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DISCRETE POLYMATROIDS

Marius Vlădoiu

Abstract

In this article we give a survey on some recent developments about

discrete polymatroids.

Introduction

This article is a survey on the results obtained on the discrete polymatroids,
since they were introduced by Herzog and Hibi [7] in 2002. The discrete poly-
matroid is a multiset analogue of the matroid, closely related to the integral
polymatroids. This paper is organized as follows. In Section 1, we give a brief
introduction to matroids and polymatroids. In Section 2, the definition and
basic combinatorial properties about discrete polymatroids are given, as well
as the connection with matroids and integral polymatroids. Since checking
whether a finite set is a discrete polymatroid is not easy in general, two tech-
niques for the construction of discrete polymatroids are presented in Section
3.

In Section 4 and 5 we study algebra on discrete polymatroids. More pre-
cisely, to a discrete polymatroid P with its set of bases B, and for an arbitrary
field K, one can associate the following algebraic objects: K[B], the base ring
and its toric ideal IB , the homogeneous semigroup ring K[P ], and the poly-
matroidal ideal I(B). In Section 4, we describe and compare the algebraic
properties of K[P ] and K[B]. Three conjectures related to the base ring K[B]
are given, together with the particular case when these are all true. This par-
ticular class of discrete polymatroids is the one of discrete polymatroids which
satisfy the strong exchange property. Since all three conjectures are true in
the case of discrete polymatroids with strong exchange property, we study
their combinatorial properties in Section 6. Finally, in Section 5 we study the
properties of the polymatroidal ideals.
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1 Matroids and Polymatroids

In this section we give the definitions and few basic properties of matroids and
polymatroids, together with some examples. The purpose of this section is to
give to the reader an idea about this concepts and fix the notations for the
rest of the paper. For a detailed material on matroids and polymatroids one
can consult [20], [14].

First, we give the definition of a matroid, in the particular case when
the finite ground set is {1, . . . , n}. However, in the examples which follow
the definition, we catch the more general case. For a survey on the current
research problems in matroid theory we recommend the survey [15].

Fix an integer n > 0 and set [n] = {1, 2, . . . , n}. 2[n] is the set of all subsets
of [n]. For a subset F ⊂ [n] write |F | for the cardinality of F . The following
definition of the matroid is originated in Whitney (1935):

Definition 1.1. A matroid on the ground set [n] is a subset M⊂ 2[n] satis-
fying:

(M1) ∅ ∈ M;

(M2) if F1 ∈M and F2 ⊂ F1, then F2 ∈ M;

(M3) if F1 and F2 belong to M and |F1| < |F2|, then there is x ∈ F2 \F1 such
that F1 ∪ {x} ∈ M.

In particular, if one adds in the definition that the matroid is a nonempty
subset, then (M1) can be skipped since it follows from the condition (M2).
The conditions (M1) and (M2) say together that M is an abstract simplicial
complex on [n]. The members of M are the independent sets of M. A base of
M is a maximal independent set of M. An easy consequence of (M3) is that
any two bases have the same cardinality. The set of bases of M possesses the
following ”exchange property”:

(E) If B1 and B2 are bases of M and if x ∈ B1 \B2, then there is y ∈ B2\B1

such that (B1 \ {x}) ∪ {y} is a base of M.

Moreover, the set of bases of M possesses the following ”symmetric ex-
change property”:

(SE) If B1 and B2 are bases of M and if x ∈ B1 \B2, then there is y ∈ B2\B1

such that both (B1 \ {x}) ∪ {y} and (B2 \ {y}) ∪ {x} are bases of M.

Alternatively, we can give another definition of matroid in terms of its set of
bases. More precisely, given a nonempty set B ⊂ 2[n], there exists a matroid
M on the ground set [n] with B its set of bases if and only if B possesses
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the exchange property (E). If we denote the canonical basis vectors of R
n by

ε1, . . . , εn, then we associate to each F ⊂ [n] the (0, 1)-vector
∑

i∈F εi. In
this way a matroid on [n] can now be regarded as a set of (0, 1)-vectors (see
Corollary 2.3). Now we give three important examples of matroids:

Examples 1.2. Vector Matroid: Let V be a vector space and E be a
nonempty finite subset of V . We define the matroid M on the ground set E
by taking the independent sets of M to be the sets of linearly independent
elements in E. With linear algebra arguments one can check that the axioms
of the matroid are fulfilled.

Cycle Matroid: Let G be a finite graph, with V its set of vertices and
E its set of edges. Consider a set of edges independent if and only if it does
not contain a simple cycle. Then the set of all these independent sets define a
matroid on the ground set E.

Uniform Matroid: Let r and n be nonnegative integers with r no larger
than n. Let E be an element set of cardinality n, and let M be the collection
of all subsets of E of cardinality r or less. Then M is a matroid, called the
uniform matroid of rank r on n elements, and it is sometimes denoted by Ur,n.

For the rest of this section we present the concept of polymatroid and its
associated rank function. The concept of polymatroid originated in Edmonds
[5], and for further properties the reader can consult [20, Ch. 18], [14].

First, we recall the notations: [n] = {1, 2, . . . , n} and ε1, . . . , εn are the
canonical basis vectors of R

n. Then, we denote by R
n
+ the set of those vectors

u = (u(1), . . . , u(n)) ∈ R
n with each u(i) ≥ 0, and Z

n
+ = R

n
+ ∩ Z

n. For a
vector u = (u(1), . . . , u(n)) ∈ R

n
+ and for a subset A ⊂ [n], we set

u(A) =
∑

i∈A

u(i).

Thus in particular u({i}) is the i-th component u(i) of u. The modulus of u is

|u| = u([n]) =
n∑

i=1

u(i).

Let u = (u(1), . . . , u(n)) and v = (v(1), . . . , v(n)) be two vectors in R
n
+.

We write u ≤ v if all components v(i) − u(i) of v − u are nonnegative and,
moreover, write u < v if u ≤ v and u 6= v. We say that u is a subvector of v if
u ≤ v. In addition, we set

u ∨ v = (max{u(1), v(1)}, . . . ,max{u(n), v(n)}),

u ∧ v = (min{u(1), v(1)}, . . . ,min{u(n), v(n)}).

Thus u ∧ v ≤ u ≤ u ∨ v and u ∧ v ≤ v ≤ u ∨ v. We recall:
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Definition 1.3. A polymatroid on the ground set [n] is a nonempty compact
subset P in R

n
+, the set of independent vectors, such that

(P1) every subvector of an independent vector is independent;

(P2) if u, v ∈ P with |v| > |u|, then there is a vector w ∈ P such that

u < w ≤ u ∨ v.

A base of a polymatroid P ⊂ R
n
+ is a maximal independent vector of P ,

i.e., an independent vector u ∈ P with u < v for no v ∈ P . It follows from
(P2) that every base of P has the same modulus rank(P), the rank of P .

