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RANK TWO ULRICH MODULES OVER

THE AFFINE CONE OF THE SIMPLE
NODE

Corina Baciu

Abstract

A concrete description of all isomorphism classes of indecomposable
rank two graded Ulrich modules over the homogeneous hypersurface ring
k[y1, y2, y3]/〈y3

1 + y2
1y3 − y2

2y3〉 is given.

Introduction

Let R be a homogeneous Cohen–Macaulay k–algebra over a field k and let M
be a finitely generated graded R–module. If M is a maximal Cohen–Macaulay
R-module (shortly MCM) then µ(M) ≤ e(M) where µ(M) denotes the mini-
mal number of generators of M and e(M) denotes the multiplicity of M . In
the case that M is a maximal Cohen–Macaulay module and µ(M) = e(M), M
is called Ulrich–module, or maximally generated MCM (see [U]).The corre-
sponding sheaves on ProjR are called Ulrich sheaves. It is known ([ES]) that
a line bundle F on a curve X of genus g embedded in P

n is an Ulrich sheaf if
and only if F(−1) has degree g − 1 and no global sections.
In this paper we study the rank two Ulrich sheaves over a singular curve of
arithmetic genus 1, the nodal curve. From some points of view, in spite of its
singularity, the simple node is very similar to the elliptic curves: for example,
the nodal curve has, the same like the elliptic curves, a tame category of vector
bundles (see [DG]).
The nodal curve is ProjR, where R = k[y1, y2, y3]/〈y3

1 + y2
1y3 − y2

2y3〉, k an
algebraically closed field. The existence of a Ulrich module over a homoge-
neous 2-dimensional CM-ring with an infinite residue class field and over a
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homogeneous hypersurface ring was proven in [BHU] and [BH].

We describe explicitly all indecomposable rank two graded Ulrich R–modules,
by computing their corresponding matrix factorizations.
The matrix factorizations, introduced by Eisenbud [Ei1], are a powerful tool
in the work with MCM–modules over hypersurface rings: in [BEH] and [BHS]
the authors have studied connections between matrix factorizations of a ho-
mogeneous polynomial f and (a generalized) Clifford algebra of f ; in [MPP],
[LPP], [BEPP] and other, the authors used the matrix factorizations in order
to classify different classes of MCM modules.

In the first section we remind some facts about matrix factorizations of
homogeneous polynomials and their relation with MCM modules over hyper-
surface rings; (for more details the reader can consult the book of Y. Yoshino,
’Cohen–Macaulay modules over Cohen–Macaulay rings’); especially, we de-
scribe the construction of extensions of MCM modules with known matrix
factorizations. We use it in the second section of this paper for the classifica-
tion of the rank two Ulrich modules. The last section contains the Singular
procedures used in the paper.

1 Extensions of MCM modules over hypersurface rings

Let S be a polynomial ring over a field k and f ∈ S an irreducible homogeneous
polynomial of degree d.
Consider the hypersurface ring R = S/f and M a graded MCM–module over
it. As an S-module, M has a minimal resolution of the form

0 −→ n⊕
j=1

S(βj)
Ã−→ n⊕

j=1
S(αj) −→ M −→ 0,

with Ã the multiplication by a square matrix A with homogeneous entries
that are either zero or of strictly positive degree (because of the minimality).
Eisenbud proved that there exists another square matrix A′ with homogeneous
entries (graded matrix) over S such that (A, A′) forms a graded matrix fac-
torization of f , that is AA′ = A′A = f · Id. As an R–module, M has the
following infinite graded minimal 2-periodic R-resolution:

...
·A−→ n⊕

j=1
R(αj − d) ·A′−→ n⊕

j=1
R(βj)

·A−→ n⊕
j=1

R(αj) −→ M −→ 0.

Conversely, any graded matrix factorization (A, A′) of the polynomial f de-
termine (up to shifting) a graded MCM module, M = Coker(Ã), where

Ã :
n⊕

j=1
R(βj) −→

n⊕
j=1

R(αj) is the multiplication by A.
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The rank of the module M is precisely the integer r such that detA = f r. It

follows immediately that e(M) = degf · rankM =
n∑

j=1

(αj −βj), and, therefore,

the minimal number of generators of a MCM R–module is smaller equal the
multiplicity of the module. Thus, the Ulrich modules are exactly the MCM–
modules that have a matrix factorization with linear entries on the diagonal.

