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Extension of the Kirk-Saliga fixed point
theorem

Mihai Turinici

Abstract

A technical extension is given for the fixed point statement in Kirk
and Saliga [Nonlinear Analysis, 47 (2001), 2765-2778].

1. Introduction

Let (M,d) be a complete metric space; and x � ϕ(x), some function from
M to R+ := [0,∞[ with

ϕ is lsc from above on M :
xn → x and (ϕ(xn)) descending imply lim

n
ϕ(xn) ≥ ϕ(x). (1.1)

Further, let x � Tx be a selfmap of M . The following 1975 statement in
Caristi and Kirk [6] (referred to as the Caristi-Kirk fixed point theorem; in
short: CK-fpt) is our starting point.

Theorem 1. Assume that (in addition)

d(x, Tx) ≤ ϕ(x) − ϕ(Tx), for each x ∈M . (1.2)

Then, T has at least one fixed point in M .
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[As a matter of fact, the quoted result is with (1.1) substituted by

ϕ is lsc on M (lim inf
n

ϕ(xn) ≥ ϕ(x), whenever xn → x). (1.3)

But the authors’ argument also works in this relaxed setting].
The original proof of Theorem 1 is by transfinite induction; see also Wong

[17]. Note that, in terms of the associated (to ϕ) order on M

(x, y ∈M) x ≤ y iff d(x, y) ≤ ϕ(x) − ϕ(y)

the contractivity condition (1.2) becomes

x ≤ Tx, for each x ∈M (i.e.: T is progressive on M). (1.4)

So, by the Bourbaki ”duality” principle [3], Theorem 1 is logically equivalent
with Zorn’s maximality result [19] subsumed to this order; i.e., with Ekeland’s
variational principle [7]. Hence, the sequential type argument used by the
quoted author to get his statement is also working in our precised setting; see
also Pasicki [12]. A proof of Theorem 1 involving the chains of the structure
(M,≤) may be found in Turinici [16]. Further aspects (involving the general
case) may be found in Brunner [5]; see also Taskovic [14].

Now, CK-fpt found (especially via Ekeland’s approach) some basic appli-
cations to control and optimization, generalized differential calculus, critical
point theory and normal solvability; see the above references for details. As
a consequence, many extensions of Theorem 1 were proposed. Here, we shall
concentrate on the 2001 statement obtained in Kirk and Saliga [10] (referred
to as the Kirk-Saliga fixed point theorem; in short: KS-fpt).

Theorem 2. Assume that (in addition to (1.1))

ϕ(x) ≥ ϕ(Tx), for each x ∈M (1.5)

d(x, Tx) ≤ ϕ(x) − ϕ(T px), for each x ∈M and some p ≥ 1. (1.6)

Then T has at least one fixed point in M .
The argument used by the authors is (again) the transfinite induction.

A direct analysis of its mechanism reveals certain possibilities of extending
Theorem 2; this will be done in Section 3. The preliminaries for our approach
are given in Section 2. Finally, Section 4 is devoted to some particular versions
of our main result.

2. Preliminaries

(A) Let W stand for the class of ordinal numbers, introduced in a ”fac-
torial” way; cf. Kuratowski and Mostowski [11, Ch 7, Sect 2]. Precisely, call
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the partially ordered structure (P,≤), well ordered if each part of P admits a
first element. Given a couple (P,≤), (Q,≤) of such objects, put

(P,≤) ≡ (Q,≤) if there exists a strictly increasing bijection:P → Q.

This is an equivalence relation; the order type of (P,≤) (denoted ord(P,≤))
is just its equivalence class; also referred to as an ordinal.

Note that W is not a set, as results from the Burali-Forti paradox; cf.
Sierpinski [13, Ch 14, Sect 2]. However, when one restricts to a Grothendieck
universe G (taken as in Hasse and Michler [8, Ch 1, Sect 2]) this contradictory
character is removed for the class W (G) of all admissible (modulo G) ordinals
(generated by (non-contradictory) well ordered parts of G). In the following,
we drop any reference to this universe, for simplicity. So, by an ordinal in
W one actually means a G-admissible ordinal with respect to a ”sufficiently
large” Grothendieck universe G. Clearly,

ξ=admissible ordinal and η ≤ ξ imply η=admissible ordinal.