Now we give an equivalent description of a polymatroid, very useful in
proofs. Let P ⊂ R

n
+ be a polymatroid on the ground set [n]. The ground set

rank function of P is a function ρ : 2[n] −→ R+ defined by setting

ρ(A) = max{v(A) : v ∈ P}

for all ∅ 6= A ⊂ [n] together with ρ(∅) = 0. Then we have

Proposition 1.4. (a) Let P ⊂ R
n
+ be a polymatroid on the ground set [n] and

ρ its ground set rank function. Then ρ is nondecreasing, i.e., if A ⊂ B ⊂ [n],
then ρ(A) ≤ ρ(B), and is submodular, i.e.,

ρ(A) + ρ(B) ≥ ρ(A ∪ B) + ρ(A ∩ B)

for all A,B ⊂ [n]. Moreover, P coincides with the compact set

{x ∈ R
n
+ : x(A) ≤ ρ(A), A ⊂ [n]}. (1)

(b) Conversely, given a nondecreasing and submodular function
ρ : 2[n] −→ R+ with ρ(∅) = 0, the compact set (1) is a polymatroid on the
ground set [n] with ρ its ground set rank function.

It follows from Proposition 1.4(a) that a polymatroid P ⊂ R
n
+ on the

ground set [n] is a convex polytope in R
n. Furthermore a polymatroid is

integral if and only if its ground set rank function is integer valued. For a
detailed material on convex polytopes we refer the reader to [23], [11]. We end
this section with an example that shows all possible polymatroids in R

2:

Example 1.5 ([19]). Let P ⊂ R
2
+ be a polymatroid of rank d > 0. Then P

can have one base, i.e. a point A, and therefore P is a rectangle (see the first
picture), or its set of bases is the line AB : x + y − d = 0, in which case P is
either a triangle (see the second picture) or a pentagon (see the third picture):
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2 Combinatorics on Discrete Polymatroids

In this section we present the basic combinatorial properties of the discrete
polymatroids and their connection with matroids and polymatroids. The ma-
terial is based on the paper of Herzog and Hibi [7]. With the notations intro-
duced in the previous section we can give:

Definition 2.1 ([7]). Let P be a nonempty finite set of integer vectors in R
n
+,

which contains with each u ∈ P all its integral subvectors. The set P is called
a discrete polymatroid on the ground set [n] if for all u, v ∈ P with |v| > |u|,
there is a vector w ∈ P such that

u < w ≤ u ∨ v.

A base of P is a vector u ∈ P such that u < v for no v ∈ P . We denote
by B(P ) the set of bases of a discrete polymatroid P . It follows from the
definition that any two bases of P have the same modulus. This common
number is called the rank of P .

Discrete polymatroids can be characterized in terms of their set of bases
as follows:

Theorem 2.2 ([7]). Let P be a nonempty finite set of integer vectors in R
n
+

which contains with each u ∈ P all its integral subvectors, and let B(P ) be the
set of vectors u ∈ P with u < v for no v ∈ P . The following conditions are
equivalent:

(a) P is a discrete polymatroid;
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(b) if u, v ∈ P with |v| > |u|, then there is an integer i such that u+ εi ∈ P
and

u+ εi ≤ u ∨ v;

(c) (i) all u ∈ B(P ) have the same modulus,

(ii) if u, v ∈ B(P ) with u(i) > v(i), then there exists j with u(j) < v(j)
such that u− εi + εj ∈ B(P ).

Condition (c)(ii) from the theorem is also called the exchange property.
An important consequence of this theorem is that it gives a way to construct
discrete polymatroids. According to condition (c), it is enough to give a set of
integer vectors of the same modulus, which satisfy the exchange property and
then, by taking all its integral subvectors we obtain a discrete polymatroid.
The following result, which is obtained from Theorem 2.2 and the definition
of matroid, shows that it makes sense to view the discrete polymatroids as
generalizations of matroids.

Corollary 2.3 ([7]). Let B be a nonempty finite set of integer vectors in R
n
+.

The following conditions are equivalent:

(a) B is the set of bases of a matroid;

(b) B is the set of bases of a discrete polymatroid, and for all u ∈ B one has
u(i) ≤ 1 for i = 1, . . . , n.

It is useful for induction arguments to work with ”new” discrete polyma-
troids obtained from ”old” ones, as it follows from

Lemma 2.4 ([7]). Let P be a discrete polymatroid.

(a) Let d ≤ rank(P ). Then the set P ′ = {u ∈ P : |u| ≤ d} is a discrete
polymatroid of rank d with the set of bases {u ∈ P : |u| = d}.

(b) Let x ∈ P . Then the set Px = {v − x : v ≥ x} is a discrete polymatroid
of rank d− |x|.

The exchange property suggests the following definition [7] of a particular
class of discrete polymatroids

Definition 2.5 ([7]). A discrete polymatroid P satisfies the strong exchange
property, if for all u, v ∈ B(P ) with u(i) > v(i) and u(j) < v(j) for some i
and j, one has that u− εi + εj ∈ B(P ).
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Examples 2.6. (a) Let B be the set of bases of a discrete polymatroid on
the ground set [n] with n ≤ 3. It is immediate that B satisfies the strong
exchange property.

(b) The set B = {(2, 1, 2, 1), (1, 2, 1, 2), (1, 1, 2, 2), (2, 2, 1, 1)} is the set of
bases of a discrete polymatroid of rank 6. For this just verify condition (c)(ii)
of Theorem 2.2. It does not satisfy the strong exchange property. Indeed, if
we denote by u = (2, 1, 2, 1) and v = (1, 2, 1, 2) then u(1) > v(1), u(2) < v(2)
and u− ε1 + ε2 = (1, 2, 2, 1) 6∈ B.

(c) The set of all u ∈ Z
n
+ of modulus d will be denoted by V

(d)
n , and it is

the set of bases of a discrete polymatroid of rank d.
(d) Let a1, . . . , an and d be nonnegative integers. The set

V = {u : u(i) is an integer with 0 ≤ u(i) ≤ ai and |u| = d}

is the set of bases of a discrete polymatroid of rank d, which satisfies the strong
exchange property. Such a discrete polymatroid is also called polymatroid of
Veronese type.

(e) The set {(2, 2, 0), (1, 3, 0), (0, 4, 0), (1, 2, 1), (0, 3, 1)} is the set of bases
of a discrete polymatroid, which satisfies the strong exchange property, but it
is not of Veronese type.

Just as in the case of matroids, we have the symmetric exchange property:

Theorem 2.7 ([7]). If u = (u(1), . . . , u(n)) and v = (v(1), . . . , v(n)) are bases
of a discrete polymatroid P ⊂ Z

n
+, then for each i ∈ [n] with u(i) > v(i), there

is j ∈ [n] with u(j) > v(j) such that both u− εi + εj and v− εj + εi are bases
of P .

