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The problem of determining estimators for the

different structural parameters in the case of
the credibility results for weighted contracts

Virginia Atanasiu

Abstract

This paper presents and analyses the estimators of the structural pa-
rameters, in the Bühlmann-Straub model, involving complicated mathe-
matical properties of conditional expectations and of conditional covari-
ances. So to able to use the better linear credibility results obtained in
this model, we will provide useful estimators for the structure parame-
ters. From the practical point of view it is stated the attractive property
of unbiasedness for these estimators.

Subject Classification: 62P05.

0. Introduction

In this article we first give the Bühlmann-Straub model, - see Section 1,
- which consists of a portfolio of non-life insurance contracts. In Section 1
we will give the assumptions of the Bühlmann-Straub model. In this section
the optimal linearized credibility premium is derived. It turns out that this
procedure does not provide us with a statistic computable from the observa-
tions, since the result involves unknown parameters of the structure function.
To obtain estimates for these structure parameters, in the Bühlmann-Straub
model, the contracts are embedded in a collective of identical contracts, all
providing independent information on the structure distribution. In Section 2
we provide some useful estimators for the structure parameters. In this section
(see Section 2) we give unbiased estimators for the structure parameters, such
that if the structure parameters in the optimal linearized credibility premium
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are replaced by these estimators, a homogeneous estimator results. This last
estimator can also be shown to be optimal (see Section 3). In Section 3 we
show that this last estimator is in fact the optimal linearized homogeneous
credibility estimator.

1. The Bühlmann-Straub model

For this model we look upon the portfolio as represented in Diagram 1. We
consider a portfolio which can be subdivided in groups consisting of contracts
with common risk parameter, as in Diagram 1.

Contracts 1............... j .............k
Structure variables θj

Observable variables with p 1 Xj1(wj1)
associated weights e 2 Xj2(wj2)

r
...

...
...

i
...

...
...

o
...

...
...

d t Xjt(wjt)

Diagram 1 Bühlmann-Straub model
Each contract j = 1, k is the average of a group of wjr contracts, where

wjr is the weight (size) of the group j at time r, with r = 1, t. So the weight
of a ”contract” now may vary in time (is now changing in time), if this weight
is equal to the number of proper contracts grouped into an average contract
at time r, where r = 1, t (wjr =(# of contracts considered to have a common
risk parameter θj), where r = 1, t and j = 1, k). The model consists of the
structural variables θj and the observable variables Xjr , where j = 1, k and
r = 1, t. So the contract j consists of the set of variables:

(θj , X
′
j) = θj , Xjr, r = 1, t,

where j = 1, k; the contract indexed j is a random vector consisting of a ran-
dom structure parameter θj and observations Xj1, Xj2, . . . , Xjt, see Diagram
1:

(θj , X
′
j) = (θj , Xj1, . . . , Xjt),

where j = 1, k. Of course the variables Xjr represent the average of wjr

contracts grouped together at time r, as follows:

Xjr =
1

wjr

wjr∑
i=1

X
(i)
jr , r = 1, t and j = 1, k.
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The Bühlmann-Straub assumptions can be formulated as:
(BS1) The contracts j = 1, k (the couples (θj , X

′
j), j = 1, k) are inde-

pendent; moreover, for every contract j = 1, k and for θj fixed, the variables
Xj1, . . . , Xjt are conditionally independent. The variables θ1, . . . , θk are identi-
cally distributed. The observations Xjr, j = 1, k, r = 1, t have finite variance.

(BS2) E(Xjr |θj) = µ(θj), j = 1, k, r = 1, t (we assume that all con-
tracts have common expectation of the claim size as a function µ(·) of the risk
parameter θj , where j = 1, k).

Var (Xjr |θj) = σ2(θj)/wjr, j = 1, k, r = 1, t, where all wjr > 0, with X
(i)
jr ,

i = 1, wjr, j = 1, k, r = 1, t satisfying the hypotheses (BS′
1) and (BS′

2) from
below:

(BS′
1) For every j = 1, k and for θj fixed, the variables X

(i)
jr , i = 1, wjr, r =

1, t are conditionally independent and identically distributed. The variables
θ1, . . . , θk are identically distributed and the observations X

(i)
jr , i = 1, wjr ,

r = 1, t, j = 1, k have finite variance, and:
(BS′

2) E(X(i)
jr |θj) = µ(θj), i = 1, wjr, r = 1, t, j = 1, k,

Var (X(i)
jr |θj) = σ2(θj), i = 1, wjr, r = 1, t, r = 1, k.