Hence, in the formulae

W (α) = {ξ ∈W ; ξ < α}, W [α] = {ξ ∈W ; ξ ≤ α},

the symbol W in the brackets is the ”absolute” class of all ordinals.
Now, an enumeration of W is realized via the immediate successor map

suc(M) = min{ξ ∈W ;M < ξ},M ⊆W (hence suc(α) = α+ 1, ∀α ∈ W ).

(Here, M < ξ means: λ < ξ, ∀λ ∈ M). It begins with the natural numbers
N = {0, 1, ...}. Their immediate successor is ω = suc(N) (the first transfinite
ordinal); the next in this enumeration is ω + 1, and so on.

In parallel to this, we may (construct and) enumerate the class of all ad-
missible cardinals. Let P and Q be nonempty sets; we put

P 
 Q(P ∼ Q) iff there exists an injection (bijection):P → Q.

The former is a quasi-order; while the latter is an equivalence. Denote also

P ≺ Q if and only if P 
 Q and ¬(P ∼ Q).

This relation is irreflexive (¬(P ≺ P ), for each P ) and transitive; hence a strict
order. Let α > 0 be an (admissible) ordinal; we say that it is an (admissible)
cardinal if W (ξ) ≺W (α), for each ξ < α. The class of all these will be denoted
by Z. Now, the enumeration we are looking for is realized via the immediate
successor (in Z) map

SUC(M) = min{η ∈ Z;M < η}, M ⊆ Z.
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Precisely, this begins with the natural numbers 0, 1, .... The immediate succes-
sor (in Z) of all these is (again) ω = SUC(N) (the first transfinite cardinal).
To describe the remaining ones, we may introduce via transfinite recursion the
function λ � ℵλ from W to Z as

ℵ0 = ω; and, for each λ > 0,
ℵλ = SUC(ℵλ−1), if λ− 1 exists
ℵλ = SUC{ℵξ; ξ < λ}, if λ− 1 does not exist.

Note that, in such a case, the order structure of Z(ω,≤) = {ξ ∈ Z;ω ≤ ξ}
is completely reducible to the one of W ; further details may be found in
Sierpinski [op. cit., Ch 15, Sect 7].

Any nonempty part P with P ≺ W (ω) (P ∼ W (ω)) is termed finite
(effectively countable); the union of these (P 
 W (ω)) is referred to as P is
countable. When P = W (ξ), all such properties will be transferred to ξ.

Now, the immediate successor in Z of ω = ℵ0 is Ω = ℵ1 (the first uncount-
able ordinal). The motivation of our convention comes from

ξ is countable, for each ξ < Ω; but Ω is not countable. (2.1)

A basic consequence of this is precised in the statement below (to be found,
e.g., in Alexandrov [1, Ch 3, Sect 4]):

Proposition 1. The following are valid:
i) The ordinal Ω cannot be attained via sequential limits of countable ordi-

nals. That is: if (αn) is an ascending sequence of countable ordinals then

α = sup
n

(αn)(= lim
n

(αn)) (2.2)

is countable too.
ii) Each second kind countable ordinal is attainable via such sequences. In

other words: if α < Ω is of second kind then, there exists a strictly ascending
sequence (αn) of countable ordinals with the property (2.2).

