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On a remark of Loday about the
Associahedron and Algebraic K-Theory

Gefry Barad

Abstract

In his 2006 Cyclic Homology Course from Poland, J.L. Loday stated
that the edges of the associahedron of any dimension can be labelled
by elements of the Steinberg Group such that any 2-dimensional face
represents a relation in the Steinberg Group. We prove his statement.
We define a new group R(n) relevant in the study of the rotation distance
between rooted planar binary trees .

1 Introduction

1.1 Combinatorics: binary rooted trees and the associahedron

Our primary objects of study are planar rooted binary trees. By definition,
they are connected graphs without cycles, with n trivalent vertices and n+2
univalent vertices, one of them being marked as the root.
There are 1

n+1

(
2n
n

)
binary trees with n internal vertices.
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Figure 1.

The associahedron Kn is an (n − 1)-dimensional convex polytope whose
vertices are labelled by rooted planar binary trees with n internal vertices. Two
labelled vertices are connected by an edge if and only if the corresponding trees
are connected by an elementary move called rotation.
Two trees are connected by a rotation if they are identical, except the zones
from the figure below, where one edge is moved into another position; we erase
an internal edge and one internal vertex and we glue it again in a different
location, to get a rooted binary tree.

Figure 2.

The 1-skeleton of the associahedron is called the Rotation Graph Gn [7].
The vertices of this graph are all rooted binary trees with n internal vertices,
two trees being adjacent if they are united by a rotation. Gn has the structure
of a lattice, called the Tamari lattice: there is an oriented edge from the tree
a to the tree b if b is obtained from a using a right to the left rotation.

Devadoss [2], Stanley [9] and Loday [6] gave a geometric realization of this
polytope. Its faces are products of lower dimensional associahedra.

There is a bijection between rooted binary trees and paranthetizations of n+1
variables. Various ways to paranthetize tensor products of (n+1) objects in a
monoidal category are controlled by so called associativity constrains, whose
the source and the target are encoded by two trees connected by a rotation:
....((AB)C)... → ....(A(BC))....
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1.2 Algebraic K-Theory

Let A be a unital ring which is not necessarly commutative. The Steinberg
group Stn(A) is defined as the group with the following generators and rela-
tions:
generators: eij(a) for any a ∈ A and 1 ≤ i �= j ≤ n.
relations:
( I) eij(a)eij(b)=eij(a + b)
( II) eij(a)ekl(b)=ekl(b)eij(a) for any set of indices {i,j,k,l} of cardinality 4
(III) eij(a)ejk(b)=ejk(b)eik(ab)eij(a) for any set of indices {i,j,k} of cardinal-
ity 3.

These are exactly the relations satisfied by the elementary matrices mij(a)
in Gln(A), where mij(a) has 1’s on the diagonal and the element from the ring
a on the ij entry.

The second K-Theory group of A, K2(A) is defined to be the kernel of the epi-
morphism Stn(A) → Gln(A), which send eij(a) to mij(a). The abelian group
K2(A) is also isomorphic with H2(St(A)) (Theorem Whitehead-Kervaire).

This is the appeareance of the Steinberg group in the realm of Algebraic K-
Theory [8]. We will prove the statement of Loday: (page 42- Cyclic Homology
Theory-Poland 2006) [4]:

Theorem 1 The edges of the associahedron Kn can be labelled by elements
of the Steinberg Group, such that any cycle of length 4 or 5 in its 1-skeleton
(The Rotation Graph) represents a relation in Stn(A).

2 Algebraic realization of the associahedron

To every rooted binary tree X , we associate a permutation. During our pa-
per, we denote this permutation as p(X). Based on this function, we build
elements indexed by trees, and by pair of trees in different groups. In the same
way there are different geometric realizations of the associahedron, the convex
polytope whose 1-skeleton is the rotation graph [6] [9] [2] [3], we can say we
realize the associahedron on different algebraic structures.