Two matrix factorizations (A, A′) and (B, B′) determine the same MCM
module if and only if the matrices A and B are equivalent, that means there
exist two graded invertible matrices U and V such that AU = BV .
The MCM module given by a reduced matrix factorization (A, A′) (reduced
means that the entries are either zero or of strictly positive degree) is decom-
posable if and only if the matrix A is equivalent to a matrix of the form

(
C 0
0 D

)
.

In the following we recall some facts regarding the extensions Ext1R(N, M),
with M, N graded MCM modules over a hypersurface ring R (for more details,
see [Y]). Let

...
·A−→ n⊕

j=1
R(αj − d) ·A′−→ n⊕

j=1
R(βj)

·A−→ n⊕
j=1

R(αj) −→ M −→ 0,

and

...
·B−→ s⊕

j=1
R(α′

j − d) ·B′−→ s⊕
j=1

R(β′
j)

·B−→ s⊕
j=1

R(α′
j) −→ N −→ 0,

be minimal R–resolutions of M , respectively N and denote with Ω1(M) the
first syzygy of M .
The graded exact sequence

(∗) 0 −→ M −→ n⊕
j=1

R(βj + d) ·A−→ Ω1(M) ⊗R R(d) −→ 0,

induces the natural surjective mapping

δ : HomR(N, Ω1(M) ⊗R R(d)) −→ Ext1R(N, M).

A morphism h : N −→ Ω1(M) ⊗R R(d) is given by two graded matrices
D and D′ such that A′ · D = D′ · B (the entry (i, j) of the matrix D has the
degree αi − β′

j), that means, the pair (D, D′) makes the following diagram
commutative:

0 −→ s⊕
j=1

S(β′
j)

·B−−−−→ s⊕
j=1

S(α′
j) −−−−→ N −−−−→ 0

⏐⏐�·D
⏐⏐�·D′

⏐⏐�h

0 −→ n⊕
j=1

S(αj)
·A′−−−−→ n⊕

j=1
S(βj + d) −−−−→ Ω1(M) ⊗R R(d) −−−−→ 0.
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By definition, δ maps the morphism h to

δ(h) : 0 −→ M −→ L −→ N −→ 0,

with L given by :

0 −→ (
n⊕

j=1
S(βj)) ⊕ (

s⊕
j=1

S(β′
j))

·(A D
0 B )−→ (

n⊕
j=1

S(αj)) ⊕ (
s⊕

j=1
S(α′

j)) −→ L −→ 0.

Remark. δ(h) = 0 if and only if there exist two graded matrices U and
V such that D = AU + V B.

Proof. The morphism h is in the kernel of δ if and only if h factories as
N

l−→ n⊕
j=1

R(βj + d) ·A−→ Ω1(M) ⊗R R(d). Let l1, l2 be two graded morphisms

such that the following diagram commutes:

0 −→ s⊕
j=1

S(β′
j)

·B−−−−→ s⊕
j=1

S(α′
j) −−−−→ N −−−−→ 0

⏐⏐�l2

⏐⏐�l1

⏐⏐�l

0 −→ n⊕
j=1

S(βj)
·f−−−−→ n⊕

j=1
S(βj + d) −−−−→ n⊕

j=1
R(βj) −−−−→ 0

⏐⏐�·A
⏐⏐�id

⏐⏐�·A

0 −→ n⊕
j=1

S(αj)
·A′−−−−→ n⊕

j=1
S(βj + d) ·A−−−−→ Ω1(M) ⊗R R(d) −−−−→ 0.

Let W and U be the graded matrices defining the morphisms l1, respec-
tively l2. Then, the pairs of matrices (AU, W ) and (D, D′) define the same
morphism, h. Therefore, there exists a graded matrix V such that

D − AU = V B, D′ − W = A′U.

The first equality is exactly what we want to prove. The inverse direction is
evident.

Therefore, to compute an element of Ext1R(N, M) for two graded MCM–
modules M and N with known minimal resolutions given by the matrix fac-
torizations (A, A′), respectively (B, B′), one has to find a graded matrix D
such that there exists another graded matrix D′ with A′ · D = D′ · B, or,
equivalent, such that f divides the entries of A′DB′. Notice that if one re-
places the matrix D with D − AU − V B, for any matrices U, V , one obtains
the same extension.

