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Remarks on the Spectrum of Bounded and
Normal Operators on Hilbert Spaces

M. AKKOUCHI

Abstract

Let H be a complex Hilbert space H . Let T be a bounded opertor
on H , and let λ be a scalar. We set Tλ := T − λI . We introduce the
concept of Tλ−spectral sequence in order to discuss the nature of λ when
λ belongs to the spectrum of T. This concept is used to make new proofs
of some classical and well-known results from general spectral theory.
This concept is also used to give a new classification of the spectral points
λ of any normal and bounded operator T in terms of properties of their
associated spectral sequences. This classification should be compared
with the classical one (see for example [4]) based on the properties of
the ranges of the operators Tλ.

1 Introduction

1.1

In all what follows, H will be a complex Hilbert space, endowed with its inner
product denoted by 〈· | ·〉 , and associated norm denoted by ‖.‖ . Let T ∈ B(H)
(the Banach algebra of all bounded linear operators on H). The spectrum
σ(T ) of T is the collection of complex numbers λ such that T − λIH has no
(continuous linear) inverse. We know that σ(T ) has three disjoint components:

σ(T ) = σp(T ) ∪ σc(T ) ∪ σr(T ),

where
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σp(T ) is the discrete spectrum, that is the collection of complex numbers λ
such that T−λIH fails to be injective (i.e. σp(T ) is the collection of eigenvalues
of T );

σc(T ) is the continuous spectrum, that is the collection of complex num-
bers λ such that T − λIH is injective, does have dense image, but fails to be
surjective;

σr(T ) is the residual spectrum, that is the collection of complex numbers
λ such that T − λIH is injective and fails to have dense image.

The approximate spectrum of T will be denoted by σap(T ). It is defined as
being the collection of complex numbers λ for which there exists a sequence
(xn)n in H satisfying the following two properties:

(i) xn is a unit vector for each n,

(ii) limn→∞ ‖Txn − λxn‖ = 0.

One can easily prove the following inclusions :

σp(T ) ∪ σc(T ) ⊂ σap(T ) ⊂ σ(T ).

It is well-known that the spectrum of a normal operator has a simple structure.
More precisely, if T ∈ B(H) is normal, then we have

σp(T ) ∪ σc(T ) = σ(T ) = σap(T ). (1.1)

Remark. Next we give a new proof of the equalities (1.1).

For sake of completeness, we end this subsection by recalling the following
important classification of the elements λ in the spectrum of a bounded and
normal operator T ([4], p. 112) which is based on the use of the ranges R(Tλ)
of the operators Tλ := T − λIH .

Theorem 1 Let (H, 〈·, ·〉) be a complex Hilbert space. Let T ∈ B(H) be a
normal operator and let λ ∈ C. Then we have:

1) ρ(T ) = {λ ∈ C : R(Tλ) = H}.
2) σp(T ) = {λ ∈ C : R(Tλ) �= H}, where R(Tλ) means the closure of R(Tλ).

3) σc(T ) = {λ ∈ C : R(Tλ) = H and R(Tλ) �= H}.
4) σr(T ) is empty.
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1.2

To state and prove our results, we need to introduce the following definition.

Definition 1 Let S ∈ B(H), and let (xn)n be a sequence of elements of H. We
say that (xn)n is an S−spectral sequence, if it satisfies the following properties:

(i) xn is a unit vector for each n, and
(ii) limn→∞ ‖Sxn‖ = 0.

Let T ∈ B(H) and λ ∈ C. We denote by ST (λ) the set of Tλ−spectral
sequences, where Tλ := T − λIH .

For any T ∈ B(H) and λ ∈ C, we have the following observations :
(a) ST (λ) �= ∅ ⇐⇒ λ ∈ σap(T ).

(b) If (xn)n belongs to ST (λ), then any subsequence of (xn)n belongs also to
ST (λ).

