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A composite Exponential-Pareto distribution

Sandra Teodorescu and Raluca Vernic

Abstract

In this paper we introduce a composite Exponential-Pareto model,
which equals an exponential density up to a certain threshold value, and
a two parameter Pareto density for the rest of the model. Compared
with the exponential, the resulting density has a similar shape and a
larger tail. This is why we expect that such a model will be a better fit
than the exponential one for some heavy tailed insurance claims data
(e.g. with extreme values).

Subject Classification: 60E05, 62F10.

1 Introduction

It is known that usually, insurance claims have skewed and heavy tailed dis-
tributions. Therefore, researchers tend to use heavy tailed distributions to
model these claims, like e.g. Gamma, LogNormal or Pareto. Unfortunately,
such distributions often lead to complicate models, that need to be simplified
in various ways. In theory, such models are often studied using the alternative
Exponential distribution instead of a heavy tailed one, since this distribution
has nice properties that make it very tractable.

Though not very realistic from a practical point of view, a model based on
the exponential distribution can be of great importance to provide an insight
into the phenomena, and also for pedagogical reasons. For example, it is known
that analytical methods to compute ruin probabilities exist only for claims
distributions that are mixtures and combinations of exponential distributions.
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Another nice property is that all gamma distributions with an integer scale
parameter are limits of densities that are combinations of exponential distri-
butions (see e.g. Kaas et al., 2001).

Also, when classifying the distributions with right-infinite domain into
“light” and “heavy” tailed, the exponential distribution plays a central role:
the distributions that are less spread out in the right tail than the exponential
model are “light-tailed”, while the others are “heavy-tailed”.

This is why, based on the simplicity and nice properties of the exponential
distribution, in this paper we suggest a composite Exponential-Pareto density,
which equals an exponential density up to a certain threshold value, and a
two parameter Pareto density for the rest of the model. The resulting density
has a larger tail than the exponential one, as well as a smaller tail than the
corresponding Pareto density; its density shape is similar to the exponential.
The idea of such a composite model comes from Cooray and Ananda (2005).

The paper is structured as follows: in section 2 we present the derivation of
the composite Exponential-Pareto model and illustrate its behavior, in section
3 we discuss the parameter estimation, and in section 4 we give numerical
examples.

2 The composite Exponential-Pareto model

Let X be the random variable (r.v.) with density

f (x) =
{

cf1 (x) if 0 < x ≤ θ
cf2 (x) if θ ≤ x < ∞ , (1)

where f1 is an exponential density, f2 a two-parameter Pareto density, and c
the normalizing constant. Hence,

f1 (x) = λe−λx, x > 0

f2 (x) =
αθα

xα+1
, x > θ,

where λ > 0, α > 0, θ > 0 are unknown parameters.
In order to obtain a composite smooth density function, we impose conti-

nuity and differentiability conditions at the threshold point θ, i.e.

f1 (θ) = f2 (θ) and f ′
1 (θ) = f ′

2 (θ) ,

where f ′ is the first derivative of f . These two restrictions give
⎧⎨
⎩

λe−λθ =
α

θ

λ2e−λθ =
α (α + 1)

θ2

,
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and, after some calculation, we obtain
{

α = λθ − 1
λθ

(
e−λθ − 1

)
+ 1 = 0 .

Solving the second equation by numerical methods, it results the solution
{

λθ = 1.35
α = 0.35 .

Hence, the number of unknown parameters is reduced from 3 to 1.
In order to find the normalizing constant, we impose the condition

∫ ∞
0

f (x) dx =
1, which gives

c =
1

2 − e−λθ
= 0.574.

So the composite density (1) becomes

f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.775
θ

e
−

1.35 x

θ if 0 < x ≤ θ

0.2
θ0.35

x1.35
if θ ≤ x < ∞

. (2)

The cumulative distribution function (c.d.f.) of this composite model is

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.574

⎛
⎝1 − e

−
1.35 x

θ

⎞
⎠ if 0 < x ≤ θ

1 − 0.574
(

θ

x

)0.35

if θ ≤ x < ∞

. (3)

A composite Exponential-Pareto density is illustrated in Figure 1 with
solid line. This model is obtained by joining the exponential density in dashed
blue line with the Pareto one in dotted red line, at point θ = 10. It is easy
to see that the composite density does not fade away to zero as quickly as the
exponential one.

Figure 2 shows the variation of the composite Exponential-Pareto density
with parameter θ. We can see that the tail becomes heavier as θ increases.
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Figure 1: Exponential (dashed blue line), Pareto (dotted red line) and com-
posite Exponential-Pareto (solid line) density curves for θ = 10.