In this paper, the computations of the extensions are made with the help
of the Singular procedure "condext", that returns the ideal of conditions
on the entries of a matrix D such that f divides the entries of A′DB′ (see the
last section).
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2 The classification of rank 2 Ulrich R–modules

In this section we describe the isomorphism classes of all graded rank two
indecomposable Ulrich R–modules over the ring R = k[y1, y2, y3]/〈y3

1 + y2
1y3−

y2
2y3〉, that is the affine cone over the simple node (k is an algebraically closed

field).
The graded MCM R–modules are exactly the locally torsion-free R–modules

and they have the following property:

Lemma 2.1. Let R be a homogeneous hypersurface ring R = k[y1, y2, y3]/f
with f indecomposable, and M be a locally torsion–free (MCM) R–module of
rank r, r > 1. Then, there exist two locally torsion–free R–modules K, N with
rank(K)=1, such that the sequence

0 −→ K −→ M −→ N −→ 0

is exact. If M is an Ulrich module, then K and N are also Ulrich modules.

Proof. Let n ∈ Z and m0 ∈ Mn, m0 	= 0. Let ϕ : R(−n) −→ M be the
multiplication with m0. Denote Q = Cokerϕ, N = Q/Tors(Q). Then, there
exists K of rank 1, such that the sequence 0 −→ K −→ M −→ N −→ 0 is
exact. It is easy to see that K and N are indeed locally torsion–free modules.

Consider now that M is an Ulrich–module.
Then µ(M) = e(M) = e(K) + e(N) ≥ µ(K) + µ(N).
As we have seen in the previous section, on a hypersurface ring, if
0 −→ K −→ M −→ N −→ 0 is an exact sequence of MCM modules, µ(M) ≤
µ(K) + µ(N). Therefore, if for M holds µ(M) = e(M), also for K and N
holds µ(K) = e(K) and µ(N) = e(N).

Therefore, in order to classify the rank two Ulrich R–modules, we need to
know the Ulrich R–modules of rank one, that are explicitly computed in [Ba3].
We remind here their classification.

Let f = y3
1 + y2

1y3 − y2
2y3 and let s = (0 : 0 : 1) be the unique singular

point of the curve V (f) ⊂ P
2
k. Denote V (f)reg = V (f)\{s}.

Then V (f)reg = {(a : b : 1), a3 + a2 − b2 = 0, a 	= 0} ∪ {(0 : 1 : 0)}.

For any λ = (a : b : 1) in V (f) denote:

αλ =

⎛
⎝ 0 y1 − ay3 y2 − by3

y1 y2 + by3 (a2 + a)y3

y3 0 −y1 − (a + 1)y3

⎞
⎠ and let βλ be the adjoint of αλ.

Consider also the graded maps given by the multiplication with the matrix
αλ, α̃λ : R(−2)3 −→ R(−1)3.
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Proposition 2.2. 1. For each λ = (a : b : 1) in V (f), the pair (αλ, βλ) is
a graded matrix factorization of f .

2. The rank one, graded, locally free Ulrich R–modules are isomorphic, up
to shifting, with one of the modules Coker α̃λ, λ ∈ V (f)reg \ {(0 : 1 : 0)}.

3. Up to shifting, there is only one non–locally free rank one, Ulrich R-
module, that is Coker α̃s.

For each m ∈ N, m ≥ 1, λ = (a : b : 1) ∈ V (f)reg and K ∈ k, define the
following matrices:

δm
λ =

�
�������

0 y1 − ay3 y2 − by3 0 2bym
3 (3a2 + 2a)ym

3

y1 y2 + by3 (a2 + a)y3 0 −(3a2 + 2a)ym
3 −2b(2a + 1)ym

3

y3 0 −y1 − (a + 1)y3 0 0 2bym
3

0 0 0 0 y1 − ay3 y2 − by3

0 0 0 y1 y2 + by3 (a2 + a)y3

0 0 0 y3 0 −y1 − (a + 1)y3

�
�������

,

δm
s =

�
�������

0 y1 y2 0 0 ym
3

y1 y2 0 0 −ym
3 0

y3 0 −y1 − y3 0 0 0
0 0 0 0 y1 y2

0 0 0 y1 y2 0
0 0 0 y3 0 −y1 − y3

�
�������

and

δm
K =

�
�������

0 y1 y2 0 ym
3 Kym

3

y1 y2 0 0 −Kym
3 −ym

3

y3 0 −y1 − y3 0 0 ym
3

0 0 0 0 y1 y2

0 0 0 y1 y2 0
0 0 0 y3 0 −y1 − y3

�
�������

.

For any δ ∈ {δm
λ , δm

K |m ∈ N, m ≥ 1, λ ∈ V (f), λ 	= (0 : 1 : 0), K ∈ k}, define
the graded map δ̃ : R(−2)3 ⊕ R(−m− 1)3 −→ R(−1)3 ⊕ R(−m)3, that is the
multiplication with the matrix δ.