In the proof it is used the rank function of a discrete polymatroid, which
we define next. Let P ⊂ Z

n
+ be a discrete polymatroid and B(P ) its set of

bases. We define the rank function of the discrete polymatroid P to be the
function ρP : 2[n] −→ Z+, by setting

ρP (A) = max{u(A) : u ∈ P}

for all ∅ 6= A ⊂ [n], together with ρP (∅) = 0. It is easy to check that ρP is a
nondecreasing function, i.e. if A ⊂ B ⊂ [n], then ρP (A) ≤ ρP (B), and from
[7] we have that ρP is submodular, i.e.

ρP (A) + ρP (B) ≥ ρP (A ∪B) + ρP (A ∩B),

for all A,B ⊂ [n]. Conversely, given a nondecreasing and submodular function
ρ : 2[n] → Z+, then the set u ∈ Z

n
+ satisfying

u(A) ≤ ρ(A), for all A ∈ 2[n], (2)
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is a discrete polymatroid, whose rank function ρP equals ρ. In connection to
the rank function ρ of a discrete polymatroid P we distinguish two important
types of sets. A set ∅ 6= A ⊂ [n] is ρ-closed if any subset C ⊂ [n] properly
containing A satisfies ρ(A) < ρ(C), and ∅ 6= A ⊂ [n] is ρ-separable if there
exist two nonempty subsets A1 and A2 of A with A1∩A2 = ∅ and A1∪A2 = A
such that ρ(A) = ρ(A1) + ρ(A2). A nonempty subset A of [n] is ρ-inseparable
if it is not ρ-separable. The following example is intended to give a better
view to the construction (2) and the definitions above.

Example 2.8. (a) Let us consider the function ρP : 2[3] −→ Z+ defined
ρ(∅) = 0, ρ({1}) = 1, ρ({2}) = 2, ρ({3}) = 2, ρ({1, 2}) = 3, ρ({1, 3}) = 2,
ρ({2, 3}) = 4, ρ({1, 2, 3}) = 4. One can easily check that ρ is nondecreas-
ing and submodular. The bases are the integer solutions (u1, u2, u3) of the
inequations

u1 ≤ 1, u2 ≤ 2, u3 ≤ 2, u1 + u2 ≤ 3, u1 + u3 ≤ 2, u2 + u3 ≤ 4,

together with
u1 + u2 + u3 = 4,

i.e. the vectors (1, 2, 1) and (0, 2, 2). Then from the comments made above,
taking all subintegral vectors of (1, 2, 1) and (0, 2, 2) we obtain the discrete
polymatroid P

P = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1), (1, 0, 1), (0, 2, 0), (0, 0, 2),

(0, 1, 2), (0, 2, 1), (1, 1, 1), (1, 2, 0), (0, 2, 2), (1, 2, 1)}.

The ρ-closed subsets of [3] are: {1}, {2}, {1, 2} and {1, 3}. The ρ-inseparable
subsets of [3] are: {1}, {2}, {3} and {1, 3}.

We close this section by stating the result which makes the connection
between discrete polymatroids and integral polymatroids.

Theorem 2.9 ([7]). A nonempty finite set P ⊂ Z
n
+ is a discrete polymatroid

if and only if conv(P ) ⊂ R
n
+ is an integral polymatroid with conv(P )∩Z

n
+ = P .

3 Constructions of Discrete Polymatroids

We have seen in the previous section that verifying whether a certain finite
set of integer vectors in Z

n
+ is a discrete polymatroid reduces to the following

three steps: first check if for any vector all its subintegral vectors are still in
the set, and then if the maximal vectors have the same modulus and satisfy the
exchange property. The number of computations being rather big, it would



106 M. Vlădoiu

be helpful to have some techniques to construct discrete polymatroids. We
present two techniques from [7][Section 8]. The first one shows that a non-
decreasing and submodular function defined in a sublattice of 2[n] produces a
discrete polymatroid. The second one yields the concept of transversal poly-
matroids.

A sublattice of 2[n] is a collection L of subsets of [n] with ∅ ∈ L and [n] ∈ L
such that, for all A and B belonging to L, both A∩B and A∪B belong to L.

Theorem 3.1 ([7]). Let L be a sublattice of 2[n] and µ : L −→ R+ an integer
valued nondecreasing and submodular function with µ(∅) = 0. Then

P(L,µ) = {u ∈ Z
n
+ : u(A) ≤ µ(A), A ∈ L}

is a discrete polymatroid.

Example 3.2 ([7]). Let L be a chain of length n of 2[n], say

L = {∅, {n}, {n− 1, n}, . . . , {1, . . . , n}} ⊂ 2[n].

Given nonnegative integers a1, . . . , an, define µ : L −→ R+ by

µ({i, i+ 1, . . . , n}) = ai + ai+1 + · · ·+ an, 1 ≤ i ≤ n

together with µ(∅) = 0. Then the discrete polymatroid P(L,µ) ⊂ Z
n
+ is

P(L,µ) = {u = (u1, . . . , un) ∈ Z
n
+ :

n∑

j=i

uj ≤
n∑

j=i

aj , 1 ≤ i ≤ n}.

For the second result about construction of discrete poymatroids, first we
need to fix some notations. Let A = (A1, . . . , Ad) be a family of nonempty
subsets of [n]. It is not required that Ai 6= Aj if i 6= j. Let

BA = {εi1 + · · ·+ εid
: ik ∈ Ak, 1 ≤ k ≤ d} ⊂ Z

n
+

and define the integer valued nondecreasing function ρA : 2[n] −→ R+ by
setting

ρA(X) = |{k : Ak ∩X 6= ∅}|, X ⊂ [n].

Now we can state

Theorem 3.3 ([7]). The function ρA is submodular and BA is the set of bases
of the discrete polymatroid PA ⊂ Z

n
+ arising from ρA.

The discrete polymatroid PA ⊂ Z
n
+ is called the transversal polymatroid

presented by A. Observe that rank(P ) = d. The following examples, given
by Herzog and Hibi, show that Example 3.2 is a transversal polymatroid and
that not all discrete polymatroids are transversal.
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Examples 3.4 ([7]). (a) Let r1, . . . , rd ∈ [n] and set Ak = [rk ] = {1, . . . , rk},
1 ≤ k ≤ d. Let min(X) denote the smallest integer belonging to X , where
∅ 6= X ⊂ [n]. If A = (A1, . . . , Ad), then

ρA(X) = ρA({minX}) = |{k : min(X) ≤ rk}|.

If ∅ 6= X ⊂ [n] is ρA-closed, then X = {min(X),min(X) + 1, . . . , n}. Let

ai = |{k : rk = i}|, 1 ≤ i ≤ n.

Thus

ρA({i, i+ 1, . . . , n}) = ai + ai+1 + · · ·+ an, 1 ≤ i ≤ n.