(B) Let M be a nonempty set; and (≤), some order (=antisymmetric
quasi-order) on it. By a (≤)-chain of M we shall mean any (nonempty) part
A of M with (A,≤) being well ordered (see above). Note that any such object
may be written as A = {aξ; ξ < λ}, where the net ξ � aξ is strictly ascending
(ξ < η =⇒ aξ < aη); the uniquely determined ordinal λ is just ord(A,≤).
Now, by the remark above, A is countable ⇐⇒ ord(A,≤) < Ω. If, moreover,
ord(A,≤) ≤ ω, we say that A is normally countable; equivalently, this reads

A = {bn;n < ω}, where n � bn is ascending (p < q =⇒ bp ≤ bq). (2.3)
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Let P,Q be nonempty parts with P ⊇ Q. We say that P is majorized by
Q (and write P ∝ Q) provided Q is cofinal in P (∀x ∈ P, ∃y ∈ Q with x ≤ y).
The (≤)-chain S ⊆M is called upper countable in case

S ∝ T , for some normally countable (≤)-chain T ⊆ S. (2.4)

Clearly, this happens if S is normally countable. The following completion of
it is available (via Proposition 1):

Proposition 2. The generic relation holds

(∀(≤)-chain) countable =⇒ upper countable. (2.5)

Hence, the (≤)-chain S ⊆M is upper countable if and only if

S ∝ T , for some countable (≤)-chain T ⊆ S. (2.6)

Remark. The converse of (2.5) is not in general true; just take any (≤)-
chain S of M with Ω ≤ ord(S,≤)= first kind ordinal.

(C) Let us now return to our initial setting. We say that the order structure
(M,≤) is separable if (cf. Zhu, Fan and Zhang [16])

any (≤)-chain of M is upper countable. (2.7)

For example, this holds (under (2.5)) whenever

(M,≤) is strongly separable: each (≤)-chain of M is countable. (2.8)

In fact, the reciprocal holds too; so that, we may formulate
Proposition 3. Under these conventions,

(∀(M,≤)=ordered structure) separable ⇐⇒ strongly separable. (2.9)

[The proof is essentially based on Proposition 1; we do not give details].
A basic example of such structures may be given along the following lines.

By a topology over M we mean, as usually, any family T ⊇ {∅,M} of parts in
M , invariant to arbitrary unions and finite intersections. Assume that we fixed
such an object; and let ”cl” stand for the associated closure operator. Any
subfamily B ⊆ T with the property that each D ∈ T is a union of members in
B, will be referred to as a basis for T . If, in addition, B is countable, then T
will be called second countable. Finally, term (≤), closed from the left provided
M(x,≥) := {y ∈M ;x ≥ y} is closed, for each x ∈M .

Proposition 4. Assume that T is second countable and (≤) is closed from
the left. Then, (M,≤) is (strongly) separable.
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Proof. Let B = {Bn;n < ω} stand for a countable basis of T . Further,
take some choice function ”Ch” of the nonempty parts in M [Ch(X) ∈ X , for
each X ⊆ M,X �= ∅]. Given the arbitrary fixed (≤)-chain S of M , denote
T = {Ch(B ∩ S);B ∈ B} (hence T ⊆ S). For the moment, T is countable
(because T 
 B). In addition, we claim that cl(T ) ⊇ S [wherefrom, T is dense
in S]. In fact, let s be some point of S; and U stand for an open neighborhood
of it. By definition, U=union of members in B; so

U ⊇ B � s (hence U � Ch(B ∩ S)), for some B ∈ B;

and our claim follows. If T is cofinal in S, we are done (cf. Proposition 2).
Otherwise, there must be some s ∈ S with T ⊆M(s,≥); wherefrom

S ⊆ cl(T ) ⊆ cl(M(s,≥)) = M(s,≥);

i.e., {s} is cofinal in S. The proof is thereby complete.
It remains now to establish under which conditions is T , second countable.

An appropriate answer is to be given in a metrizable context:

there exists a metric d : M ×M → R+ which generates T .

Then, e.g., the condition below yields the desired property for T :

M has a countable dense subset P (in the sense: cl(P ) = M). (2.10)

The proof is to be found in Bourbaki [4, Ch 9, Sect 2.8]; see also Alexandrov
[op. cit., Ch 4, Sect 4].