Figure 2: The composite Exponential-Pareto density curves for θ = 5 (dotted
red line), θ = 10 (solid black line) and θ = 20(dashed blue line).
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3 Parameter estimation

In this section, we will present two methods for the estimation of the unknown
parameter θ.

3.1 An ad-hoc procedure based on percentiles

The following ad-hoc procedure provides a closed form for the parameter θ,
estimated using percentiles. To describe the procedure, let x1 ≤ x2 ≤ ... ≤ xn

be an ordered sample from the composite Exponential-Pareto model (2). We
assume that the unknown parameter θ is in between the mth observation and
m + 1th observation, i.e. xm ≤ θ ≤ xm+1.

Based on percentiles, the parameter θ can be estimated as the pth per-
centile, where p = F (θ). Here the distribution function F is given by (3), so
that we have

p = 0.574

⎛
⎝1 − e

−
1.35 θ

θ

⎞
⎠ = 0.574

(
1 − e−1.35

) � 0.425.

From Klugman et al. (1998), we have a smooth empirical estimate of the pth

percentile given by
θ̃ = (1 − h)xm + hxm+1,

with {
m = [(n + 1) p]
h = (n + 1) p − m

. (4)

Here [a] indicates the greatest integer smaller or equal with a.
Note that if θ̃ is closer to x1 or xn, then Pareto or exponential will respec-

tively be a superior model than the composite one.

3.2 Maximum likelihood estimation (MLE)

As before, let x1 ≤ x2 ≤ ... ≤ xn be an ordered sample from the composite
Exponential-Pareto model (2). In order to evaluate the likelihood function, we
must have an idea of where is the unknown parameter θ situated correspond-
ingly to this sample, so assume again that θ is in between the mth observation
and m + 1th observation, i.e. xm ≤ θ ≤ xm+1. Then the likelihood function is

L (x1, ..., xn; θ) =
n∏

i=1

f (xi) =
m∏

i=1

f (xi)
n∏

i=m+1

f (xi)
(2)
=

= k θ0.35n−1.35m e
−1.35θ−1

m∑
i=1

xi

,
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with k =
0.775m0.2n−m

n∏
i=m+1

x1.35
i

. Denoting x̄(m) =
1
m

m∑
i=1

xi the partial sample mean,

and differentiating lnL with respect to θ gives

∂ ln L

∂θ
=

0.35n− 1.35m

θ
+

1.35mx̄(m)

θ2
.

Hence the solution of the likelihood equation
∂ ln L

∂θ
= 0 is

θ̂ =
1.35 m x̄(m)

1.35 m− 0.35 n
. (5)

Since this estimator needs the value of m, we suggest the following algorithm:

Algorithm 1.

Step 1. Evaluate m as in previous section, from (4).

Step 2. Evaluate θ̂ from (5).

Step 3. Check if θ̂ is in between xm ≤ θ̂ ≤ xm+1. If yes, then θ̂ is the
maximum likelihood estimator. If no, then try algorithm 2.

An alternative algorithm would be to replace Step 1 with considering all
possible values for m and performing for each one the checking in Step 3:

Algorithm 2.

Step 1. For each m (m = 1, 2, ..., n− 1), evaluate θ̂m from (5).
Check if θ̂m is in between xm ≤ θ̂ ≤ xm+1. If yes, then θ̂m is the
maximum likelihood estimator. If no, then go to next m.

Step 2. If there is no solution for θ, then try another model.

4 Numerical examples

In order to illustrate the procedures described in section 3, we will consider two
data samples generated from the Exponential-Pareto model. The generating
algorithm used is based on the inversion of the c.d.f. (3). When writing this
algorithm, we took into account the fact that (3) has two different formulas, so
that for a random number u one uses the first inverted formula if u ≤ F (θ) ,
and the second inverted formula if u > F (θ). The algorithm was written in
Pascal and the data analysis was realized using Excel.
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4.1 First example

The first data set consisting of 100 values was sampled from an Exponential-
Pareto population with parameter θ = 5 (see Table 1).