The transversal polymatroid PA ⊂ Z
n
+ presented by A is

PA = {u = (u1, . . . , un) ∈ Z
n
+ :

n∑

j=i

uj ≤
n∑

j=i

aj , 1 ≤ i ≤ n}.

Thus PA coincides with the discrete polymatroid P(L,µ) in Example 3.2.
(b) Let P ⊂ Z

4
+ denote the discrete polymatroid of rank 3 consisting

of those u = (u1, u2, u3, u4) ∈ Z
4
+ with ui ≤ 2 for 1 ≤ i ≤ 4 and with

|u| ≤ 3. Then P is not transversal. Suppose, on the contrary, that P is the
transversal polymatroid presented by A = (A1, A2, A3) with each Ak ⊂ [4].
Since (2, 1, 0, 0), (2, 0, 1, 0), (2, 0, 0, 1) ∈ P and (3, 0, 0, 0) 6∈ P , we assume that
1 ∈ A1, 1 ∈ A2 and A3 = {2, 3, 4}. Since (1, 2, 0, 0), (0, 2, 1, 0), (0, 2, 0, 1) ∈ P
and (0, 3, 0, 0) 6∈ P , we assume that 2 ∈ A1 and A2 = {1, 3, 4}. Since
(0, 0, 2, 1) ∈ P and (0, 0, 3, 0) 6∈ P , one has 4 ∈ A1. Hence (0, 0, 0, 3) ∈ P ,
a contradiction.

4 The Ehrhart Ring and the Base Ring of a Discrete

Polymatroid

In this section we follow the notations from [7]. Let K be a field and let
x1, . . . , xn and s be indeterminates over K. If u = (u1, . . . , un) ∈ Z

n
+, then we

denote by xu the monomial x1
u1 · · ·xn

un . Let P be a discrete polymatroid of
rank d on the ground set [n] with set of bases B. The toric ringK[B] generated
over K by the monomials xu, where u = (u(1), . . . , u(n)) ∈ B, is called the
base ring of P . Since P is the set of integer vectors of an integral polymatroid
P (see Theorem 2.9), we may study the Ehrhart ring of P . For this, one
considers the cone C ⊂ R

n+1 with C = R+{(p, 1) : p ∈ P}. Then Q = C∩Zn+1

is a subsemigroup of Z
n+1, and the Ehrhart ring of P is defined to be the
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toric ring K[P ] ⊂ K[x1, . . . , xn, s] generated over K by the monomials xusi,
(u, i) ∈ Q. By Gordan’s Lemma ([2, Proposition 6.1.2]), K[P ] is normal.

Notice that K[P ] is naturally graded if we assign to xusi the degree i.
We denote by K[P ] the K-subalgebra of K[P ] which is generated over K
by the elements of degree 1 in K[P ]. Since P = P ∩ Z

n it follows that
K[P ] = K[xus : u ∈ P ]. Observe that K[B] may be identified with the
subalgebra K[xus : u ∈ B] of K[P ].

The base ring K[B] was introduced in 1977 by N. White, in the particular
case when B is the set of bases of a matroid, and he showed that for every
matroid, the ring K[B] is normal (see [21]) and thus Cohen-Macaulay. It
is natural to ask whether the same holds for the base ring of any discrete
polymatroid. Herzog and Hibi showed that:

Theorem 4.1 ([7]). K[P ] = K[P ]. In particular, K[P ] is normal.

As a corollary they obtain also

Corollary 4.2 ([7]). K[B] is normal.

Furthermore, if both K[P ] and K[B] are Cohen-Macaulay, it is natural to
ask when these rings are Gorenstein. The following example shows that, in
general, for a given discrete polymatroid P with the set of bases B, there is
not necessarily a relation between Gorenstein property for K[P ] and K[B].

Example 4.3 ([7]). (a) Let P ⊂ Z
3
+ be the discrete polymatroid consisting

of all integer vectors u ∈ Z
3
+ with |u| ≤ 3. Then the base ring K[B] is

the Veronese subring K[x, y, z](3), the subring of K[x, y, z] generated by all
monomials of degree 3. Thus K[B] is Gorenstein. On the other hand, since
the Hilbert series of the Ehrhart ringK[P ] is (1+16t+10t2)/(1−t)4, it follows
that K[P ] is not Gorenstein.

(b) Let P ⊂ Z
3
+ be the discrete polymatroid consisting of all integer vectors

u ∈ Z
3
+ with |u| ≤ 4. Then K[B] = K[x, y, z](4) is not Gorenstein. On the

other hand, the Hilbert series of the Ehrhart ring K[P ] is

(1 + 31t+ 31t2 + t3)/(1− t)4;

thus K[P ] is Gorenstein.
(c) Let P ⊂ Z

2
+ be the discrete polymatroid with B = {(1, 2), (2, 1)} its

set of bases. Then both K[P ] and K[B] are Gorenstein.

However in [7], Herzog and Hibi give a combinatorial criterion for K[P ] to
be Gorenstein

Theorem 4.4 ([7]). Let P ⊂ Z
n
+ be a discrete polymatroid and suppose that

the canonical basis vectors ε1, . . . , εn of R
n belong to P . Let ρ denote the
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ground set rank function of the integral polymatroid P = conv(P ) ⊂ R
n. Then

the Ehrhart ring K[P ] of P is Gorenstein if and only if there exists an integer
δ ≥ 1 such that

ρ(A) =
1

δ
(|A|+ 1)

for all ρ-closed and ρ-inseparable subsets A of [n].

In particular we have the following nice example ([7])

Example 4.5 ([7]). (a) Let P
(d)
n ⊂ Z

n
+ be the discrete polymatroid consisting

of all integer vectors u ∈ Z
n
+ with |u| ≤ d and B

(d)
n the set of bases of P

(d)
n . Let

ρ denote the ground set rank function of the integral polymatroid conv(P ) ⊂
R

n
+. Then ρ(A) = d for all ∅ 6= A ⊂ [n]. Thus [n] is the only ρ-closed and ρ-

inseparable subset of [n]. Hence the Ehrhart ring K[P
(d)
n ] is Gorenstein if and

only if d divides n+1. On the other hand, the base ringK[B
(d)
n ] is the Veronese

subringK[x1, . . . , xn](d). Thus K[B
(d)
n ] is Gorenstein if and only if d divides n.

(Note, in fact, that K[P
(d)
n ] is just the Veronese subring K[x1, . . . , xn, s]

(d).)
(b) Let ρ : 2[n] −→ Z+ denote the nondecreasing function defined by ρ(A) =

|A| + 1 for all ∅ 6= A ⊂ [n] together with ρ(∅) = 0. Then ρ is submodular
and all nonempty subsets of [n] are ρ-closed and ρ-inseparable. Let P ⊂ Z

n
+

be the discrete polymatroid of rank n + 1 arising from ρ. Then the Ehrhart
ring K[P ] is Gorenstein (δ = 1). Moreover since the set of bases of P is
B = {(2, 1, . . . , 1), . . . , (1, . . . , 1, 2)}, the base ring K[B] is isomorphic to the
polynomial ring in n variables; thus K[B] is Gorenstein.

