, c2) = (2, 1) or (c1, c2) = (−2,−1) and 4T2

1 + 4T1T2 + T2
2 = I and T1

is not involutive,
(d) (c1, c2) = (2,−1) or (c1, c2) = (−2, 1) and 4T2

1 − 4T1T2 + T2
2 = I and T1

is not involutive,
(e) (c1, c2) = (1, 2) or (c1, c2) = (−1,−2) and T2

1 + 4T1T2 + 4T2
2 = I and T2

is not involutive,
(f) (c1, c2) = (1,−2) or (c1, c2) = (−1, 2) and T2

1 − 4T1T2 + 4T2
2 = I and T2

is not involutive.
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Proof. Solving (1.4) for possible pairs of (λi, µi) we obtain the values and
equations in Table 3 which is arranged according to the pairs of (c1, c2) com-
monly fulfilling (1.4).

Table 3: All possible (c1, c2) pairs associated with (λi, µi) pairs in Theorem 2.3

Cases (c1, c2) (λi, µi)

I (1, 1), (1,−1), (−1, 1), (−1,−1) (0, 1), (0,−1), (1, 0), (−1, 0)

II(a) (2,−1), (−2, 1) (0, 1), (0,−1), (1, 1), (−1,−1)

II(b) (2, 1), (−2,−1) (0, 1), (0,−1), (1,−1), (−1, 1)

III(a) (1,−2), (−1, 2) (1, 0), (−1, 0), (1, 1), (−1,−1)

III(b) (1, 2), (−1,−2) (1, 0), (−1, 0), (1,−1), (−1, 1)

IV(a) c1 = −c2 + 1 or c1 = −c2 − 1 (1, 1), (−1,−1)

IV(b) c1 = c2 − 1 or c1 = c2 + 1 (1,−1), (−1, 1)

From the pairs of (λi, µi) in Table 3, it is evidently seen that T1 and T2 are
not involutive in Case I, T1 is not involutive in Cases II (a)-(b), and T2 is not
involutive in Cases III (a)-(b).

Moreover, the matrix A of the form (2.5) satisfies A2 = I if and only if

(c1T1 + c2T2)
2 = I. (2.6)

Substituting the pairs of (c1, c2) in Case I, in Cases II (a)-(b), and in Cases III
(a)-(b) into (2.6) we obtain T2

1±2T1T2+T2
2 = I , 4T2

1±4T1T2+T2
2 = I, and

T2
1 ± 4T1T2 + 4T2

2 = I, which establish the parts (a),(b), the parts (c),(d),
and the parts (e),(f), respectively. Finally, in the Cases IV (a),(b) it is clear
that T1 and T2 are involutive. So, from (2.6), T1 is a scalar multiple of T2.
Hence, the proof is complete.

Theorem 2.4 [2, Theorem 2.4 (a)] For nonzero c1, c2 ∈ C∗ and involutive
matrices A1,A2 ∈ Cn,n such that A1 �= ±A2 and A1A2 = A2A1, let A be
their linear combination of the form

A = c1A1 + c2A2. (2.7)

Then there is no situation for which the matrix A of the form (2.7) is an
involutive matrix.

Proof. Solving (1.4) for possible pairs of (λi, µi) we obtain the values and
equations in Table 4 which is arranged according to the pairs of (c1, c2) com-
monly fulfilling (1.4).

Table 4: All possible (c1, c2) pairs associated with (λi, µi) pairs in Theorem 2.4

Cases (c1, c2) (λi, µi)

I c1 = −c2 + 1 or c1 = −c2 − 1 (1, 1), (−1,−1)

II c1 = c2 − 1 or c1 = c2 + 1 (1,−1), (−1, 1)
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Moreover, the matrix A of the form (2.7) satisfies A2 = I if and only if

(
c2
1 + c2

2 − 1
)
I+2c1c2A1A2 = 0. (2.8)

From (2.8), it is easily seen that A1 is a scalar multiple of A2 for Cases I-II in
Table 4 which contradict with the assumptions. So the proof is complete.

Theorem 2.5 [2, Theorem 2.5 (a)] For nonzero c1, c2 ∈ C∗ and nonzero idem-
potent matrices P1,P2 ∈ Cn,n such that P1P2 = P2P1, let A be their linear
combination of the form

A = c1P1 + c2P2. (2.9)

Then the matrix A of the form (2.9) is involutive if and only if:

(a) (c1, c2) = ( −1,−1) or (c1, c2) = ( 1, 1) or (c1, c2) = ( −1, 1) or (c1, c2) =
( 1,−1) and P1 + P2 = I,
(b) (c1, c2) = ( 1,−2) or (c1, c2) = ( −1, 2) and P1 = I,
(c) (c1, c2) = ( 2,−1) or (c1, c2) = ( −2, 1) and P2 = I.

Proof. Solving (1.4) for possible pairs of (λi, µi) we obtain the values in Table
5 which is arranged according to the pairs of (c1, c2) commonly fulfilling (1.4).

Table 5: All possible (c1, c2) pairs associated with (λi, µi) pairs in Theorem 2.5

Cases (c1, c2) (λi, µi)

I (1, 1), (1,−1), (−1, 1), (−1,−1) (0, 1), (1, 0), (1, 1)

II (1,−2), (−1, 2) (1, 0), (1, 1)

III (2,−1), (−2, 1) (0, 1), (1, 1)

Moreover, the matrix A of the form (2.9) satisfies A2 = I if and only if

c2
1P1 + 2c1c2P1P2 + c2

2P2 = I. (2.10)

Substituting the pairs of (c1, c2) in Case I into (2.10) we obtain P1P2 = 0.
Combining P1P2 = 0 with (2.10) we obtain P1 + P2 = I, which leads to part
(a). From the pairs of (λi, µi) in Table 5, it is evidently seen that P1 = I in
Case II and P2 = I in Case III, which lead to parts (b) and (c), respectively.
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