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Relaxation of nonlocal m-dissipative differential
inclusions

S. Bilal, O. Cârjă, T. Donchev, N. Javaid, A. I. Lazu

Abstract

We show here that the set of the integral solutions of a nonlocal
differential inclusion is dense in the set of the solution set of the cor-
responding relaxed differential inclusion. We further define a notion of
limit solution and show that the set of limit solutions is closed and is
the closure of the set of integral solutions. An illustrative example is
provided.

1 Introduction

Let X be a Banach space and I = [t0, T ] ⊂ R+. Consider the nonlinear
differential inclusion with nonlocal initial conditions{

ẋ(t) ∈ Ax(t) + F (t, x(t)), t ∈ I
x(t0) = g(x(·)),

(1.1)

where A : D(A) ⊂ X ⇒ X is an m-dissipative operator, F : I ×X ⇒ X is a
multivalued map and g : C(I,X)→ D(A) is a given function.

A large class of partial differential equations (inclusions) can be written in
the form (1.1). We refer the reader to [7], where nonlocal evolution inclusions
with time delay are comprehensively studied. Among others, we cite [8, 22]
where the problem (1.1) is studied in the case of linear A and [3, 18, 23] when
A is nonlinear. See also [17] for a viability result when F is single valued.
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In the present paper we study the relation between the solutions of the
problem (1.1) and the solutions of the corresponding relaxed problem{

ẏ(t) ∈ Ay(t) + co F (t, y(t)), t ∈ I
y(t0) = g(y(·)).

(1.2)

More precisely, we prove that the solution set of (1.1) is dense in the solution
set of the convexified problem (1.2). This kind of result, known in literature as
relaxation theorem, is very important in the theory of differential inclusions
and in the optimal control problems (see, e.g., [14, 20]). Notice that the
solution set of the relaxed problem (1.2) is not closed in general. A natural
question that arises here is related to the structure of its closure. In order
to answer this question, we consider the limits of some approximate solutions
of (1.1), called limit solutions, which are not necessarily solutions of (1.1).
We prove that the closure of the solution set of (1.1) is the set of the limit
solutions of (1.1).

There are several papers devoted to relaxation theorems for the local form
of the inclusions (1.1) and (1.2), i.e., when the second conditions are replaced
by x(t0) = x0 and y(t0) = y0 respectively, with x0, y0 ∈ D(A) (see, e.g.,
[9, 10, 11, 13, 20]). A common assumption in these papers is that A generates
a compact semigroup. Further, in [20], the dual space X∗ is strictly convex
and F is Lipschitz with compact values. In [9] the dual space X∗ is uniformly
convex. The relaxation theorem of [9] was extended in [11] by weakening the
Lipschitz condition on the multifunction F to one-sided Lipschitz. A more
general form was considered in [10] assuming that the duality map of X is
single valued. Further, a weaker condition on the multifunction F is considered
in [10], namely, one-sided Perron.

To our knowledge, our relaxation result given here is the first one in the
case of nonlocal conditions. We assume that the multifunction F is Lipschitz
continuous with closed and bounded values. However we don’t assume any-
thing about the semigroup. Therefore, our relaxation theorem is new even in
the case of local initial conditions. The present paper appears to be a natural
extension of [2], where the existence of solutions of (1.1) was considered.

This paper is devoted to nonlocal fully nonlinear evolution systems. We
determine the closure of the solution set. To author’s knowledge no related
results exist in the literature. The limit solution set of (2.3) is compact in the
case when A generates a compact semigroup. Notice that if F (t, x) is single
valued and almost continuous, then every limit solution is actually solution.

2 Preliminaries

In this section we give some definitions and auxiliary results used in this paper.
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Let X be a Banach space with the norm | · |. For A ⊂ X, A stands
for its closure and co A for its closed convex hull. The distance from a
point to a set is dist(x,A) = infa∈A |x − a|. Let A,B ⊂ X be nonempty
bounded sets. The Hausdorff–Pompeiu distance is defined by DH(A,B) =
max{ex(A,B), ex(B,A)}, where ex(A,B) = sup

a∈A
dist(a,B). For any bounded

set A we denote ‖A‖ = sup{|x|; x ∈ A}.
The duality map of X, J : X ⇒ X∗, is defined by J(x) = {x∗ ∈

X∗; 〈x∗, x〉 = |x|2 = |x∗|2}, where 〈·, ·〉 is the duality pairing. Recall that
if X∗ is uniformly convex then J(·) is single valued. For any nonempty closed
bounded set A ⊂ X and l ∈ X∗ we define σ(l,A) = supa∈A〈l, a〉. Recall that
σ(l,A) = σ(l, co A).

We denote by [x, u]+ the right directional derivative of the norm calculated
at x in the direction u, i.e.,

[x, u]+ = lim
h↓0

|x+ hu| − |x|
h

.

It is known that, when J is single valued, 〈J(x), y〉 = |x|[x, y]+ for any x, y ∈
X.

The multifunction F : I ×X ⇒ X is called lower semicontinuous (LSC) at
(t, x) ∈ I ×X if, for any v ∈ F (t, x) and any sequence ((tn, xn))n with tn → t
and xn → x, there exists a sequence (vn)n with vn ∈ F (tn, xn) for every n ∈ N,
such that vn → v. It is called LSC if it is LSC at every (t, x) ∈ I ×X. The
multifunction F (·, ·) is called continuous if it is continuous with respect to the
Hausdorff-Pompeiu distance. F (·, ·) is called almost LSC (almost continuous)
if for every ε > 0 there exists a compact interval ∆ε ⊆ I with meas(I \∆ε) < ε
such that F|∆ε×X is LSC (continuous). Here, meas denotes the Lebesgue
measure.