Consequence of the hypothesis (BS1):

Cov (Xjr , Xjq|θj) = 0, j = 1, k, r, q = 1, t, r < q.

Remarks.
1) µ(θj) is the pure net risk premium of the contract j, with j = 1, k.
2) The Bühlmann-Straub assumptions express the common characteristics

of the risk under consideration.
3) The weights arise when the contracts are replaced by averages of identi-

cal contracts (with the same risk parameter), and the weight then represents
the number of such contracts.

4) Apart from the weighting factor w, the variance is also the same function
of the risk parameter.

The optimal linearized non-homogeneous credibility estimators are given
in the following theorem:

Theorem 1.1. (linearized non-homogeneous credibility estima-
tor in the Bühlmann-Straub model). Under the hypotheses (BS1) and
(BS2) of the Bühlmann-Straub model, the following optimal linearized non-
homogeneous credibility estimator for µ(θj), for some fixed j, is obtained:

Ma
j = µ̂(θj) = (1 − zj)m + zjMj , (1.1)
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where Mj = Xjw =
t∑

q=1

wjq

wj.
Xjq denotes the individual estimator for µ(θj),

and the resulting credibility factor for contract j is given by:

zj = awj./(awj. + s2),

with a = Var [µ(θj)], s2 = E[σ2(θj)], m = E[µ(θj)] as usual, where

wj. =
t∑

q=1

wjq, j = 1, k.

This result can be found in [5]. To be able to use the result (1.1), one still
has to estimate the portfolio characteristics m, s2, a. Some unbiased estimators
are given in the following section.

2. Parameter estimation

Here and in the following (see Section 3) we present the main results leaving
the detailed computations to the reader.

The estimators obtained in the previous section contained unknown struc-
ture parameters (the credibility premium for this Bühlmann-Straub model
involves three unknown parameters: m, s2 and a). So the expressions for
these (pseudo-) estimators are no longer statistics. But since the contracts are
embedded in a collective of identical contracts, all providing independent infor-
mation on the structure distribution, it is possible to give unbiased estimators
of these quantities, so we can replace the unknown structure parameters by
estimates. In this section, we consider different contracts, each with the same
structure parameters: m, s2 and a, so we can estimate these quantities us-
ing the statistics of the different contracts. Some unbiased estimators for the
structure parameters: m, s2 and a, are given in the following theorem. So we
will provide some useful estimators for the structure parameters: m, s2 and a
in the following theorem:

Theorem 2.1. (parameter estimation in the Bühlmann-Straub
model). The estimators:

m̂ = M0 = Xzw =
k∑

j=1

zj

z.
Xjw (where z. =

k∑
j=1

zj)

ŝ2 =
1

k(t − 1)

∑
j,s

wjs(Xjs − Xjw)2

â = w..

⎡
⎣∑

j

wj.(Xjw − Xww)2 − (k − 1)ŝ2

⎤
⎦ /

⎛
⎝w2.. −

∑
j

w2
j.

⎞
⎠
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(where: w.. =
k∑

j=1

wj. =
k∑

j=1

t∑
q=1

wjq, Xww =
k∑

j=1

wj.

w..
Xjw) are unbiased estima-

tors of the corresponding structure parameters, i.e. E(m̂) = m, E(ŝ2) = s2,
E(â) = a.

Proof. The proof of E(m̂) = m is easy. Using the covariance relations (the
relevant covariance relations between the risk premium, the observations and
the weighted averages) - see Remark 2.1, we get:

k(t − 1)E(ŝ2) =
∑
j,s

wjs[Var (Xjs) + Var (Xjw) − 2Cov (Xjs, Xjw)] =

=
∑
j,s

wjs

[(
a +

s2

wjs

)
+
(

a +
s2

wj.

)
− 2

(
a +

s2

wj.

)]
=

=
∑
j,s

wjs

[(
a +

s2

wjs

)
−
(

a +
s2

wj.