1.3

Let T ∈ B(H) and λ ∈ C. In Theorem 2.1 of Section 2, we prove that λ ∈ σp(T )
if and only if there exists a Tλ−spectral sequence which does not converge
weakly to zero. We apply this result to recapture some well-known results
concerning compact and normal operators. In Section 3, we make a remark
concerning the elements of the residual spectrum of T . In Section 4, we make a
remark concerning the elements of the continuous spectrum of T . In Sections
5 and 6, we suppose that T is normal. In Theorem 5.1, we provide some
characterizations of the continuous spectrum of T. In particular, λ ∈ ρ(T )
(the resolvent set of T ) if and only if ST (λ) is empty. In Theorem 6.1, we give
a classification of the spectral points z ∈ σ(T ) in terms of their associated
Tz−spectral sequences.

2 Characterization of the eigenvalues of a bounded op-
erator and applications

We start by our first result which provides a characterization of the point
spectrum of a bounded operator on a Hilbert space.

Theorem 2 Let (H, 〈·, ·〉) be a complex Hilbert space. Let T ∈ B(H) and let
λ ∈ C. Then the following statements are equivalent:

(i) λ ∈ σp(T ).
(ii) There exists a Tλ-spectral sequence (xn)n which is strongly converging

in H.
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(iii) There exists a Tλ-spectral sequence (xn)n which is not weakly converg-
ing to zero.

Proof. The implications (i) =⇒ (ii) and (ii) =⇒ (iii) are evident.
(iii) =⇒ (i) Let λ ∈ C and let (xn)n be a λ-sequence which is not weakly

converging to zero. Then we can find z a nonzero vector in H and a subse-
quence (yk := xnk

)k of (xn)n which converges weakly to z. Thus the sequence
(yk)k satisfies the following conditions :

(a) yk is a unit vector for each k, and limk→∞ ‖Tyk − λyk‖ = 0, (i.e., (yk)k

is a Tλ-sequence) and
(b) (yk)k converges weakly to z, as k → ∞.
By using Banach-Saks Theorem (see [1] and [2], p. 154), we can find a

subsequence (zm := ykm)m of (yk)k for which the sequence (z̃m)m is converging
strongly to z, where z̃m are the arithmetic means given by

z̃m :=
1
m

m∑
j=1

zj =
1
m

m∑
j=1

ykj , ∀m ≥ 1.

Since (ykj )j is a Tλ-sequence, then by using Cesaro’s means convergence the-
orem, we obtain

‖T (z̃m) − λz̃m‖ =
1
m

∥∥∥∥∥∥
m∑

j=1

T (ykj ) − λykj

∥∥∥∥∥∥
≤

≤ 1
m

m∑
j=1

∥∥T (ykj ) − λykj

∥∥ −→ 0, as m → ∞.

Since T is continuous, we get

‖Tz − λz‖ = lim
m→∞ ‖T (z̃m) − λz̃m‖ = 0.

We conclude that λ is an eigenvalue. Thus our result is proved.

As a first application of Theorem 2, we give a new proof of the following
classical and well-known result.

Theorem 3 Let T ∈ B(H) be a compact operator. Then we have

σap(T ) \ {0} = σp(T ) \ {0}.
Proof. Let λ ∈ σap(T ) \ {0} and suppose that λ /∈ σp(T ). Let (xn)n be
a λ-spectral sequence Then by Theorem 2.1, necessarily, this sequence must
converge weakly to zero. Since T is compact, then, by Riesz Theorem (see [2],
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p. 150), the sequence (T (xn))n will converge strongly to zero. Since λ �= 0
and since (xn)n is a λ-sequence, then it follows that (xn)n converges strongly
to zero. We note also that the following holds

lim
n→∞ 〈T (xn) | xn〉 = λ.