We now turn to the problem when the base ring of a discrete polymatroid
is Gorenstein. A complete answer is not given so far. However, there are some
particular classes for which there is a complete description. For example,
in [4] there is a classification of the Gorenstein rings belonging to the class
of algebras of Veronese type, a distinguished class of discrete polymatroids
(2.6(c)). Herzog and Hibi, in [7][Theorem 7.6.] find a characterization for the
base ring of a generic discrete polymatroid to be Gorenstein.

For the rest of this section we shall discuss three conjectures related to the
base ring. We recall that for a discrete polymatroid P with the set of bases
B and for a field K, K[B] is the algebra generated over K by the monomials
xu, where u = (u(1), . . . , u(n)) ∈ B. If S = K[yu : u ∈ B] is the polynomial
ring in the indeterminates yu, with u ∈ B, denote by IB , the toric ideal of the
base ring K[B], i.e. the kernel of the K-algebra homomorphism

S = K[yu : u ∈ B] −→ K[B]

yu 7−→ xu.
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IB contains some obvious elements, namely, those arising from symmetric
exchange: let u, v ∈ B with u(i > v(i) and u(j) < v(j), and such that u−εi+εj

and v− εj + εi belong to B. Then the binomial yuyv −yu−εi+εj
yv−εj+εi

∈ IB .
Following the notations of Herzog and Hibi([7]), we call such a relation a
symmetric exchange relation.

• White conjectured ([22]) that for a matroid the symmetric exchange
relations generate IB .

Since the discrete polymatroid is a natural generalization of the matroid (see
Corollary 2.3), Herzog and Hibi ([7]) conjectured that this also holds for a
discrete polymatroid. They showed in [7],Theorem 5.3.(a) that the two con-
jectures are equivalent:

Theorem 4.6 ([7]). Suppose that each matroid has the property that the toric
ideal of its base ring is generated by symmetric exchange relations, then this
is also true for each discrete polymatroid.

Several commutative algebraists, for example Herzog and Hibi [7], asked
whether two succesively stronger assertions hold:

• Is the base ring K[B] a Koszul algebra?

• Does the toric ideal IB of a discrete polymatroid possess a quadratic
Gröbner basis?

Example 4.7. Let P be the discrete polymatroid of rank 4 whose set of bases
is B = {u1, . . . , u6}, where u1 = (1, 1, 0, 1, 1, 0), u2 = (1, 1, 0, 1, 0, 1), u3 =
(0, 1, 1, 1, 1, 0), u4 = (0, 1, 1, 1, 0, 1), u5 = (1, 0, 1, 1, 1, 0), u6 = (1, 0, 1, 1, 0, 1).
We denote by ϕ the homomorphism

ϕ : S = K[yu1
, . . . , yu6

] −→ K[B] = K[xu1 , . . . , xu6 ] ⊂ K[x1, . . . , x6],

given by
ϕ(yui

) = xui , 1 ≤ i ≤ 6.

Then, the toric ideal IB is the ideal

IB = (yu4
yu5

− yu3
yu6

, yu1
yu4

− yu2
yu3

, yu1
yu6

− yu2
yu5

).

Since u3 = u4−ε6 +ε5, u6 = u5−ε5 +ε6, u2 = u1−ε5 +ε6, u5 = u6−ε6 +ε5,
the binomials which generate IB are

yu4
yu5

− yu4−ε6+ε5
yu5−ε5+ε6

, yu1
yu4

− yu1−ε5+ε6
yu4−ε6+ε5

,

yu1
yu6

− yu1−ε5+ε6
yu6−ε6+ε5

,
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hence the conjecture of White holds in this case. Moreover the same binomials
are a Groebner basis for the ideal IB , so the other two conjectures are true in
this case.

With the help of computer algebra packages many people tried to disprove
these conjectures. Since no counterexample was given so far, it seems that
there is a good chance that these conjectures are true. A positive answer for
the three conjectures is given by Herzog and Hibi in [7],Theorem 5.3.(b), in
the particular case of discrete polymatroids which satisfy the strong exchange
property:

Theorem 4.8 ([7]). Let P be a discrete polymatroid whose set of bases B
satisfies the strong exchange property. Then:

(a) IB has a quadratic Gröbner basis and K[B] is Koszul,

(b) IB is generated by symmetric exchange relations.

Since the above conjectures about K[B] could be true what can be said
about K[P ]? More precisely, what can be said about the algebraic properties
of K[B] compared to those of K[P ]? Following the notations of [7] we recall
that a K-algebra A has a quadratic Gröbner basis if the defining ideal of A
has this property for some term order. Then, Herzog and Hibi proved that

Theorem 4.9 ([7]). (a) Suppose that K[P ] has quadratic relations, or a
quadratic Gröbner basis or is Koszul, then K[B] has these properties, too.

(b) Given a property E. Suppose that K[B(P )] satisfies E for all discrete
polymatroids P . Then also K[P ] satisfies E for all discrete polymatroids P .

5 Polymatroidal Ideals

In this section we shall review some of the properties of another algebraic
object, which can be associated to a discrete polymatroid, namely the poly-
matroidal ideal.

Let P be a discrete polymatroid on the ground set [n], with the set of bases
B. If we denote by R := K[x1, . . . , xn], the polynomial ring in n variables
over a field K, then the monomial ideal I(B) of R generated by all monomials
tu with u ∈ B, is called the polymatroidal ideal associated to the discrete
polymatroid P . It follows from Theorem 2.2, that a polymatroidal ideal can
be equivalently characterized as a monomial ideal I , whose generators have
the same degree and satisfy the following exchange property:

for all u, v ∈ G(I) and all i with νi(u) > νi(v), there exists an integer j with
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νj(u) < νj(v) such that xj(u/xi) ∈ G(I),

where by G(I) we denote the unique minimal set of monomial generators of
I , and for a monomial u = xa1

1 · · ·xan
n we set νi(u) = ai.

A monomial ideal I is said to have linear quotients if for some order
u1, . . . , um of the elements of G(I) and all j = 1, . . . ,m the colon ideals
(u1, . . . , uj−1) : uj are generated by a subset of {x1, . . . , xn}.

Examples 5.1 ([3]). (a) The ideal

J = (x2
1x2, x1x2x3, x2x3x4, x3x

2
4) ⊂ K[x1, . . . , x4]

has linear quotients, the successive colons being:

(0), (x1), (x1), (x2).