)]
=

=

⎡
⎣∑

j,s

wjs

(
1

wjs
− 1

wj.

)⎤⎦ · s2 =

⎡
⎣∑

j,s

wjs
1

wjs
−
∑

j

1
wj.

(∑
s

wjs

)⎤
⎦ · s2 =

=

⎛
⎝kt −

∑
j

1
wj.

wj.

⎞
⎠ · s2 = (kt − k)s2 = k(t − 1)s2.

So: k(t − 1)E(ŝ2) = k(t − 1)s2, that is E(ŝ2) = s2.
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The proof of the unbiasedness of â is similar. We have:⎛
⎝w2.. −

∑
j

w2
j.

⎞
⎠E(â) =

= w..

⎧⎨
⎩
∑

j

wj.[Var (Xjw) + Var (Xww) − 2Cov (Xjw , Xww)] − (k − 1)s2

⎫⎬
⎭ =

= w..

⎧⎨
⎩
∑

j

wj.

[(
a +

s2

wj.

)
+

(
s2

w..
+ a

∑
i

(
wi.

w..

)2
)

− 2
(

s2

w..
+ a

wj.

w..

)]
−

−(k − 1)s2
}

= w..

⎡
⎣a

∑
j

wj. + s2
∑

j

wj.
1

wj.
+

s2

w..

∑
j

wj. + a
1

w2
..

∑
j

wj.

∑
i

w2
i.−

−2
s2

w..

∑
j

wj. − 2a
1

w..

∑
j

w2
j. − (k − 1)s2

⎤
⎦ =

= w..

⎡
⎣aw.. + ks2 +

s2

w..
w.. + a

w..

w2
..

∑
j

w2
j. − 2

s2

w..
w.. − 2a

1
w..

∑
j

w2
j.−

− (k − 1)s2

]
= aw2

.. + ks2w.. + s2w.. + a
∑

j

w2
j. − 2s2w..−

−2a
∑

j

w2
j. − ks2w.. + s2w.. = aw2

.. − a
∑

j

w2
j. =

⎛
⎝w2

.. −
∑

j

w2
j.

⎞
⎠ a.

So ⎛
⎝w2

.. −
∑

j

w2
j.

⎞
⎠E(â) =

⎛
⎝w2

.. −
∑

j

w2
j.

⎞
⎠ a,

that is: E(â) = a.
Theorem 2.1 is now proved.

Remark 2.1. We start by deriving the relevant covariance relations be-
tween the risk premium, the observations and the weighted averages appearing
in Theorem 2.1. Under the hypotheses (BS1) and (BS2,) the following results
can be obtained for the conditional expectations and for the covariances:

Cov [µ(θj), Xiq] = δija (2.1)
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Cov (Xjq , Xir) = 0 for j �= i (2.2)

Cov (Xjq , Xjr) = a + δrq
s2

wjq
(2.3)

Cov (Xjq , Xjw) = Cov(Xjw , Xjw) = a +
s2

wj.
(2.4)

Cov(Xjw , Xzw) = Cov(Xzw, Xzw) =
a

z.
(2.5)

Cov(Xjw , Xww) =
s2

w..
+ a

wj.

w..
(2.6)

Cov(Xww, Xww) =
s2

w..
+ a

∑
j

(wj.

w..

)2

. (2.7)

We give the proof of these relations: for i = j, we have

Cov[µ(θj), Xjq] = E{Cov[µ(θj), Xjq|θj ]}+
+Cov{E[µ(θj)|θj ], E(Xjq |θj)} = E[µ(θj)E(Xjq |θj)]−
−µ(θj)E(Xjq |θj)] + Cov[µ(θj), µ(θj)] = E(0) + V ar[µ(θj)] = a.

(2.8)

For i �= j, we have

Cov[µ(θj), Xiq] = E{Cov[µ(θj), Xiq|θj ]}+
+Cov{E[µ(θj)|θj ], E(Xiq|θj)} = E[µ(θj)E(Xiq |θj)−
−µ(θj)E(Xiq |θj)] + Cov[µ(θj), E(Xiq)] =

= E(0) + Cov[µ(θj), m] = 0 + 0 = 0.