Theorem 2.3. Any rank two indecomposable Ulrich module M over the affine
cone of the simple node is, up to shifting, isomorphic to one Coker δ̃, with
δ ∈ {δm

λ , δm
K |m ∈ N, m ≥ 1, λ ∈ V (f), λ 	= (0 : 1 : 0), K ∈ k}.

Proof. Let M be a graded indecomposable rank two maximally generated
MCM R-module.
By Lemma 2.1, M fits in a graded exact sequence

0 −→ L1 −→ M −→ L2 −→ 0,



Rank two Ulrich Modules 21

with L1 and L2 graded, rank one maximally generated MCM R–module.
Therefore, there exist γ = (c : d : 1) and λ = (a : b : 1) two points in V (f) and
n ∈ Z such that, after some shiftings, M fits into a graded exact sequence

(∗∗) 0 → Coker α̃γ → M → Coker α̃λ ⊗ R(n) → 0.

As it was seen in the first section, M has a graded (reduced) matrix fac-
torization (δ, δ′), with δ =

(
αγ D
0 αλ

)
; the 3–square matrix D has homogeneous

entries and it fulfill βγ · D · βλ = 0 mod (f).
The corresponding graded map δ̃ is defined as
δ̃ : R(−2)3⊕R(n− 2)3 −→ R(−1)3 ⊕R(n− 1)3, so, the matrix D should have
homogeneous entries of degree m = 1 − n.
If n ≥ 2, D is the null-matrix, so the extension splits.
If n = 1, D has constant entries, therefore the module M either decomposes
or is not maximally generated.
Therefore we should consider only the negative shifting of Cokerαλ.

In the next Lemma we prove that the matrix D can be chosen with a
simplified form, without changing the module Coker δ̃.

Lemma 2.4. There exists a matrix D ′ =
(

a1ym
2 y2B2+y3A2 a3ym

3
0 a5ym

3 a6ym
3

y2B7+y3A7 a8ym
3 a9ym

3

)
with

homogeneous entries of degree m such that the matrix δ ′ =
(

αγ D′

0 αλ

)
is equiv-

alent with δ.

Remark. In other words, the lemma says, that by some linear transfor-
mations, one can eliminate y1 and y3 on the position [1, 1] of D, y1 and y2 on
the positions [1, 3], [2, 2], [2, 3], [3, 2], [3, 3], only y1 on the positions [1, 2] and
[3, 1], and one can make zero on the position [2, 1].

Proof. If we prove that there exist two graded matrices U and V such that
D − αγU − V αλ has the form of D ′, we are done the proof.

Let U =
(

u1 u2 u3
u4 u5 u6
u7 u8 u9

)
and V =

(
v1 v2 v3
v4 v5 v6
v7 v8 v9

)
. The entries of W = αγU + V αλ

are linear in u1,...,9 and v1,...,9. We denote the coefficient of yl in W [i, j] with
Cl[i, j]. Cl[i, j] is an element in the vector space generated by u1, ..., u9, v1, ..., v9

over k. An easy but laborious computation shows that the following coeffi-
cients are linear independent over k:
{C1[i, j], C3[1, 1], C2[1, 3], C2[2, 1], C3[2, 1], C2[2, 2], C2[2, 3], C2[3, 2], C2[3, 3]}
(1 ≤ i, j ≤ 9). (The vector space generated by them is
〈v8, v7, v6, v5 − v9, v4, v3, v2, v1 − v9, u9 + v1, u8, u7, u6, u5 + v5, u4, u3, u2, u1 +
v9〉k).
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Thus, the matrices U and V can be chosen such that the corresponding coef-
ficients in the matrix D − αγU − V αλ annulate, that is, the matrix has the
form of D ′.

We can consider now that D has the simplified form from the previous
lemma and we impose the condition βγ ·D · βλ = 0 modulo f , in order to get
more information on the entries of D. This information is contained in the
ideal returned by the procedure condext (see the last section).

In the following, Y denotes ym−1
3 , d(1) = D[1, 1] = a1y

m
2 , d(2) = D[1, 2] =

y2B2 + y3A2, d(7) = D[3, 1] = y2B7 + y3A7, a(3), a(5), a(6), a(8), a(9) are
constants, as in Lemma 2.4.