(b) The ideal J above and the ideal I = (x2, x3) are both ideals of R =
K[x1, . . . , x4], with linear quotients. The resolution of IJ is

0 → R(−8) → R3(−6)⊕R2(−7) → R10(−5)⊕R(−6) → R8(−4) → IJ → 0,

which is not linear, and therefore, according to Remark 5.3, IJ does not have
linear quotients. Hence, in general the product of ideals with linear quotients
may not have linear quotients.

(c) Powers of ideals with linear quotients do not have in general linear
quotients. For example the ideal

I = (x2
1x2, x

2
1x3, x1x

2
3, x2x

2
3, x1x3x4) ⊂ K[x1, . . . , x4]

has linear quotients, the quotients being

(0), (x2), (x1), (x1), (x1, x3).

But I2 has not linear quotients since the minimal resolution of I2 is

0 → R2(−9)⊕R(−10) → R12(−8)⊕R2(−9) →

→ R24(−7)⊕R(−8) → R15(−6) → I2 → 0,

and is not linear.

It has been shown by Herzog and Takayama that

Proposition 5.2 ([10]). A polymatroidal ideal I has linear quotients with
respect to the reverse lexicographic order of the generators.
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Remark 5.3. It is known, see for example [3, Lemma 4.1], that if a mono-
mial ideal I has all its minimal generators of the same degree and it has
linear quotients, then I has a linear resolution. Therefore, we have that any
polymatroidal ideal has a linear resolution.

As a consequence of the fact that a polymatroidal ideal has linear quotients
one can compute the length of the minimal free resolution of R/I overR. More
precisely, if I is a polymatroidal ideal and if u1, . . . , um are the monomials
belonging to G(I) ordered by the reverse lexicographic order <rev induced by
the ordering x1 > x2 > . . . > xn, i.e. us <rev . . . <rev u2 <rev u1, then
the colon ideals (u1, . . . , uj−1) : uj are generated by a subset of {x1, . . . , xn},
for all j = 1 . . . ,m. Following the notation from [8], we denote by qj(I) the
number of variables which generates the colon ideal (u1, . . . , uj−1) : uj . Then,
if we denote by q(I) = max2≤j≤m qj(I), via [10, Corollary 1.6.], the following
formula is obtained

• proj dimR(R/I) = q(I) + 1.

Hence, using Auslander-Buchsbaum Theorem, the formula for depth is:

• depth(R/I) = n− q(I) − 1.

For the computation of the dimension of R/I , one only needs that I is a
monomial ideal, and therefore

• dim(R/I) = n− height(I),

where height(I) is the minimal cardinality of the vertex covers of I . We recall
that for a monomial ideal I , a vertex cover of I is a subset V of {x1, . . . , xn}
such that each u ∈ G(I) is divisible by some xi ∈ V . A vertex cover V is
called minimal if no proper subset of V is a vertex cover of I .

Since there are formulae for computing depth(R/I) and dim(R/I), when I
is a polymatroidal ideal it is natural to ask when I is Cohen-Macaulay, i.e. the
quotient ring R/I is Cohen-Macaulay. Using the above formulae and the fact
that polymatroidal ideal has linear quotients, Herzog and Hibi proved that:

Theorem 5.4 ([8]). A polymatroidal ideal I is Cohen-Macaulay if and only
if I is

(a) a principal ideal,

(b) a Veronese ideal, or

(c) a squarefree Veronese ideal.
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Furthermore, what can be said about the product of two polymatroidal
ideals? Since the product of ideals with linear quotients is not necessarily
an ideal with linear quotients, as the Examples 5.1 (b,c) show, it is somehow
surprising that we have

Proposition 5.5 ([3]). Let I and J be polymatroidal ideals. Then the product
IJ is polymatroidal.

In particular, products and powers of polymatroidal ideals have linear quo-
tients and linear resolutions. For the case of matroidal ideals, i.e. squarefree
polymatroidal ideals, Conca and Herzog show also that another operation,
namely the squarefree product behaves ”well”:

Theorem 5.6 ([3]). Let I and J be matroidal ideals. Then I ∗J is matroidal.

We recall that for matroidal ideals I and J , the squarefree product, de-
noted by I ∗ J , is the ideal generated by all monomials uv, with u ∈ G(I) and
v ∈ G(J) such that uv is squarefree. For example if we consider the polyma-
troidal ideals I = (x1x3, x1x2, x2x4, x3x4) and J = (x1x3, x2x3, x2x4, x1x4) of
K[x1, x2, x3, x4], then I ∗ J = (x1x2x3x4).

Another interesting result was obtained by Villarreal about the Rees alge-
bra R(I),

R(I) =
⊕

j≥0

Ijtj ⊂ R[t],

of a polymatroidal ideal I . More precisely, he shows that:

Proposition 5.7 ([18]). If I is a polymatroidal ideal, then the Rees algebra
R(I) is a normal ring.

In the end of this section, we present the concept of ideal of fiber type,
which was introduced by Herzog, Hibi and Vladoiu [9], together with some
examples, among them being the polymatroidal ideals.

Let K be a field, R = K[x1, . . . , xn] the polynomial ring, I ⊂ S an equigen-
erated graded ideal, that is, a graded ideal whose generators f1, . . . , fm are all
of same degree. Then the Rees ring

R(I) =
⊕

j≥0

Ijtj = R[f1t, . . . , fmt] ⊂ R[t]

is naturally bigraded with deg(xi) = (1, 0) for i = 1, . . . , n and deg(fit) = (0, 1)
for i = 1, . . . ,m.

Let T = R[y1, . . . , ym] be the polynomial ring over R in the variables
y1, . . . , ym. Then we define the natural surjective homomorphism of bigraded
K-algebras ϕ : T → R(I) with

ϕ(xi) = xi, for i = 1, . . . , n
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and
ϕ(yj) = fjt, for j = 1, . . . ,m,

where we consider on T the bigrading induced by setting deg(xi) = (1, 0), for
i = 1, . . . , n, and deg(yj) = (0, 1), for j = 1, . . . ,m.

If α = (aij) i=1,...,r

j=1,...,m
is the relation matrix of I , then for i = 1, . . . , r, the

bihomogeneous polynomials gi =
∑m

j=1 aijyj belong to Ker(ϕ), and T/L, with
L = (g1, . . . , gr), is isomorphic to the symmetric algebra S(I) of I . The
generators gi of L are all linear in the variables yj .

Let m = (x1, . . . , xn) be the graded maximal ideal of R. The K-algebra
R(I)/mR(I) is called the fiber ring of I .

Note that the standard graded subalgebra R(I)(0,∗) =
⊕

j≥0R(I)(0,j) of
R(I) is isomorphic to K[f1, . . . , fm] ⊂ R, and that the composition of the
natural K-algebra homomorphisms R(I)(0,∗) → R(I) → R(I)/mR(I) is an
isomorphism. Therefore the fiber ring of I is isomorphic to K[f1, . . . , fm].