(2.9)

Combining (2.8), (2.9), we obtain (2.1). If j �= i, then we have

Cov(Xjq , Xir) = E[Cov(Xjq , Xir|θj)] + Cov[E(Xjq |θj), E(Xir|θj)] =

= E[E(Xjq |θj)E(Xir |θj) − E(Xjq|θj)E(Xir |θj)]+

+Cov[µ(θj), E(Xir)] = E(0) + Cov[µ(θj), m] = 0 + 0 = 0,

(2.10)

which implies (2.2). Let r, q = 1, t, r �= q. We write

Cov(Xjq , Xjr) = E[Cov(Xjq , Xjr|θj)]+

+Cov[E(Xjq |θj), E(Xjr |θj)] = E[E(Xjq|θj) · E(Xjr|θj)−
−E(Xjq|θj)E(Xjr |θj)] + Cov[µ(θj), µ(θj)] =

= E(0) + V ar[µ(θj)] = 0 + a = a

(2.11)
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Let r = q (= 1, t). We write

Cov(Xjq , Xjq) = V ar(Xjq) = E[V ar(Xjq |θj)] + V ar[E(Xjq |θj)] =

= E

[
σ2(θj)
wjq

]
+ V ar[µ(θj)] =

1
wjq

s2 + a = a +
s2

wjq

(2.12)

In conclusion, from (2.11), (2.12) we get (2.3). According to (2.3) we have

Cov(Xjq , Xjw) =
t∑

r=1

wjr

wj.
Cov(Xjq , Xjr) =

=
t∑

r=1

wjr

wj.

(
a + δrq

s2

wjq

)
=

=
a

wj.
wj. +

s2

wj.

1
wjq

⎛
⎝wjq +

t∑
r=1,r �=q

δrqwjr

⎞
⎠ =

= a +
s2

wj.

1
wjq

wjq = a +
s2

wj.
,

(2.13)

which implies our first assertion. According to (2.13) we have

Cov(Xjw , Xjw) =
t∑

q=1

wjr

wj.
Cov(Xjq , Xjw) =

=
t∑

q=1

wjq

wj.

(
a +

s2

wj.

)
=

a

wj.
wj. +

s2

wj.
· 1 = a +

s2

wj.
,

(2.14)

which proves our second assertion. According to (2.13) we have

Cov(Xjw , Xzw) =
t∑

q=1

t∑
r=1

wjq

wj.

zr

z.
Cov(Xjq , Xrw) =

=
t∑

q=1

⎡
⎣wjq

wj.

zj

z.
Cov(Xjq , Xjw) +

t∑
r=1,r �=j

wjq

wj.

zr

z.
Cov(Xjq , Xrw)

⎤
⎦ =

=
t∑

q=1

⎡
⎣wjq

wj.

zj

z.

(
a +

s2

wj.

)
+

t∑
r=1,r �=j

wjq

wj.

zr

z.
0

⎤
⎦ =

=
a

z.

zj

wj.
wj.

1
zj.

=
a

z.
,

(2.15)
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where

Cov(Xjq , Xrw) =
t∑

i=1

wri

wr.
Cov(Xjq , Xri) =

t∑
i=1

wri

wr.
0 = 0, if r �= j , (2.16)

by virtue of the relation (2.2). From (2.15) one obtains our first assertion.
According to (2.15) we have

Cov(Xzw, Xzw) =
k∑

j=1

zj

z.
Cov(Xjw , Xzw) =

t∑
j=1

zj

z.

a

z.
=

a

z2.
z. =

a

z.
. (2.17)

From (2.17) one obtains our second assertion. According to (2.4) and (2.16)
we have

Cov(Xjw , Xww) =
t∑

q=1

k∑
r=1

wjq

wj.

wr.

w..
Cov(Xjq , Xrw) =

=
t∑

q=1

⎡
⎣wjq

wj.

wj.

w..
Cov(Xjq , Xjw) +

k∑
r=1,r �=j

wjq

wj.

wr.

w..
Cov(Xjq , Xrw)

⎤
⎦ =

=
t∑

q=1

⎡
⎣wjq

w..

(
a +

s2

wj.

)
+

k∑
r=1,r �=j

wjq

wj.

wr.

w..
0

⎤
⎦ =

= a
1

w..
wj. +

s2

w..

wj.

wj.
=

s2

w..
+ a

wj.

w..
,

(2.18)

which implies (2.6). Using (2.18), we have

Cov(Xww, Xww) =
k∑

j=1

wj.

w..
Cov(Xjw , Xww) =

=
k∑

j=1

wj.

w..