ring S=0,(y(1..3),d(1),d(2),a(3),a(5..6),d(7),a(8..9),
Y,a,b,c,d),(c,dp);

ideal i=y(1)^3+y(1)^2*y(3)-y(2)^2*y(3),a3+a2-b2,c3+c2-d2;
qring R=std(i);

matrix alphal[3][3]=0,y(1)-a*y(3), y(2)-b*y(3),
y(1),y(2)+b*y(3), (a2+a)*y(3),
y(3), 0,-y(1)-(a+1)*y(3);

matrix alphag[3][3]=0,y(1)-c*y(3), y(2)-d*y(3),
y(1),y(2)+d*y(3), (c2+c)*y(3),
y(3), 0,-y(1)-(c+1)*y(3);

matrix D[3][3]= d(1), d(2),a(3)*Y*y(3),
0,a(5)*Y*y(3),a(6)*Y*y(3),

d(7),a(8)*Y*y(3),a(9)*Y*y(3);

ideal P=condext(alphag,alphal,D);
P[1];
-y(3)^2*a(9)*Y*a+y(3)^2*a(8)*Y*b-y(3)^2*a(9)*Y*c-y(3)^2*a(6)*Y-
y(2)*y(3)*a(8)*Y-y(3)^2*a(9)*Y-y(3)*d(7)*a^2-y(3)*d(7)*a+
y(3)*d(1)*d+y(2)*d(1)

The condition P[1]=0 means that the entry d(1) = D[1, 1] is in the ideal
(y3). But actually, D[1, 1] is a1y

m
2 , a1 ∈ k, so d(1) = D[1, 1] = 0.

P=simple(subst(P,d(1),0));
P[6];
y(3)^3*a(9)*Y*c^2-y(3)^3*a(6)*Y*a+y(3)^3*a(5)*Y*b+y(3)^3*a(9)*Y*c-
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y(3)^3*a(3)*Y*d-y(2)*y(3)^2*a(3)*Y-y(2)*y(3)^2*a(5)*Y-y(2)^2*d(7)

The condition P[6]=0 shows that y2
3 ∗Y = ym+1

3 divides d(7), that actually
it is a polynomial of degree m. So d(7) = D[3, 1] = 0.

P=simple(subst(P,d(7),0));
P=interred(P);
P[1];
y(3)*a(9)*a-y(3)*a(8)*b+y(3)*a(9)*c+y(3)*a(6)+y(2)*a(8)+y(3)*a(9)
P[2];
y(3)*a(9)*c^2-y(3)*a(6)*a+y(3)*a(5)*b+y(3)*a(9)*c-y(3)*a(3)*d-
y(2)*a(3)-y(2)*a(5)

The conditions P[1]=P[2]=0 implies a(8) = a(3) + a(5) = 0.

P=simple(subst(P,a(8),0,a(5),-a(3)));
P=interred(P);
P[1];
a(9)*a+a(9)*c+a(6)+a(9)
P[6];
y(3)^2*a(3)*Y*a-y(3)^2*a(3)*Y*c+y(3)^2*a(9)*Y*d-y(2)*y(3)*a(9)*Y
-y(3)*d(2)*b+y(2)*d(2)

The sixth (last) polynomial of the ideal P shows that y3 ∗ Y = ym
3 divides the

degree m polynomial d(2), so d(2) = a2y
m
3 , a2 constant. The condition P[1]=0

gives a6 = −a9(a + c + 1).
We change the ring in which we work just to adjust the variables that we still
need:

ring S1=0,(y(1..3),d(2),a(2),a(3),a(6),a(9),Y,a,b,c,d),(c,dp);
ideal i=y(1)^3+y(1)^2*y(3)-y(2)^2*y(3),a3+a2-b2,c3+c2-d2;
qring R1=std(i);
ideal P=imap(R,P);
P=subst(P,a(6),-a(9)*(a+c+1),d(2),a(2)*y(3)*Y);
P=simple(P);
P=interred(P);
P;
P[1]=a(2)*b-a(9)*b+a(2)*d-a(9)*d
P[2]=a(9)*a^2+a(9)*a*c+a(9)*c^2+a(9)*a-a(3)*b+a(9)*c-a(3)*d
P[3]=a(2)*a^2+a(2)*a*c+a(2)*c^2+a(2)*a-a(3)*b+a(2)*c-a(3)*d
P[4]=y(3)*a(3)*a-y(3)*a(9)*b-y(3)*a(3)*c+y(3)*a(2)*d+y(2)*a(2)-
y(2)*a(9)

From the last polynomial we get a2 = a9 and a3(a − c) = a9(b − d).
If a 	= c, a3 = b−d

a−ca9.
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Therefore, D = a9
a−c

(
0 (a−c)ym

3 (b−d)ym
3

0 −(b−d)ym
3 −(a−c)(a+c+1)ym

3
0 0 (a−c)ym

3

)
= a9

a−cym−1
3 (αγ − αλ).

Then the extension (∗∗) splits.
Let a = c. Then a9(b − d) = 0 and a3(b + d) = a9(3a2 + 2a).