Now, we have

0 = lim
n→∞ ‖T (xn) − λxn‖2 =

= lim
n→∞

(
‖T (xn)‖2 − 2�(λ 〈T (xn) | xn〉) + |λ|2

)
=

= |λ|2.
Thus we get λ = 0, a contradiction. This completes the proof.

We know, that, if T is normal, then σ(T ) = σap(T ). Therefore, we have
the following result.

Corollary 1 Let T ∈ B(H) be a normal and compact operator. Then we have

σ(T ) \ {0} = σp(T ) \ {0}.
We end this section by proving the following result which says that the

point spectrum of any normal operator is not empty.

Theorem 4 Let T ∈ B(H) be a normal operator. Then the following asser-
tions hold true.
(i) There exists λ ∈ σ(T ) such that |λ| = ‖T ‖ (i.e., σ(T )∩{z ∈ C : |z| = ‖T ‖}
is not empty).
(ii) If, in addition, T is compact then there exists λ ∈ σp(T ) such that |λ| =
‖T ‖ (i.e., σp(T ) ∩ {z ∈ C : |z| = ‖T ‖} is not empty).

Proof. We can suppose that T is not zero. Since T is normal, then (see, for
example, [3], p. 310) we have

‖T ‖ = sup
‖x‖=1

| 〈T (x) | x〉 |.

It follows that there exists a sequence (xn)n of unit vectors such that

lim
n→∞ | 〈T (xn) | xn〉 | = ‖T ‖ .

We can suppose that the sequence of numbers (〈T (xn) | xn〉)n is convergent
(otherwise, one can take a subsequence of (xn)n). Let λ be the limit of this
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sequence. Then |λ| = ‖T ‖ . To prove that λ belongs to the spectrum of T , it
is sufficient to show that (xn)n is a Tλ-spectral sequence. To see this, we use
the following inequalities :

‖T (xn) − λxn‖2 = ‖T (xn)‖2 − 2�(λ 〈T (xn) | xn〉) + |λ|2‖xn‖2 =

= ‖T (xn)‖2 − 2�(λ 〈T (xn) | xn〉) + |λ|2 ≤
≤ 2|λ|2 − 2�(λ 〈T (xn) | xn〉) −→

−→ 2|λ|2 − 2|λ|2 = 0, as n → ∞.

Thus λ ∈ σap(T ) \ {0} ⊂ σ(T ). If in addition T is compact, then, by Theorem
2.2, we deduce that λ ∈ σap(T ) \ {0} ⊂ σp(T ) \ {0}. This completes the proof
of (i) and (ii).

3 A remark on the residual spectrum of a bounded op-
erator

Let H be a complex Hilbert space as above. Let T ∈ B(H) and let λ ∈ C. We
recall that λ ∈ σr(T ) if and only if (a) Tλ := T − λIH is injective, and (b) the
closure R(Tλ) of the range R(Tλ) is not equal to H.

We have the following proposition.

Proposition 1 Let T ∈ B(H). Let λ ∈ C. Suppose that the set ST (λ) is
empty and Tλ is not surjective. Then λ ∈ σr(T ).

Proof. Since ST (λ) is empty, then ε := infx∈SH ‖Tx− λx‖ > 0, where SH :=
{x ∈ H : ‖x‖ = 1}. Therefore, we have

‖Tx − λx‖ ≥ ε‖x‖, ∀x ∈ H. (3.1)

(3.1) shows that Tλ is injective and that its rangeR(Tλ) is closed in H. Since Tλ

is not surjective, we conclude that R(Tλ) is not dense in H . Thus, λ ∈ σr(T ).

4 A remark on the continuous spectrum of a bounded
operator

Let H be a complex Hilbert space as above. Let T ∈ B(H) and let λ ∈ C. We
recall that λ ∈ σc(T ) if and only if (a) Tλ := T − λIH is injective, (b) Tλ is
not surjective, and (c) the range R(Tλ) is dense in H.