(
s2

w..
+ a

wj.

w..

)
=

s2

w2..
w.. + a

k∑
j=1

(wj.

w..

)2

=

=
s2

w..
+ a

k∑
j=1

(wj.

w..

)2

,

(2.19)

which gives (2.7).
Remark 2.2. The estimator for a has the weakness that it may take

negative values whereas a is non-negative. Therefore, we replace a by the
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estimator a∗ = max(0, â), thus losing unbiasedness, but gaining admissibility.
So note that, in Theorem 2.1 â might well be negative.

Since we want to estimate Var [µ(θj)], a more sensible estimator might be
max(0, â), but this is of course no longer a unbiased estimator.

Remark 2.3. If we use the formula:

Ma
j = (1 − ẑj)M0 + ẑjMj ,

we have E(Ma
j ) �= m, in case the estimators from Theorem 2.1 are used,

because then ẑj is dependent of Mj and M0, j = 1, k.

Of course, the attractive property of unbiasedness is lost in this way, but
we can still expect the resulting estimators to be good. For instance, when an
estimator is a maximum likelihood estimator for a parameter, so are functions
of it for these functions of the parameter.

Remark 2.4. The above two Theorems 1.1 and 2.1 gave us the solution to
the Bühlmann-Straub model in the case of a non-homogeneous linear estimator
for µ(θj) or, which amounts to the same, for Xj,t+1, j = 1, k.

Remark 2.5. Note that in the credibility premium for contract j, the
credibility factors zj also influence the estimator for the overall premium m
used. We use Xzw rather than Xww, though the latter would be considered
more natural by many practicing actuaries. It can be shown that Xzw has
smaller variance than Xww. In fact Xww has minimal variance in the classical
statistical model, but in the credibility model at hand the situation is reversed.
To prove that the credibility weighted mean Xzw, based on the heterogeneity
and the fluctuation of the risk, has minimal mean squared error, we solve:

Min
β

⎧⎨
⎩Var

⎡
⎣ k∑

j=1

βjXjw

⎤
⎦
⎫⎬
⎭ = Min

β

⎧⎨
⎩

k∑
j=1

β2
j Var (Xjw)

⎫⎬
⎭ (2.20)

such that
k∑

j=1

βj = 1 and βj ≥ 0, j = 1, k, where β = (β1, β2, . . . , βk)′. Remark

that

Var

⎡
⎣ k∑

j=1

βjXjw

⎤
⎦ =

k∑
j=1

β2
j Var(Xjw).
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Indeed, we have

Var

⎡
⎣ k∑

j=1

βjXjw

⎤
⎦ = E

⎡
⎢⎣
⎛
⎝ k∑

j=1

βjXjw

⎞
⎠

2
⎤
⎥⎦− E2

⎛
⎝ k∑

j=1

βjXjw

⎞
⎠ =

=
k∑

j=1

β2
j Var(Xjw) + 2

∑
1≤j<j′≤k

βjβj′Cov(Xjw, Xj′w),

where

Cov(Xjw , Xj′w) =
t∑

q=1

t∑
r=1

wjq

wj.

wj′r

wj′.
Cov(Xjq, Xj′r) =

=
t∑

q=1

t∑
r=1

wjq

wj.

wj′r

wj′ .
0 = 0,

by virtue of the relation (2.2) if j �= j′ and thus we conclude that

Var

⎡
⎣ k∑

j=1

βjXjw

⎤
⎦ =

k∑
j=1

β2
j Var(Xjw).