The matrix D has the form

D =
(

0 a9ym
3 a3ym

3
0 −a3ym

3 −a9(2a+1)ym
3

0 0 a9ym
3

)
.

There are five cases to be considered:

1. a = c, b = d, b 	= 0, a9 	= 0, a3 = 3a2+2a
2b a9

2. a = c = −1, b = d = 0, a9 = 0, a3 	= 0

3. a = c, b = −d, b 	= 0, a9 = 0, a3 	= 0

4. a = c = b = d = 0, a9 = 0

5. a = c = b = d = 0, a9 	= 0

In the first case, without changing the corresponding module, one can choose
a9 = 2b and the matrix δ becomes δm

λ .
In the second case, we can choose a3 = 1, and the matrix δ becomes δm

λ ,
for λ = (−1 : 0 : 1).

In the third case, D = ym−1
3

a3
2b (αγ − αλ), so the extension (∗∗) splits.

In the fourth case, without changing the corresponding module, we can
choose a3 = 1, and the matrix δ becomes δm

s (if a3 = 0, the extension given
by δ splits).

In the last case, we can fix a9 = 1 and let a3 to vary. If we denote a3 = K,
we obtain the matrix δm

K .

The proof of the theorem is finished with the proofs of the following two
lemmas.

Lemma 2.5. For all

δ ∈ {δm
λ , δm

K |λ ∈ V (f), λ 	= (0 : 1 : 0), m ∈ N, m ≥ 1, K ∈ k},

the modules Coker δ̃ are indecomposable.

Proof. Suppose Coker δ̃ decomposes. Then, there exist two points of V (f), µ

and ξ, such that δ is equivalent to the matrix T =
(

αµ 0
0 αξ

)
.
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Case 1. Consider m ≥ 2.
For any δ ∈ {δm

λ , δm
K |m ∈ N, m ≥ 1, λ ∈ V (f), λ 	= (0 : 1 : 0), K ∈ k},

Y m+2
3 ∈ Fitt3(δ) \ Fitt3(T ). Since two equivalent matrices should have the

same fitting-ideals, δ can not be equivalent to T , so Coker δ̃ is indecomposable.
Case 2. Consider m = 1.
The entries of δ and T are linear forms, so, there exist U and V invertible
matrices, with degree zero entries, such that UT − δV = 0. The Singular-
procedure equiv (see the last section) checks the existence of such matrices.

ring S=0,(y(1..3),a,b,l1,l2,L1,L2,K,u(1..36),v(1..36)),(c,dp);

ideal i=y(1)^3+y(1)^2*y(3)-y(2)^2*y(3),a3+a2-b2,

l1^3+l1^2-l2^2,L1^3+L1^2-L2^2;

qring R=std(i);

matrix T[6][6]=

0,y(1)-l1*y(3), y(2)-l2*y(3), 0, 0, 0,

y(1),y(2)+l2*y(3), (l1^2+l1)*y(3), 0, 0, 0,

y(3), 0,-y(1)-(l1+1)*y(3), 0, 0, 0,

0, 0, 0, 0,y(1)-L1*y(3), y(2)-L2*y(3),

0, 0, 0,y(1),y(2)+L2*y(3), (L1^2+L1)*y(3),

0, 0, 0,y(3), 0,-y(1)-(L1+1)*y(3);

matrix Sl[6][6]=

0,y(1)-a*y(3), y(2)-b*y(3), 0, 2b*y(3), (3a2+2a)*y(3),

y(1),y(2)+b*y(3), (a2+a)*y(3), 0,-(3a2+2a)*y(3), -2b*(2a+1)*y(3),

y(3), 0,-y(1)-(a+1)*y(3), 0, 0, 2b*y(3),

0, 0, 0, 0, y(1)-a*y(3), y(2)-b*y(3),

0, 0, 0,y(1), y(2)+b*y(3), (a2+a)*y(3),

0, 0, 0,y(3), 0,-y(1)-(a+1)*y(3);

matrix SK[6][6]=

0,y(1), y(2), 0, y(3), K*y(3),

y(1),y(2), 0, 0,-K*y(3), -y(3),

y(3), 0,-y(1)-y(3), 0, 0, y(3),

0, 0, 0, 0, y(1), y(2),

0, 0, 0,y(1), y(2), 0,

0, 0, 0,y(3), 0,-y(1)-y(3);

matrix Ss[6][6]=

0,y(1), y(2), 0, 0, y(3),

y(1),y(2), 0, 0,-y(3), 0,

y(3), 0,-y(1)-y(3), 0, 0, 0,

0, 0, 0, 0, y(1), y(2),

0, 0, 0,y(1), y(2), 0,

0, 0, 0,y(3), 0,-y(1)-y(3);
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equiv(T,Sl); equiv(T,SK); equiv(T,Ss);

_[73]=b [1]: [1]:

_[74]=a _[1]=1 _[1]=1

Since either a 	= 0 or b 	= 0, it follows that, also for m = 1, Coker δ̃ is
indecomposable.