Let T be a rooted binary tree, with n internal vertices. The univalent
vertices are labelled 1, 2, ...n + 1.
The internal zone between the univalent vertices k and k+1 is called zone k.
Every internal zone has a unique internal vertex which is the head of that zone.
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To every tree T we associate a permutation, denoted p(T ) using the fol-
lowing recursive procedure:
If t1 and t2 are the left and the right trees of T , then the permutation associ-
ated with T is p(T)=mp(t1)p(t2), where the zone between the left tree t1 and
the right tree t2 is located between the univalent vertices m and m+1. This
rule is sufficent to associate a permutation to every tree, by induction over n
using its subtrees, but we would like to be more specific:

There is a unique directed path P (k) which joins the root of the tree to every
univalent vertex k. We label the internal vertices with numbers 1, 2...n in the
order they appear on the paths P (1), P (2)...P (n + 1), from the root to the
univalent vertices. So we define a total order on the set of internal vertices: x
≤ y if x ∈ P (k) and y ∈ P (m) and k≤ m or, k=m and x is on the path from
y to the root of the tree.
In the permutation associated with the tree, p(T)(x)=y, if the internal vertex
labelled with x is the vertex associated to the zone y, between the univalent
vertices y and y+1. We call x the head, or the lowest point of the zone y.

Figure 3.

An insertion in a permutation p:= p(1)p(2)....p(n) is the following transfor-
mation applied to p: insert the element p(y) between two consecutive elements
in p: p(x-1) and p(x). Under this transformation, we get the permutation
pr(x,y), where r(x,y) is the insertion:

r(x, y) =
{

1, 2, ...x, x + 1, .......y....n
1, 2, ...y, x, ..........y − 1...n

Note: In the Symmetric Group S(n), we use the group-like notation fg to
denote the permutation g◦f.
Lemma 1 At a rotation , the permutation p(T) evolves by an insertion.
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Proof. After a rotation ,locally, the permutation of a tree p(T):... yxp(T1)p(T2)p(T3)...
is changed into ...xp(T1)yp(T2)p(T3).

The insertion is from right to the left if the rotation is from right to the left.

Some of the partial trees Ti from the figure below can be empty.

Figure 4 .

The rotation graph is the skeleton of a lattice, called Tamari lattice [6].
The minimal element is the right comb tree S whose permutation is the identity
permutation. T1 < T2 if we use a “right to the left “rotation to obtain T2 from
T1 .

The fact the Rotation Graph is a lattice allow us to record the direction
of the rotation. If a < b (b is obtained from a using a right to the left ele-
mentary move) and ab is an edge in the Rotation Graph (the 1-skeleton of the
associahedron), then p(b) = p(a)r(x, y).

Figure 5.

We label the vertices T of the Rotation Graph by these permutations p(T )
and the edges by the left insertions r(x,y).
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Remark 1 Given two trees T1 and T2, and a sequence of edges between them
- a directed path in the Rotation Graph, then p(T2) = p(T1)

∏
r(x, y)α, the

product of the insertions which label the edges. We used the convention that
if the rotation between two consecutive trees of the path is from right to left
, then we use r(x, y). Otherwise, we use the inverse of r(x, y)in the product
above, so the exponent α will be -1.

2.1 The proof of the Theorem 1

Let a12 a23... an−1n be arbitrary elements from Stn(A). Let cij=
j−1∏
k=i

akk+1

Remark 2 [5] The permutation group Sn acts on Stn(A) in the following
way:
Let p be a permutation. p.euv(a)=eij(a) if p(i)=u and p(j)=v.

Figure 6.

Let T1 and T2 be two trees with n internal vertices, united by a rotation,
such that p(T2)=p(T1)r(x,y).
They are the vertices of an edge in the Rotation Graph (or equivalently in
the associahedron). We label this edge with b(i,j):= p(T1).exy(cij), where
p(T1)(i)=x and p(T1)(j)=y. Let us call this assignement rule (IV).
So, the indices i and j are determined by the permutation of the tree T1 and
by the indices of the insertion r(x, y).
We will prove that this labelling of the 1-skeleton of the associahedron with
elements from Stn(A) is coherent: every directed cycle of length 4 or 5 is
labelled by a relation from Stn(A). The product of the elements which label
the edges of any cycle is identity, where we will use exponent -1 if the direction
of the edge is opposite to the direction of the cycle.

A cycle of length 5 from the 1-skeleton of the associahedron is described by
the following 5 trees united by rotations from the figure below.
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Figure 7.