Proposition 2 Let T ∈ B(H). Let λ ∈ C. Suppose that λ ∈ σc(T ). Then:
(i) The set ST (λ) is not empty.
(ii) Each Tλ-spectral sequence converges weakly to zero.
(iii) Each Tλ-spectral sequence is not strongly convergent in H.
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Proof. Since λ ∈ σc(T ), then λ ∈ σap(T ), therefore ST (λ) is not empty. Since
λ is not an eigenvalue of T , then, by (iii) of Theorem 2.1, we deduce that every
Tλ-spectral sequence converges weakly to zero. Also, by (ii) of Theorem 2.1,
we deduce that every Tλ-spectral sequence does not converge strongly in H.

5 Characterizations of the continuous spectrum of a nor-
mal operator

Let H be a complex Hilbert space as above. In the next result, we present
some characterizations of the continuous spectrum of any bounded and normal
operator on H .

Theorem 5 Let T ∈ B(H) be a normal operator. Let λ ∈ C. Then the
following statements are equivalent:

(i) λ ∈ σc(T ).
(ii) λ ∈ σ(T ) \ σp(T ).
(iii) T − λIH is injective and the image (T − λIH)(H) is not closed.
(iv) The set ST (λ) is not empty and every Tλ-sequence converges weakly

to zero.
(v) The set ST (λ) is not empty and every Tλ-sequence is not strongly con-

vergent in H.

Proof. (ii) =⇒ (i) Since λ ∈ σ(T )\σp(T ), then T−λIH is injective but fails to
be surjective. Suppose that the image (T − λIH)(H) is not dense in H . Then
there exists at least a nonzero vector z in the orthogonal of (T − λIH)(H).
Hence, by using well-known identities, we have

z ∈ (T − λIH)(H)⊥ = ker(T ∗ − λIH) = ker(T − λIH),

a contradiction. We conclude that λ ∈ σc(T ).
(i) =⇒ (iii) is evident from the definition of the continuous spectrum.
(iii) =⇒ (ii) Since T − λIH is injective, then λ /∈ σp(T ). Suppose that

λ /∈ σ(T ). Then there exists a linear (invertible) map S ∈ B(H) such that
S(T − λIH)(x) = x for every x ∈ H. In particular, we have

1
‖S‖ ‖x‖ ≤ ‖(T − λIH)(x)‖ , ∀x ∈ H. (5.1)

It follows from (5.1) that (T − λIH)(H) is complete and thereby closed in H,
which is a contradiction. We conclude that λ ∈ σ(T ) \ σp(T ).

The equivalences (ii) ⇐⇒ (iv) ⇐⇒ (v) are ensured by Theorem 2.1.
Hence, our result is completely proved.

As consequence of Theorem 5.1, we recapture the following well-known
result (which was recalled in Section 1).
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Corollary 2 Let T ∈ B(H) be a normal operator. Then the residual spectrum
σr(T ) is empty and σ(T ) = σp(T ) ∪ σc(T ) = σap(T ).

6 Classification of the spectral points of a bounded nor-
mal operator

As a conclusion of our study, we have the following classification of the spec-
tral points of bounded normal operators on Hilbert spaces in terms of their
associated spectral sequences.

Theorem 6 Let (H, 〈·, ·〉) be as above and let T ∈ B(H) be a normal operator.
Let λ ∈ C. Then we have.

1) λ ∈ ρ(T ) if and only if the set ST (λ) is not empty.

2) The following statements are equivalent:
(i) λ ∈ σp(T ).
(ii) There exists a Tλ-sequence (xn)n which is strongly converging in H.
(iii) There exists a Tλ-sequence (xn)n which is not weakly converging to

zero.

3) The following statements are equivalent:
(i) λ ∈ σc(T ).
(ii) The set ST (λ) is not empty and every Tλ-sequence converges weakly to

zero.
(iii) The set ST (λ) is not empty and every Tλ-sequence is not strongly

convergent in H.

4) σr(T ) is empty.
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