Table 1. 100 Exponential-Pareto values for θ = 5

0.0151 0.0211 0.0721 0.0955 0.1730 0.3707 0.4240 0.4736 0.6076 0.6265

0.7335 0.7902 0.8178 0.9568 0.9993 1.3108 1.4076 1.4499 1.5756 1.6316

1.7033 1.7877 1.9217 1.9284 2.0464 2.1284 2.1509 2.3048 2.3785 2.5746

2.5750 3.0746 3.5561 4.0450 4.3008 4.3293 4.3664 4.5329 4.7059 5.4451

5.6778 5.8756 6.7573 6.9894 7.2925 7.8400 8.4130 8.5263 9.1961 9.5696

10.041 10.287 10.930 11.504 12.532 13.860 15.052 15.160 16.457 18.041

18.072 18.243 19.414 21.366 22.400 24.773 25.913 26.424 27.214 35.016

46.339 51.071 53.470 64.477 68.493 75.489 86.625 98.765 104.76 106.45

150.25 181.60 182.85 186.51 208.39 213.64 221.23 312.16 346.28 376.76

430.84 451.42 452.96 545.39 625.33 993.23 1170.0 3457.0 6842.0 7929.2

The estimated values of the parameter are:
- by the ad-hoc procedure based on percentiles: θ̂1 = 6.691
- by MLE algorithm 1: θ̂2 = 5.472
- by MLE algorithm 2: θ̂3 = 5.427.

We notice that, as expected, algorithm 2 gives a more accurate value.
We also applied the χ2 test to check the distribution fitting, and the results

for θ̂3 are given in Table 2. The χ2 distances calculated for the three estimated
values of the parameters are

d2(θ̂1) = 10.25

d2(θ̂2) = 10.98

d2(θ̂3) = 11.05,

which means that the χ2 test accepts the Exponential-Pareto model for all
three values of the parameter as expected. The interesting thing is that,
unlike expected, d2(θ̂1) is minimum, and a motive could be the errors due to
the generating process.
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Table 2. Grouped data and χ2 test (columns 2 and 3 result form the data
sample, fi = ni/n; column 4 is calculated using the Exponential-Pareto

c.d.f.)

Classes Frequencies, ni Relative freq., fi Theoretical freq., pi
n (fi-pi)

2

pi

[0, 1) 15 0.15 0.1263 0.4409

[1, 4) 18 0.18 0.2353 1.3019

[4, 8) 13 0.13 0.1371 0.0369

[8, 15) 10 0.10 0.0989 0.0010

[15, 30) 13 0.13 0.0866 2.1709

[30, 100) 9 0.09 0.1085 0.3154

[100, 300) 9 0.09 0.0660 0.8651

[300, 500) 6 0.06 0.0230 5.9089

[500, 7930) 7 0.07 0.0730 0.0128∑
n =100 1 χ2 distance: 11.054

4.2 Second example

We also considered a set of n = 500 data sampled from the Exponential-Pareto
model (2) with θ = 10. For these data, the estimated values of the parameter
are:
- by the ad-hoc procedure based on percentiles: θ̂1 = 8.22
- by MLE algorithm 1: θ̂2 = 9.15
- by MLE algorithm 2: θ̂3 = 9.10.

We notice that this time, algorithm 1 gives a more accurate value.
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Table 3. Grouped data and χ2 test (the columns significance is the same as
in Table 2)

Classes Frequencies, ni Relative freq., fi Theoretical freq., pi
n (fi-pi)

2

pi

[0, 3) 93 0.186 0.2060 0.9766

[3, 6) 78 0.156 0.1320 2.1645

[6, 9) 48 0.096 0.0846 0.7582

[9, 14) 47 0.094 0.0833 0.6755

[14, 25) 33 0.066 0.0906 3.3621

[25, 40) 34 0.068 0.0611 0.3844

[40, 100) 54 0.108 0.0938 1.0716

[100, 300) 24 0.048 0.0792 6.1486

[300, 600) 16 0.032 0.0363 0.2647

[600, 1500) 14 0.028 0.0363 0.9617

[1500, 2500) 11 0.022 0.0157 1.2422

[2500, 10000) 15 0.030 0.0309 0.0136

[10000, 30000) 11 0.022 0.0158 1.2143

[30000, 105) 11 0.022 0.0115 4.6748

[105,21806000) 11 0.022 0.0187 0.2804∑
n = 500 1 χ2 distance: 24.193

The χ2 distances calculated for the three estimated values of the parame-
ters are

d2(θ̂1) = 26.43

d2(θ̂2) = 24.14

d2(θ̂3) = 24.19,

and the χ2 test accepts the Exponential-Pareto model for all three values of the
parameter as expected. This time, as expected, since θ̂2 is the best estimation,
d2(θ̂2) is minimum. It seems that the errors due to the generating process are
smaller when the data volume is bigger.

In Table 3 one can see the data grouping and χ2 test values for θ̂3.
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