Lemma 2.6. No two modules that up to some shifting are of the form
Coker δ̃, with δ ∈ {δm

λ , δm
K |λ ∈ V (f), λ 	= (0 : 1 : 0), m ∈ N, m ≥ 1, K ∈ k} are

isomorphic one with another.

Proof. Case 1. Consider m ≥ 2.
Since y3

3 ∈ Fitt3(δm
λ ) \ {Fitt3(δm

K ) ∪ Fitt3(δm
s )}, the matrix δm

λ is neither with
δm
K nor with δm

s equivalent.
If K2−1 = 0, y2m+2

3 ∈ Fitt4(δm
s )\Fitt4(δm

K ), so δm
K and δm

s are not equivalent.
We prove now that δm

s is not equivalent to any δm
K , in the case K2 	= 1. In a

very similar one proves that δm
1 and δm

−1 are not equivalent.
Suppose that there exists d0 ∈ Z such that Cokerδm

s and Cokerδm
K(d0) are

isomorphic.
Then there exist two invertible morphisms

Ũ : R(−1)3 ⊕ R(−m)3 −→ R(d0 − 1)3 ⊕ R(d0 − m)3

and
Ṽ : R(−2)3 ⊕ R(−m − 1)3 −→ R(d0 − 2)3 ⊕ R(d0 − m − 1)3

such that
Ũ δ̃m

s = δ̃m
K Ṽ .

Let U and V be the graded invertible matrices corresponding to these mor-
phisms. Write U =

(
U1 U2
U3 U4

)
and V =

(
V1 V2
V3 V4

)
, δm

s =
(

αs D
0 αs

)
and δK =(

αs DK
0 αs

)
. The entries of U1, U4, V1, V4 have degree d0, the entries of U2 and V2

have degree m + d0 − 1 and the entries of U3 and V3 have degree d0 − m + 1.
Therefore, since U is invertible, d0 = 0, U1, U4, V1, V4 have degree zero entries
and U3 = V3 = 0. The relation Uδm

s = δm
KV means the following system of

equalities:

U1αs = αsV1 (1)

U1D + U2αs = αsV2 + DKV4, (2)

U4αs = αsV4. (3)

The procedure equiv shows that the equalities (1) and (3) imply U1 =
V1 = k1Id and U4 = V4 = k4Id, where k1 and k4 are constants.
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ring S=0,(y(1..3),u(1..9),v(1..9),K,Y),(c,dp);
ideal i=y(1)^3+y(1)^2*y(3)-y(2)^2*y(3);
qring R=std(i);

matrix alphas[3][3]= 0,y(1), y(2),
y(1),y(2), 0,
y(3), 0,-y(1)-y(3);

equiv(alphas,alphas);
U=
v(9),0, 0,
0, v(9),0,
0, 0, v(9)

V=
v(9),0, 0,
0, v(9),0,
0, 0, v(9)

Therefore, k1D − k4DK = αsV2 − U2αs. So, the entries [1,2] and [2,2] of
k1D− k4DK are in the ideal (y1, y2), that is possible only if k4 = k1 = 0. But
then, U is not any more invertible.

Case 2. Consider now m = 1.
In this case δλ, δs and δK have the same fitting ideals. But, since the possible
transformation matrices U and V should have only degree zero entries, the
equivalence of these matrices can be checked with the Singular-procedure
equiv:

ring S=0,(y(1..3),a,b,c,d,K1,K2,u(1..36),v(1..36)),(c,dp);

ideal i=y(1)^3+y(1)^2*y(3)-y(2)^2*y(3),a3+a2-b2,c3+c2-d2;

qring R=std(i);

matrix Sl1[6][6]=

0,y(1)-a*y(3), y(2)-b*y(3), 0, 2b*y(3), (3a2+2a)*y(3),

y(1),y(2)+b*y(3), (a2+a)*y(3), 0,-(3a2+2a)*y(3), -2b*(2a+1)*y(3),

y(3), 0,-y(1)-(a+1)*y(3), 0, 0, 2b*y(3),

0, 0, 0, 0, y(1)-a*y(3), y(2)-b*y(3),

0, 0, 0,y(1), y(2)+b*y(3), (a2+a)*y(3),

0, 0, 0,y(3), 0,-y(1)-(a+1)*y(3);

matrix Sl2[6][6]=

0,y(1)-c*y(3), y(2)-d*y(3), 0, 2d*y(3), (3c2+2c)*y(3),

y(1),y(2)+d*y(3), (c2+c)*y(3), 0,-(3c2+2c)*y(3), -2d*(2c+1)*y(3),

y(3), 0,-y(1)-(c+1)*y(3), 0, 0, 2d*y(3),
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0, 0, 0, 0, y(1)-c*y(3), y(2)-d*y(3),