In particular, let R stand for the real axis. Denote by (≤, d) the usual order
and metric. Take any bounded from above part M of R (M ≤ v, for some
v ∈ R). The structure (M,≤) fulfills (via (2.10)) conditions of Proposition
4; wherefrom, (M,≤) is (strongly) separable. A similar conclusion is valid
for the dual order (≥). Precisely, for each bounded from below part M of R
(M ≥ u, for some u ∈ R), one has that (M,≥) is (strongly) separable. This
will be useful for our future developments.

3. Main result

With these informations at hand, we may now return to the questions
of the introductory section. Let M be some nonempty set. Take a metric
d : M ×M → R+ and a function ϕ : M → R+ ∪ {∞} with

(d, ϕ) is descending complete:
for each Cauchy sequence (xn) in M with (ϕ(xn)) descending
there exists x ∈M with xn → x and lim

n
ϕ(xn) ≥ ϕ(x).

(3.1)
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Further, let x � ψ(x) stand for another function from M to R+ ∪ {∞} with

ψ is proper (Dom(ψ) := {x ∈M ;ψ(x) <∞} is nonempty). (3.2)

Finally, take a selfmap T : M →M . Our main result is
Theorem 3. Let the above data be such that (1.5) is true, as well as

[ϕ(T nx) ≥ ϕ(T ny), n = 0, 1, ...] =⇒ ψ(Tx) ≥ ψ(Ty) (3.3)

d(x, Tx) ≤ ψ(x) − ψ(Tx), for each x ∈ Dom(ψ). (3.4)

Then, for each u ∈ Dom(ψ) there exists v ∈ Dom(ψ) with

v = Tv and d(u, v) ≤ ψ(u) − ψ(v). (3.5)

Proof. Denote for simplicity

Mu = {x ∈M ;ϕ(u) ≥ ϕ(x), d(u, x) ≤ ψ(u) − ψ(x)}

(where u is the above precised one). Clearly, ∅ �= Mu ⊆ Dom(ψ); and

Mu is invariant under T (in view of (1.5)+(3.4)). (3.6)

Assume by contradiction that there is no fixed point of T in Mu:

d(x, Tx) > 0, (hence ψ(x) > ψ(Tx), via (3.4)), for each x ∈Mu. (3.7)

We shall prove by transfinite induction that this cannot be in agreement with
some statements in Section 2. Put a(0) = u, a(1) = T (a(0)); note that
a(1) ∈Mu (by (3.6)); and (cf. (1.5)+(3.4)+(3.7))

ϕ(a(0)) ≥ ϕ(a(1)); 0 < d(a(0), a(1)) ≤ ψ(a(0)) − ψ(a(1))
(hence ψ(a(0)) > ψ(a(1))).

Generally, assume that, for the ordinal µ < Ω, we constructed a net (a(ξ); ξ <
µ) in Mu so that: for each λ < µ

ξ < ξ + 1 ≤ λ =⇒ a(ξ + 1) = T (a(ξ)) (A(λ))

ξ ≤ λ =⇒ ϕ(a(ξ)) ≥ ϕ(a(λ)) (B(λ))

ξ ≤ λ =⇒ d(a(ξ), a(λ)) ≤ ψ(a(ξ)) − ψ(a(λ)) (C(λ))

ξ < λ =⇒ ψ(a(ξ)) > ψ(a(λ)). (D(λ))

Two cases are open before us.
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i) µ is a first kind ordinal: λ = µ − 1 exists. Put a(µ) = T (a(λ)); hence
a(µ) ∈Mu (by (3.6)). In addition (from (1.5)+(3.4))