The homomorphism ϕ : T → R(I) induces a surjective K-algebra homo-
morphism

ϕ′ : K[y1, . . . , ym] = T/mT → R(I)/mR(I) = K[f1, . . . , fm].

The elements in Ker(ϕ′) are called the fiber relations. We note that

ϕ′ = ϕ(0,∗) : T(0,∗) = K[y1, . . . , ym] −→ R(I)(0,∗) = K[f1, . . . , fm].

Therefore Ker(ϕ′) ⊂ Ker(ϕ). If we set J = Ker(ϕ′), then K[f1, . . . , fm] =
K[y1, . . . , ym]/J .

The natural map ψ : S(I) → R(I) is a surjective homomorphism of bi-
gradedK-algebras. Recall that I is called of linear type, if ψ is an isomorphism,
that is, if Ker(ϕ) = L. The next best situation is given by

Definition 5.8 ([9]). The ideal I is called of fiber type, if Ker(ϕ) = (L, JT ).

Note that I is of fiber type if and only if Ker(ϕ) is generated by elements
of bidegree (∗, 1) and (0, ∗).

Examples 5.9. (a) The ideal I = (x3
1, x

2
1x2, x1x

2
2, x

3
2) ⊂ K[x1, x2] is of fiber

type. Indeed, with the help of Singular [6], the kernel of the homomorphism
ϕ, described above, is

Ker(ϕ) = (y2
3−y2y4, y2y3−y1y4, x2y3−x1y4, y

2
2−y1y3, x2y2−x1y3, x2y1−x1y2).

(b) This example is due to Villarreal ([17, Theorem 8.2.1]). Let f, g ∈ R
be monomials. We denote by [f, g] the least common multiple of f and g. Let
f1, . . . , fm ∈ R. If α = (i1, . . . , is) with 1 ≤ i1 ≤ i2 ≤ · · · ≤ is ≤ m we set
fα = fi1fi2 . . . fis

.



116 M. Vlădoiu

Theorem 5.10 ([17]). Suppose I = (f1, . . . , fm) is an equigenerated monomial
ideal satisfying:

(∗) for all non-decreasing sequences α = (i1, . . . , is) and β = (j1, . . . , js)
with ik, jk ∈ [m] for k = 1, . . . , s for which fα 6= fβ, there exist integers
r and t such that fir

(fα/fit
) divides [fα, fβ].

Then I is of fiber type.

Moreover, condition (∗) is satisfied if I is squarefree ideal generated in
degree 2. In degree 3 it is not true as the example below shows.

(c) This example is due to Villarreal ([17, Example 8.2.2]). The ideal I =
(x1x2x3, x2x4x5, x5x6x7, x3x6x7) ⊂ K[x1, . . . , x7] is not of fiber type. Indeed,
using Singular, we obtain that the kernel of the morphism ϕ is minimally
generated by

x3y3−x5y4, x6x7y2−x2x4y3, x6x7y1−x1x2y4, x4x5y1−x1x3y2, x4y1y3−x1y2y4,

and the generator x4y1y3 − x1y2y4 has bidegree (1, 2).

Finally we have

Theorem 5.11 ([9]). Let I ⊂ R be a polymatroidal ideal. Then I is of fiber
type.

6 Discrete Polymatroids which Satisfy the Strong Ex-

change Property

In this section we present a structure theorem for these discrete polymatroids,
and some of their properties, based on a joint paper with Herzog and Hibi
[9]. For the beginning we give a motivation for studying this class of discrete
polymatroids. We have seen in Section 4 three conjectures related to the
base ring K[B] and its toric ideal, which are proved to be true (see Theorem
4.8) in the special case of discrete polymatroids which satisfy strong exchange
property. Therefore, it would be interesting to see what special combinatorial
properties share this class of discrete polymatroids. An example of discrete
polymatroid which satisfies the strong exchange property was given in Example
2.6 (d), by the polymatroid of Veronese type. We recall that the discrete
polymatroid of Veronese type is the discrete polymatroid whose set of bases

B ⊂ V
(d)
n is given as follows: for i = 1, . . . , n there exist integers ai ≥ 1 such

that u ∈ V
(d)
n belongs to B if and only if u(i) ≤ ai, for i = 1, . . . , n.

It was proved in [9, Theorem 1.1] that the discrete polymatroids satisfying
the strong exchange property are essentially of Veronese type. More precisely,
two sets A,B ∈ R

n are isomorphic, if there exists an affinity ϕ : R
n → R

n such
that ϕ(A) = B. Then, the theorem is:



Discrete Polymatroids 117

Theorem 6.1 ([9]). Let P be a discrete polymatroid which satisfies the strong
exchange property. Then B(P ) is isomorphic to the bases of a polymatroid of
Veronese type.

Example 6.2. To see how this theorem works let us consider the Example
2.6 (e). The set B(P ) = {(2, 2, 0), (1, 3, 0), (0, 4, 0), (1, 2, 1), (0, 3, 1)} is isomor-
phic to B′ = {(2, 0, 0), (1, 1, 0), (0, 2, 0), (1, 0, 1), (0, 1, 1)} by the translation
ϕ : R

n → R
n,

ϕ(u) = u− (0, 2, 0).

It is straightforward to see that B′ is the set of bases of the polymatroid of
Veronese type given by d = 2, a1 = 2, a2 = 2 and a3 = 1.

Let u, v ∈ V
(d)
n . We recall from [9] that the set

[u, v] = {w ∈ V (d)
n : min{u(i), v(i)} ≤ w(i) ≤ max{u(i), v(i)} for all i}

is called the interval between u and v. Then, it is given in [9, Lemma 1.2]
an equivalent characterization of discrete polymatroids satisfying the strong
exchange property:

Proposition 6.3 ([9]). Suppose that B is a set of integer vectors u in R
n with

u ≥ 0 and u([n]) = d. Then B is the set of bases of a discrete polymatroid
which satisfies the strong exchange property if and only if B =

⋃
u,v∈B [u, v].