0, 0, 0,y(1), y(2)+d*y(3), (c2+c)*y(3),

0, 0, 0,y(3), 0,-y(1)-(c+1)*y(3);

matrix Ss[6][6]=

0,y(1), y(2), 0, 0, y(3),

y(1),y(2), 0, 0,-y(3), 0,

y(3), 0,-y(1)-y(3), 0, 0, 0,

0, 0, 0, 0, y(1), y(2),

0, 0, 0,y(1), y(2), 0,

0, 0, 0,y(3), 0,-y(1)-y(3);

matrix SK1[6][6]=

0,y(1), y(2), 0, y(3), K1*y(3),

y(1),y(2), 0, 0,-K1*y(3), -y(3),

y(3), 0,-y(1)-y(3), 0, 0, y(3),

0, 0, 0, 0, y(1), y(2),

0, 0, 0,y(1), y(2), 0,

0, 0, 0,y(3), 0,-y(1)-y(3);

matrix SK2[6][6]=

0,y(1), y(2), 0, y(3), K2*y(3),

y(1),y(2), 0, 0,-K2*y(3), -y(3),

y(3), 0,-y(1)-y(3), 0, 0, y(3),

0, 0, 0, 0, y(1), y(2),

0, 0, 0,y(1), y(2), 0,

0, 0, 0,y(3), 0,-y(1)-y(3);

equiv(Sl1,Sl2); equiv(Sl1,Ss);

_[69]=b-d [1]:

_[70]=a-c _[1]=1

equiv(Sl1,SK1); equiv(Ss,SK1);

[1]: [1]:

_[1]=1 _[1]=1

equiv(SK2,SK1);

_[71];

K1-K2

Remark. The modules Coker δ̃m−1 and Coker δ̃m
1 are non-locally free. All

other rank two indecomposable Ulrich R–modules are locally free (because
Fitt4R〈y1,y2〉 = R〈y1,y2〉; see for example Prop.1.3, [TJP]).
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3 Singular-procedures

option(redSB); LIB"matrix.lib"; LIB"homolog.lib"; LIB"linalg.lib";

proc simple(ideal P) //divides the polynomials by powers of y_2 or y_3
{ int j,i; poly F;
list L=0;
for(j=1;j<=size(P);j++)
{ L=factorize(P[j]);
if(size(L[1])>2)
{ F=1;
for(i=2;i<=size(L[1]);i++)
{ if(L[1][i]==y(2) or L[1][i]==y(3) or L[1][i]==Y)

{ L[1][i]=1;}
F=F*L[1][i]^(L[2][i]);}

P[j]=F;}}
return(P);}

proc condext(matrix A,B,D)
{ matrix V; int k,j; ideal P=0; list L=0;
matrix Aa=adjoint(A); matrix Ba=adjoint(B); matrix G=Aa*D*Ba;
ideal g=flatten(G);
for(j=1;j<=size(G);j++)
{ g[j]=reduce(g[j],std(y(1)^3+y(1)^2*y(3)-y(2)^2*y(3)));
V=coef(g[j],y(1));
for(k=1;k<=1/2*size(V);k++)
{ P=P+V[2,k];}}

P=interred(P); P=simple(P);
return(P);}

proc equiv(matrix X,matrix Y)
{ list z;int n=nrows(X);
matrix U[n][n]=u(1..n^2); matrix V[n][n]=v(1..n^2);
matrix C=U*X-Y*V; ideal I=flatten(C);
ideal I1=transpose(coeffs(I,y(1)))[2];
ideal I2=transpose(coeffs(I,y(2)))[2];
ideal I3=transpose(coeffs(I,y(3)))[2];
ideal J=I1+I2+I3;
ideal L=std(J);
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if (n==6){z=std(L+(det(U)-1));return(z);}
else{ U=reduce(flatten(U),std(L));z[1]=U;"U=";print(U);

V=reduce(flatten(V),std(L));z[2]=V;" V=";print(V);}}
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