ϕ(a(λ)) ≥ ϕ(a(µ)); d(a(λ), a(µ)) ≤ ψ(a(λ)) − ψ(a(µ));
hence ψ(a(λ)) > ψ(a(µ)) (by (3.7), with x = a(λ));

and, from this, (A(µ)) − (D(µ)) follow.
ii) µ is a second kind ordinal: µ − 1 does not exist. For the moment, it

is clear that (A(µ)) holds; because ξ < ξ + 1 ≤ µ =⇒ ξ < ξ + 1 < µ; and
then, by (A(ξ + 1)), we are done. The remaining conclusions necessitate a
special construction. Let (λn) be a strictly ascending sequence of ordinals in
W (µ) with sup

n
(λn)(= lim

n
(λn)) = µ (see Proposition 1); and put for simplicity

bn = a(λn), n = 0, 1, .... By (C(λ) : λ < µ) we have an evaluation like

d(bn, bm) ≤ ψ(bn) − ψ(bm), whenever n ≤ m. (3.8)

The sequence (ψ(bn)) is descending in R+; hence a Cauchy one. As a conse-
quence, (bn) is a Cauchy sequence in M ; and this, along with (B(λ);λ < µ)
tells us (via (3.1)) that there must be an element a(µ) ∈M with

bn → a(µ) as n→ ∞; and lim
n
ϕ(bn) ≥ ϕ(a(µ)).

The second part of this relation yields, again via (B(λ);λ < µ),

ϕ(a(ξ)) ≥ ϕ(a(µ)), ∀ξ < µ; wherefrom (B(µ)) holds. (3.9)

Moreover, a repeated application of (A(λ);λ < µ) and (1.5) gives

ϕ(T p(a(ξ))) = ϕ(a(ξ + p)) ≥ ϕ(a(µ)) ≥ ϕ(T p(a(µ))), ∀p < ω, ∀ξ < µ;

so, by simply combining with (3.3),

ψ(a(ξ)) ≥ ψ(a(µ)), ∀ξ < µ; hence ψ(bn) ≥ ψ(a(µ)), ∀n. (3.10)

Taking (3.8) into account gives d(bn, bm) ≤ ψ(bn)−ψ(a(µ)), for all (n,m) with
n ≤ m; wherefrom (passing to limit as m→ ∞) d(bn, a(µ)) ≤ ψ(bn)−ψ(a(µ)),
for all n. But, from this and the choice of (bn), the conclusion (C(µ)) is clear;
hence (combining with (3.9) above) a(µ) ∈ Mu. Finally, (D(µ)) results from
(D(λ);λ < µ) and (3.10). Summing up, the recursive construction of (a(ξ))
is possible over ξ ∈ W (Ω). But, in this case, (D(λ);λ < Ω) tells us that
(ψ(a(ξ)); ξ < Ω) is a (≥)-chain in R+, of order type Ω; in contradiction with
Proposition 4 above. Hence, the working assumption (3.7) about our data
cannot be accepted; and the conclusion follows.
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4. Particular aspects

The key regularity condition of Theorem 3 is evidently (3.3). So, it would
be natural to have it expressed in convenient ways, useful for applications. A
basic construction of this type is to be performed under the lines below. Let
again M be a nonempty set. Take a metric d : M ×M → R+ and a function
ϕ : M → R+ ∪ {∞} fulfilling (3.1). Further, let (R+ ∪ {∞})N stand for
the class of all sequences (s0, s1, ...) with positive terms (sn ≥ 0, n = 0, 1, ...).
Take a map (s0, s1, ...) � F (s0, s1, ...) from (R+ ∪ {∞})N to R+ ∪ {∞} with
the global increasing property

[sn ≤ tn, n = 0, 1, ...] =⇒ F (s0, s1, ...) ≤ F (t0, t1, ...). (4.1)

Finally, take a self-map T : M → M . The composed function

(ψ : M → R+ ∪ {∞}) ψ(x) = F (ϕ(x), ϕ(Tx), ...), x ∈M (4.2)

fulfills (3.3). Moreover, the properness condition (3.2) reads

∆(ϕ, F ;T ) := {x ∈M ;F (ϕ(x), ϕ(Tx), ...) <∞} is nonempty. (4.3)

By Theorem 3 we then have
Theorem 4. Assume (1.5)+(4.3) are valid, as well as (∀x ∈ ∆(ϕ, F ;T ))

d(x, Tx) ≤ F (ϕ(x), ϕ(Tx), ...) − F (ϕ(Tx), ϕ(T 2x), ...). (4.4)

Then, for each u ∈ ∆(ϕ, F ;T ) there exists v ∈ ∆(ϕ, F ;T ) in such a way that
(3.5) holds, where ψ : M → R+ ∪ {∞} is that of (4.2).