Let j be fixed. Since Var (Xjw) = Cov (Xjw , Xjw) = a + s2/wj. =
a

zj
,

by (2.4), the minimal variance unbiased estimator is found by solving the
Lagrange problem:

Min
α,β

⎡
⎣ k∑

j=1

β2
j

a

zj
− 2α

⎛
⎝ k∑

j=1

βj − 1

⎞
⎠
⎤
⎦ (2.21)

The restriction
k∑

j=1

βj = 1 can be written as

k∑
j=1

βj − 1 = 0. (2.22)

To deal with constraint (2.22), we add it to (2.20) with a Lagrange multiplier
−2α. Thus the problem (2.21) results. Taking the derivative with respect to
βj , j = 1, k leads to the equation:

2βj
a

zj
− 2α = 0, j = 1, k.
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This gives
βj =

αzj

a
, j = 1, k, (2.23)

where still α has to be determined in such a way that (2.22) holds, too. Sum-
ming all the βj of (2.23), one gets:

α

a

k∑
j=1

zj = 1,

that is,
α =

a

z.

and the resulting value for α, inserted in (2.23), gives

βj =
zj

z.
, j = 1, k.

Therefore
zj

z.
, j = 1, k are the optimal weights, in the sense that

Min
β

⎛
⎝Var

⎡
⎣ k∑

j=1

βjXjw

⎤
⎦
⎞
⎠ = Var

⎛
⎝ k∑

j=1

zj

z.
Xjw

⎞
⎠ = Var(Xzw). (2.24)

In view of (2.24), we conclude that

Var(Xzw) ≤ Var

⎛
⎝ k∑

j=1

βjXjw

⎞
⎠

for all βj ≥ 0, with
k∑

j=1

βj = 1. Hence, for βj =
wj.

w..
, j = 1, k we obtain:

Var(Xzw) ≤ Var

⎛
⎝ k∑

j=1

wj.

w..
Xjw

⎞
⎠ = Var(Xww).

Remark 2.6. One could use another unbiased estimator for the struc-
tural parameter a, which really is only a pseudo-estimator, since its definition
includes the parameter a to be estimated.

Theorem 2.2 (pseudo-estimator for the heterogeneity parameter).
The following random variable â has mean a : E(â) = a, where

â =
1

k − 1

k∑
j=1

zj(Mj − M0)2.
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Proof. Remembering that Mj = Xjw and M0 = Xzw, so E(Mj) = E(M0),
one gets using the covariance relations (2.4), (2.5):

(k − 1)E(â) =
∑

j

zjE[(Mj − M0)2] =

=
∑

j

zj{E[(Mj − M0)2] − [E(Mj) − E(M0)]2} =

=
∑

j

zj{E[(Mj − M0)2] − [E(Mj − M0)]2} =

=
∑

j

zjVar(Mj − M0) =
∑

j

zjCov(Mj − M0, Mj − M0) =

=
∑

j

zjCov(Xjw − Xzw, Xjw − Xzw) =

=
∑

j

zj [Cov (Xjw , Xjw) − Cov (Xjw , Xzw) − Cov (Xzw, Xjw)+

+Cov (Xzw, Xzw)] =
∑

j

zj

[(
a +

s2

wj.

)
− a

z.
− a

z.
+

a

z.

]
=

=
∑

j

zj

(
a +

s2

wj.
− a

z.

)
=
∑

j

zj

(
awj. + s2

wj.
− a

z.

)
=

=
∑

j

zja
s2 + awj.

awj.
− a

z.

∑
j

zj = a
∑

j

zj
1
zj

− a

z.
z. = ak − a = (k − 1)a.

So (k − 1)E(â) = (k − 1)a, that is E(â) = a. Theorem 2.2 is now proved.
Remark 2.7. The reason to consider this estimator â is that, together

with ŝ2 as in Theorem 2.1, it gives us a nice interpretation of the degree of
heterogeneity. It also provides insight into a general procedure of extending
these results, to the hierarchical models. First, ŝ2 measures the fluctuation
of the risk or the heterogeneity s2 in time, see the definition of s2. Since
s2 = E[σ2(θj)], the part of the variance describing this fluctuation is measured
by the squared differences (Xjs − Xjw)2, corrected with their natural weight
wjs : wjs(Xjs −Xjw)2. In total there are k times t results, but k expectations
are estimated from the individual data. This gives us an unbiased estimator for
the part of the variance describing heterogeneity of the individual risks (see ŝ2).
Secondly, â measures the degree of heterogeneity between the contracts. The
square of the difference (Mj − M0)2 between the individual weighted average
result Mj and the collective estimator M0 (weighted by credibility weights) is
the relevant quantity for performing the evaluation of the heterogeneity of the
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contracts. An unbiased estimator for the variance is then credibility weighted
average

â =

⎡
⎣ k∑

j=1

zj(Mj − M0)2

⎤
⎦ /(k − 1).