As a consequence of this equivalent description, it is given in [9, Remark
1.3.] an algorithmic method to construct the smallest set of bases of a discrete
polymatroid with strong exchange property which contains a finite set A :=
{u1, u2, . . . , uk} of integer vectors of the same modulus d. The procedure goes
like this: Denote A1 := A and let A2 :=

⋃
1≤i<j≤k [ui, uj ]. If A2 = A1, then

the previous lemma implies that A1 is the set we want. If A2 6= A1 then we
take A3 :=

⋃
u,v∈A2

[u, v]. Assuming that we have defined Ai and Ai 6= Ai−1,
then we consider Ai+1 :=

⋃
u,v∈Ai

[u, v]. If Ai+1 = Ai then Ai is the set we
want, otherwise we continue this procedure. Because we have |Ai| < |Ai+1|

and Ai ⊆ V
(d)
n for any i and |V

(d)
n | is finite, then after a finite number of steps

we obtain the desired set of bases.
As a consequence of Theorem 6.1, Herzog, Hibi and Vladoiu obtain that

discrete polymatroids satisfying the strong exchange property, are ”locally”
nothing but uniform matroids. More precisely, they prove

Theorem 6.4 ([9]). Let u = (u(1), u(2), . . . , u(n)) be a given point in R
n \Z

n

with u([n]) ∈ N, and such that u ≥ 0, and let I = {i ∈ [n] : u(i) 6∈ Z}. Then,
with respect to inclusion, there exists a unique smallest discrete polymatroid
Pu of rank d = u([n]) with u ∈ conv(B(Pu)) satisfying the strong exchange
property. Moreover the set of bases B(Pu) of Pu is isomorphic to the set of
bases of the uniform matroid Uk,m where k =

∑
i∈I(u(i)−bu(i)c) and m = |I |.
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Example 6.5. Let u = (1, 3; 2, 1; 0; 3, 7; 5; 0, 9; 2) ∈ R
7 \ Z

7 with u([7]) = 15.
It is shown in the proof of the theorem that the set of bases B(Pu) of Pu is

B′ = {v ∈ Z
7 : v(i) ∈ {bu(i)c, du(i)e} for each i ∈ [7] and v([7]) = 15},

where bxc is the biggest integer ≤ x and dxe is the smallest integer ≥ x.
Therefore v(3) = 0, v(5) = 5, v(7) = 2, v(1) ∈ {1, 2}, v(2) ∈ {2, 3}, v(4) ∈
{3, 4}, v(6) ∈ {0, 1}. After an easy computation we obtain that B(Pu) is the
set of the following vectors

(1, 2, 0, 4, 5, 1, 2), (1, 3, 0, 3, 5, 1, 2), (1, 3, 0, 4, 5, 0, 2),

(2, 2, 0, 3, 5, 1, 2), (2, 2, 0, 4, 5, 0, 2), (2, 3, 0, 3, 5, 1, 2).

Moreover, m = 4, and k = 15− (1 + 2 + 0 + 3 + 5 + 0 + 2) = 2. The sets of
bases B(Pu) and B(U2,4) is given by the affinity ϕ : R

n → R
n, where

ϕ(v) = v − (1, 2, 0, 3, 5, 0, 2), for all v ∈ R
n.

The theorem gives the following nice properties of the discrete polymatroids
which satisfy the strong exchange property:

Corollary 6.6 ([9]). Let B(P ) be the set of bases of a discrete polymatroid
P . Then the following conditions are equivalent:

(a) P satisfies the strong exchange property,

(b) For all u ∈ conv(B(P )) we have Pu ⊂ P .

Corollary 6.7 ([9]). Let P be a set of discrete polymatroids all of the same
rank, satisfying the strong exchange property. Then the following conditions
are equivalent:

(a)
⋂

P∈P B(P ) 6= ∅,

(b)
⋂

P∈P conv(B(P )) 6= ∅.

Corollary 6.8 ([9]). Let P be a set of discrete polymatroids all of the same
rank, satisfying the strong exchange property and the equivalent conditions of
Corollary 6.7, then

⋂

P∈P

B(P ) = B(
⋂

P∈P

P ) and conv(
⋂

P∈P

B(P )) =
⋂

P∈P

conv(B(P )).
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In particular, Corollary 6.8 says that the intersection of discrete polyma-
troids, all of the same rank, which satisfy strong exchange property is a discrete
polymatroid with strong exchange property, provided that the intersection of
their set of bases is non-empty. The following example shows that all the
hypotheses in Corollary 6.7 are needed.

Examples 6.9 ([9]). (a) The intersection of discrete polymatroids is in general
not a discrete polymatroid, even if they have the same rank and the intersec-
tion of their set of bases is non-empty. Consider the discrete polymatroids P1

and P2, whose sets of bases are:

B(P1) = {(1, 0, 1, 0), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)},

B(P2) = {(1, 0, 1, 0), (1, 1, 0, 0), (0, 1, 0, 1), (1, 0, 0, 1)}.

Then B(P1) ∩ B(P2) = {(1, 0, 1, 0), (0, 1, 0, 1)} does not satisfy the exchange
property, so it is not the set of bases of a discrete polymatroid.

(b) The condition
⋂

P∈P B(P ) 6= ∅ is essential, even if all P ∈ P satisfy
the strong exchange property. Let P1, P2, P3 be the discrete polymatroids,
whose sets of bases are:

B(P1) = {(2, 0, 2), (3, 0, 1), (2, 1, 1)},

B(P2) = {(2, 1, 1), (1, 1, 2), (1, 2, 1)},

B(P3) = {(0, 2, 2), (0, 3, 1), (1, 2, 1)}.

Then P1, P2 and P3 satisfy the strong exchange property but

P1 ∩ P2 ∩ P3 =

{(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 2), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)},

is not a discrete polymatroid.
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[5] J. Edmonds, Submodular functions, matroids, and certain polyhedra, in Combinatorial
Structures and Their Applications (R. Guy, H. Hanani, N. Sauer and J. Schonheim,
Eds.), Gordon and Breach, New York, 1970, 69 – 87.

[6] G.-M.Greuel, G.Pfister, and H.Schönemann.SINGULAR 2.0. A Computer Algebra
System for Polynomial Computations.Centre for Computer Algebra, University of
Kaiserslautern(2001).http://www.singular.uni-kl.de.

[7] J. Herzog and T. Hibi, Discrete Polymatroids, J. of Alg. Comb. 16 (2002), 239–268.

[8] J. Herzog and T. Hibi, Cohen-Macaulay Polymatroidal Ideals, Eur. J. Comb. 27(4)
(2006), 513–517.

[9] J. Herzog, T. Hibi and M. Vladoiu, Ideals of fiber type and polymatroids, Osaka J.

Math. 42 (2005), 1–23.

[10] J. Herzog and Y. Takayama, Resolutions by mapping cones, in The Roos Festschrift
volume (2), Special issue in honor of Jan-Erik Roos on the occasion of his 65th birthday,
Homology, Homotopy and Applications 4, No. 2(2), (2002), 277 – 294.

[11] T. Hibi, Algebraic Combinatorics on Convex Polytopes, Carslaw, Glebe, N.S.W., Aus-
tralia, 1992.

[12] H. Ohsugi and T. Hibi, Compressed polytopes, initial ideals and complete multipartite
graphs, Illinois J. Math. 44 (2000), 391 – 406.

[13] H. Ohsugi and T. Hibi, Quadratic initial ideals of root systems, Proc. Amer. Math.

Soc. 130 (2002), 1913 – 1922.

[14] J. G. Oxley, Matroid Theory, Oxford University Press, Oxford, New York, 1992.

[15] V. Reiner, Lectures on Matroids and Oriented Matroids,
www.math.umn.edu/ reiner/Talks/Vienna05/Lectures.pdf
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