Now, by an appropriate choice of the function (s0, s1, ...) � F (s0, s1, ...)
appearing in (4.1) one gets some useful particular cases.

I) For example, let the function Fp : (R+ ∪ {∞})N → R+ ∪ {∞} be taken
as (for some p ≥ 1)

Fp(s0, s1, ...) = s0 + ...+ sp−1, (s0, s1, ...) ∈ (R+ ∪ {∞})N . (4.5)

Clearly, (4.1) holds in such a case; and (4.3) reads

∆(ϕ, Fp;T ) := {x ∈M ; {x, ..., T p−1x} ⊆ Dom(ϕ)} is nonempty. (4.6)

The associated by (4.2) function ψ has the form ψ(x) = ϕ(x)+ ...+ϕ(T p−1x),
x ∈M . By Theorem 4 we get:

Theorem 5. Assume that (1.5)+(4.6) are valid, as well as

d(x, Tx) ≤ ϕ(x) − ϕ(T px), for each x ∈ ∆(ϕ, Fp;T ). (4.7)
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Then, for each u ∈ ∆(ϕ, Fp;T ) there exists v ∈ ∆(ϕ, Fp;T ) with

v = Tv and d(u, v) ≤ (ϕ(u) − ϕ(v)) + ...+ (ϕ(T p−1u) − ϕ(v)). (4.8)

The obtained fact may be viewed as a completion of the Kirk-Saliga fixed
point result [10] (subsumed to Theorem 2). Moreover, it also extends a related
statement in Bı̂rsan [2]; see also Taskovic [15].

II) Another interesting choice for this function is the limit of the preceding
one as p→ ∞; namely

F∞(s0, s1, ...) = s0 + s1 + ..., (s0, s1, ...) ∈ (R+ ∪ {∞})N . (4.9)

As before, (4.1) holds in such a case; and (4.3) reads

∆(ϕ, F∞;T ) := {x ∈M ;
∑

n

ϕ(T nx) <∞} �= ∅ (4.10)

The associated by (4.2) function ψ has the form ψ(x) = ϕ(x) + ϕ(Tx) + ...,
x ∈ M . Since the series in the right member converges on ∆(ϕ, F∞;T ), we
must have lim

n
(ϕ(T nx)) = 0, for all x ∈ ∆(ϕ, F∞;T ); wherefrom

ψ(x) − ψ(Tx) =
lim
n

[(ϕ(x) + ...+ ϕ(T nx)) − (ϕ(Tx) + ...+ ϕ(T n+1x))] =

lim
n

[ϕ(x) − ϕ(T n+1x)] = ϕ(x), ∀x ∈ ∆(ϕ, F∞;T ).

By Theorem 4 we derive a ”limit” counterpart of Theorem 5 above:
Theorem 6. Assume that (1.5)+(4.10) are valid, as well as

d(x, Tx) ≤ ϕ(x), for each x ∈ ∆(ϕ, F∞;T ). (4.11)

Then, for each u ∈ ∆(ϕ, F∞;T ) there exists v ∈ ∆(ϕ, F∞;T ) with

v = Tv (hence ϕ(v) = 0) and d(u, v) ≤
∑

n

ϕ(T nu). (4.12)

Finally, we note that the construction (4.1) is not the only possible one so
as to satisfy conditions of Theorem 3; this fact will be developed elsewhere.
Some related aspects may be found in the 2003 survey paper by Kirk [9].
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Romania,
e-mail: mturi@uaic.ro