The division by (k − 1) is due to the fact that we consider k contracts. The
overall average is calculated by means of the individual results, so the number
of independent terms equals (k − 1).

Remark 2.8. In case m in (1.1) is estimated by M0, we obtain a ho-
mogeneous linear combination of all observable variables, giving an unbiased
estimate of m. This last estimator can also be shown to be optimal (see Sec-
tion 3). The following section shows that this happens to give the optimal
unbiased homogeneous linearized credibility result.

3. The solution to the Bühlmann - Straub model in the case of a
homogeneous credibility estimators

Replacing the structure parameter m by an unbiased estimate results in a
homogeneous credibility estimator. In Section 3, we will show that this last
estimator is in fact the optimal linearized homogeneous credibility estimator.
Now, we derive the optimal linearized homogeneous credibility estimator.

Theorem 3.1 (homogeneous credibility estimators in the Bühlmann-
Straub model). The solution to the following minimization problem:

Min
cj

E

⎧⎪⎨
⎪⎩
⎡
⎣µ(θj) −

k∑
j=1

t∑
r=1

cjirXir

⎤
⎦

2
⎫⎪⎬
⎪⎭ , (3.1)

such that E[µ(θj)] =
∑
i,r

cjirE(Xir), (3.2)

is

Ma
j = (1 − zj)M0 + zjMj , (3.3)

with zj as in Theorem 1.1, where cj = (cjir)i,r.
Proof. Let j be fixed. The unbiasedness restriction (3.2) can be written

as
∑
i,r

cjir = 1, because E(Xir) = E[µ(θj)] = m.

We insert it in the expectation in (3.1), and add it to the function to be
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optimized with a Lagrange multiplier 2α/m. The following problem results:

Min
cj,α

⎛
⎜⎝E

⎧⎪⎨
⎪⎩
⎡
⎣µ(θj) − m −

∑
i,r

cjir(Xir − m)

⎤
⎦

2
⎫⎪⎬
⎪⎭+ 2α

⎛
⎝1 −

∑
i,r

cjir

⎞
⎠
⎞
⎟⎠ .

(3.4)
Since (3.4) is the minimum of a positive by definite quadratic form, it

suffices to find a solution with all partial derivatives equal to zero. Taking the
derivative with respect to cji′r′ gives for i′ = 1, k, r′ = 1, t:

α + Cov[µ(θj), Xi′r′ ] =
∑
i,r

cjirCov(Xir , Xi′r′). (3.5)

Using the expressions (2.1), (2.2), (2.3) of these covariances in terms of a
and s2 , one obtains the following system of equations:

α + δi′ja =
∑

r

cji′r(a + δrr′s2/wi′r), i′ = 1, k, r′ = 1, t (3.6)

Indeed, the right hand side of (3.5) can successively be rewritten as follows

∑
r

[∑
i

cjirCov(Xir, Xi′r′)

]
=

∑
r

⎡
⎣cji′rCov(Xi′r, Xi′r′) +

∑
i;i�=i′

cjirCov(Xir, Xi′r′)

⎤
⎦ =

=
∑

r

⎡
⎣cji′r(a + δrr′s2/wi′r) +

∑
i;i�=i′

cjir0

⎤
⎦ =

=
∑

r

cji′r(a + δrr′s2/wi′r), i′ = 1, k, r′ = 1, t.

These equations can be simplified as follows:

α + δi′ja = acji′. + s2cji′r′/wi′r′ , i′ = 1, k, r′ = 1, t (3.7)

where cji′. =
∑

r

cji′r.
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Indeed, the right hand side of (3.6) can successively be rewritten as follows

acji′. + s2
∑

r

δrr′cji′r/wi′r =

= acji′. + s2

⎛
⎝cji′r′/wi′r′ +

∑
r;r �=r′

0cji′r/wi′r

⎞
⎠ =

= acji′. + s2cji′r′/wi′r′

Multiplying each equation with wi′r′ and summing these equations over the
index r′, gives for each i′:

(α + δi′ja)wi′. = cji′.awi′. + s2cji′. .