Locally, the permutations of these trees are:
p=p(T(1))=...M p(A) N p(B) P p(C) p(D)... where the zones M, N and P
are on the positions x,y and z from the permutation, which means: p(x)=M,
p(y)=N p(z)=P; zone k is between the univalent vertices k and k+1.

p(T(2))=...NM p(A) p(B) P p(C) p(D)...
p(T(3))=...PNM p(A) p(B) p(C) p(D)...
p(T(4))=...PM p(A) N p(B) p(C) p(D)...
p(T(5))=...M p(A) PN p(B) p(C) p(D)...

The insertions r(u, v) which connect these permutations are written in the
figure above.
In the symmetric group, this 5-cycle represents the relation : r(x, y)r(x, z) =
r(y, z)r(x, y)r(x + 1, y + 1).

Let us find the elements of the Steinberg Group which label the 5 edges,
according to the rule (IV) from page 5.
Assume p(i)=x; p(j)=y p(k)=z where p=p(T(1)). The element b(i,j) of the
edge T(1)T(2) is given by the action of p on exy(cij) (Remark 2, page 6).
p(i)=x and p(j)=y

The element of the edge T(2)T(3) is given by the action of p(T(2))=pr(x,y)
on exz(cvw).
p(j)=y and r(x,y)(y)=x , so v=j
p(k)=z and r(x,y)(z)=z , so w=k
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The element of the edge T(1)T(5) is given by the action of p(T(1))=p on
eyz(cvw).
p(j)=y, so v=j; p(k)=z so w=k

The element of the edge T(5)T(4)is given by the action of p(T(5))=pr(y,z)
on exy(cvw).
p(i)=x r(y,z)(x)=x, so v=i
p(k)=z r(y,z)(z)=y so w=k

The element of the edge T(4)T(3)is given by the action of pr(y,z)r(x,y) on
ex+1y+1(cvw)
p(i)=x r(y,z)(x)=x r(x,z)(x)=x+1, so v=i
p(j)=y r(y,z)(y)=y+1 r(x,y)(y+1)=y+1 so w=j

So, the edges of the 5-cycle are decorated in a coherent way with the relation
III from the definition of the Steinberg Group, where the ring coefficients are
a:=c(i, j) b:=c(j, k) ab=c(i, j)c(j, k) = c(i, k)

There are two types of 4-cycles ,described in the on the next page:

Locally, the permutations associated with the trees from the first figure below
are:
p(T(1))=...mnq(A)p(B)(C)...
p(T(2))=...mnpq(A)(B)(C)...
p(T(3))=...npq(A)(B)(C)m...
p(T(4))=...nq(A)p(B)(C)m...
(X) denote the permutation associated with the tree X.

The following relation among insertions in the Symmetric Group label this
cycle :
r(x,y)r(x-1,z)=r(x-1,z)r(x+1,y+1)
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Figure 8.

Figure 9.

Locally, the permutations associated with the trees above, from the second
4-cycle are:
p(T(1))=...mq(E)s(D)n(C)(B)...
p(T(2))=...q(E)ms(D)n(C)(B)...
p(T(3))=...q(E)mns(D)(C)(B)...
p(T(4))=...mq(E)ns(D)(C)(B)...

The following relation among insertions in the symmetric group label the sec-
ond 4-cycle from the last page:
r(x,y)r(y+1,z)=r(y+1,z)r(x,y)

We will compute the Steinberg Group elements which label the edges from the
last 4-cycle, for the first one being the same type of commutativity relation (II).
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Let p be p(T (2)). The indices i, j, k and l satisfy: p(i)=x; p(j)=y;
p(k)=y+1; p(l)=z.
So, the edge T (2)T (1) is labelled by p.exy(cvw) (the action of the permutation
p on the element exy from the Steinberg Group. p(v)=x and p(w)=y, so v=i
and w=j.

The edge T(1)T(4) is labelled by (pr(x, y)).ey+1z(cvw). v=k and w=l, because
they are the inverse images of the indices of ey+1z under the permutation which
acts on the Steinberg generator.

In the same way, the other two edges are labelled by the same generators.
This 4-cycle encodes the defining relation II from Stn(A).