So
cji′. = (α + δi′ja)wi′./(s2 + awi′.). (3.8)

Inserting (3.8) into (3.7) gives an expression for cji′r′ :

cji′r′ = (α+ δi′ja)[1− awi′./(awi′. + s2)]wi′r′/s2 = (α+ δi′ja)(1− zi′)wi′r′/s2.

From this, the estimator (3.3) for µ(θj) becomes:

µ̂(θj) =
∑
i′,r′

cji′r′Xi′r′ =
∑
i′r′

[(α + δi′ja)(1 − zi′)wi′r′/s2]Xi′r′ ,

where still α has to be determined in such a way that (3.2) holds, too. Sum-
ming all the cji′. of (3.8), one gets:

1 =
∑
i′

(∑
r′

cji′r′

)
=
∑
i′

cji′. =
∑
i′

(α + δi′ja)wi′./(s2 + awi′.) =

= (α/a)
∑
i′

awi′./(s2 + awi′.) +
∑
i′

δi′jzi′ = α

(∑
i′

zi′/a

)
+ zj = αz./a + zj

and the resulting value for α = a(1 − zj)/z., inserted in (3.9), gives after
some algebraic manipulations the following optimal estimator for µ(θj):

Ma
j = µ̂(θj) = (1 − zj)Xzw + zjXjw (3.9)

So the theorem is proved.
Remark 3.1. One likely choice in the minimization problem:

Min
g(·)

E
{

[µ(θj) − g(Xj1, . . . , Xjt)]
2
}

,
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giving easily computable premiums, is

g(Xj1, . . . , Xjt) = c0 +
k∑

i=1

t∑
r=1

cjirXir,

leading to so-called linearized credibility results.
Another possibility is to limit oneself to unbiased homogeneous linear es-

timators, by requiring additionally c0 = 0 and: E[µ(θj)] =
∑
i,r

cjirE(Xir).

Proceeding this way one gets homogeneous linear credibility formulae. By
the requirement of unbiasedness the sum of the credibility premiums equals
the global premium on the top-level.

Remark 3.2. In this section we demonstrated that the estimators ob-
tained for the pure net risk premium on contract level are the best linearized
homogeneous credibility estimators for the Bühlmann-Straub model, using the
greatest accuracy theory.

Conclusions

This paper completes the solution of the Bühlmann - Straub model in the
case of a non-homogeneous linear estimator for µ(θj), or what amounts to the
same, for Xj,t+1, j = 1, k.

In view of assumption (BS1)about independence of the contracts, it might
come as a surprise that the premium for contract j involves results from other
contracts.

A closer look at this assumption reveals that this is so because the other
contracts provide additional information on the structure distribution.

For this reason the claim figures of other contracts cannot be ignored when
estimating the parameters appearing in the credibility estimate for contract j.

In this article, the classical Bühlmann model is refined by associating so-
called natural weights to the contracts. These weights arise when the contracts
are replaced by averages of identical contracts (with the same risk parameter),
and the weight then represents the number of such contracts.

But since the contracts are embedded in a collective of identical contracts,
all providing independent information on the structure distribution, we can
estimate these structural parameters in the Bühlmann - Straub model, using
the statistics of the different contracts.

The above two theorems 1.1 and 2.1 show that it is possible to give unbiased
estimators of these quantities (the portfolio characteristics), if we have more
than one observation available on the risk parameter.

The article contains a description of the Bühlmann - Straub model, be-
hind a heterogenous portfolio, involving an underlying risk parameter for the
individual risks.
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Since these risks can now no longer be assumed to be independent, math-
ematical properties of conditional covariances become useful.

This paper is devoted to the Bühlmann - Straub model allowing for con-
tracts to have different weights (volumes) and the purpose of this article is to
get unbiased estimators for the portfolio characteristics.

The mathematical theory provides the means to calculate useful estimators
for the structure parameters.

From the practical point of view the property of unbiasedness of these
estimators is very appealing and very attractive.

The fact that it is based on complicated mathematics, involving conditional
expectations and conditional covariances, needs not bother the user more than
it does when he applies statistical tools like discriminant analysis, scoring
models, SAS and GLIM.

These techniques can be applied by anybody on his own field of endeavor,
be it economics, medicine, or insurance.
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Romania
e-mail: virginia atanasiu@yahoo.com