2.2 Generalizations. Further directions

We look at the insertions which label the cycles of length 4 and 5 in the
associahedron; we generalize the construction above, replacing the Symmetric
Group by other groups.

Let B(n) be the Artin’s Braid group.
Let R(n) be the following group, given by generators and relations:
generators: R(x,y), where 1≤x<y≤n
relations: R(x,y)R(x,z)=R(y,z)R(x,y)R(x+1,y+1) if x<y<z
R(x,y)R(z,t)=R(z,t)R(x,y) if x<y<z<t and
R(a,y)R(x,z)=R(x,z)R(a+1,y+1), where x<a<y<z

Because of the 5-term relation above, the group is in fact generated by
R(x,x+1), 0<x<n

Instead of the labelling of the edges of the associahedron by right insertions,
we label the edges of the Rotation Graph by the elements R(x,y) from R(n).
The lattice structure of the Rotation Graph will tell us if, given an edge ab
labelled by R(x,y) we have the relation p(a) = p(a)R(x,y) or p(b) = p(a)R(x,y).

Let t be a tree. Let d(t) be a particular path which joins t to S- the right
comb tree (page 4), using rotations. Let gt be the product of the labels of the
directed edges which form d(t). The result will be an element from the group
R(n) (instead of a permutation from the Symmetric group).
We associate to every pair of trees (t1, t2) the element g−1

1 ◦ g2.
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Lemma For any path between t1 and t2, the product of the elements R(x, y)α

associated to the edges of the path is g−1
1 ◦ g2. The exponent α is 1 or –1. This

lemma states that the product above does not depend on the path, it depends
only on the extremities of the path.

Proof. Any pentagon and 4-gon from the associahedron represents a re-
lation in R(n) i.e. the edges are labelled by elements of R(n) (instead of the
insertions from the symmetric group), whose product is a defining relation in
R(n).

Two representations of the same element g ∈ R(n) by generators R(u, v) are
connected by a finite sequence of steps where we apply the relations in the
group R(n). Also, any two paths from t1 and t2 are connected by a sequence
of paths, where every consecutive two paths are connected by a pentagon or
a 4-gon. (the two paths form the boundary of a disk paved by pentagons and
4-gons). So, we gradually change the first path by glueing pentagons or 4-
gons, to finally obtain the second path. This is a consequence of the MacLane
Coherence Theorem or the simply-connectedness of the associahedron.

So, for any two paths x(1) and x(2) with the same ends, the products of
their labels are equal to the same element from R(n) because gradually we
change the representation of the product from x(1), using the group relations
which encircle the pentagons or 4-gons from the paved disk. In particular, the
product of the elements from any path which joins t1 and t2 is equal to the
product of the elements from two paths, the first one from t1 to S and the
second one from S to t1. By definition, this product is equal to g−1

1 ◦ g2.
S is the right comb tree (page 4).

Lemma 2 We have a morphism b from R(n) to B(n) which associate to
R(x,y) the insertion braid b(x, y).

The insertion braid b(x, y) is defined as b(x, y)=
y−1∏
k=x

sx+y−1−k, where si

are the Artin generators of the Braid group.
Proof. The insertion braids satisfy the defining relations of R(n). The

figure below shows the relation (III) from the Steinberg Group also satisfied
in the Braid Group: the strings from the left hand side of the figure can be
deformed in the 3-dimensional space to the strings from the right hand side.
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Figure 10.

Corollary 1 We can label the edges of the associahedron by the elements of
the Artin’s Braid group B(n), such that any cycle represents a relation from
B(n). Any group G to which there is a morphism from R(n) to G can be used
to label the edges of the associahedron coherently. In particular we can take
G:= the semidirect product between B(n) and Stn(A), a group already studied
in [5].

Corollary 2 The rotation distance between the trees t1 and t2 is greater or
equal than the length of the g−1

1 ◦ g2 in the group R(n), with respect to gener-
ators R(x,y).

In a forthcoming paper, we are using the groups R(n) and Stn(A) to give a
combinatorial proof of the result of Thurston , Sleator and Tarjan which states
that the diameter of the Rotation Graph is 2n-6, for n large enough, one of
the very few combinatorial problems whose solution was based on Hyperbolic
Geometry.
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