For f ∈ L1(I,X), consider the Cauchy problem{
ẋ(t) ∈ Ax(t) + f(t), t ∈ I
x(t0) = x0 ∈ D(A).

(2.1)

In the case when J is single valued, following [5], we say that x ∈ C(I,X)
is an (integral) solution of (2.1) if x(t0) = x0 and for every u ∈ D(A) and
v ∈ A(u) the following inequality holds

|x(t)− u|2 ≤ |x(s)− u|2 + 2

∫ t

s

〈J(x(τ)− u), f(τ) + v〉dτ

for t0 ≤ s ≤ t ≤ T . See, e.g., [4] for the definition of the integral solution
when J is not necessarily single valued.



RELAXATION OF NONLOCAL M-DISSIPATIVE DIFFERENTIAL
INCLUSIONS 48

It is well known that for each x0 ∈ D(A) the Cauchy problem (2.1) has
a unique integral solution on [t0, T ]. Moreover, if x(·) and y(·) are integral
solutions of (2.1) with x(t0) = x0 and y(t0) = y0, then

|x(t)− y(t)| ≤ |x0 − y0|+
∫ t

t0

[x(s)− y(s), fx(s)− fy(s)]+ds (2.2)

for every t ∈ [t0, T ] (see, e.g., [16]). In particular,

|x(t)− y(t)| ≤ |x0 − y0|+
∫ t

t0

|fx(s)− fy(s)|ds,

for every t ∈ [t0, T ].
Consider now the differential inclusion{

ẋ(t) ∈ Ax(t) + F (t, x(t)), t ∈ I
x(t0) = x0,

(2.3)

where x0 ∈ D(A). We say that x ∈ C(I,X) is a solution of (2.3) if there
exists fx ∈ L1(I,X) with fx(t) ∈ F (t, x(t)) a.e. on I, such that x(·) is an
integral solution of (2.1). We say that x ∈ C(I,X) is a solution of (1.1) if it
is a solution of (2.3) and x(t0) = g(x(·)).

We refer the reader to [6, 14] for the theory of m-dissipative differential
inclusions and to [4] for some recent trends.

The function fx involved above is called pseudoderivative of x(·).

3 The main result

In this section we will prove the main result of the present paper, that is, the
density of the solution set of (1.1) into the solution set of (1.2).

We first introduce the standing hypotheses (H):

(h1) There exists a Lebesgue integrable function κ(·) such that ‖F (t, 0)‖ ≤
κ(t) for any t ∈ I.

(h2) There exists a Lebesque integrable function L(·) such that
DH(F (t, x), F (t, y)) ≤ L(t)|x− y| for any t ∈ I and any x, y ∈ X.

(h3) The multifunction F is almost continuous with nonempty closed values.

(h4) The function g : C(I,X) → D(A) satisfies |g(x) − g(y)| ≤ K‖x − y‖∞
for some K > 0 and for any x, y ∈ C(I,X). We denoted by ‖ · ‖∞ the
sup-norm of C(I,X).
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(h5) K exp

(∫ T

t0

L(s)ds

)
< 1.

Remark 3.1. Notice that from (h1) and (h2) it follows that

‖co F (t, x)‖ ≤ κ(t) + L(t)|x| (3.1)

for any (t, x) ∈ I ×X.

To simplify the presentation, in what follows we denote l(t) :=

∫ t

t0

L(s)ds

and, for any δ ≥ 0, β(δ) := (exp (l(T )) + δ)K.
The following result will be used later in the paper.

Lemma 3.2. [2, Theorem 2.3] Assume that the multifunction F satisfies
(h1)–(h3). Then, for every ε > 0 and δ > 0, every x0, y0 ∈ D(A) and
every solution x(·) of (2.3) there exists a solution y(·) of{

ẏ(t) ∈ Ay(t) + F (t, y(t))

y(t0) = y0

(3.2)

such that
|x(t)− y(t)| ≤ (exp (l(t)) + ε) |x0 − y0|

and
|fx(t)− fy(t)| ≤ L(t) (exp (l(t)) + ε) |x0 − y0|+ δ

for any t ∈ I, where fx(·) and fy(·) are pseudoderivatives of x(·) and y(·),
respectively.

The following result is analogue of the well-known Filippov-Plis lemma.
See, e.g., [12].

Lemma 3.3. Assume that F satisfies (h1)–(h3). Let ε > 0 and y0 ∈ D(A).
Let y(·) be a solution of{

ẏ(t) ∈ Ay(t) + F (t, y(t) + εB)

y(t0) = y0.

Then, for every µ > 0, there exists a solution z(·) of{
ż(t) ∈ Az(t) + F (t, z(t))

z(t0) = y0,
(3.3)

such that |y(t)− z(t)| ≤ ε exp (l(t)) + µ for all t ∈ I.
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Proof. Let (δn)n be a decreasing sequence of positive numbers such that the

series

∞∑
k=0

δk is convergent. Let fy(·) be a pseudoderivative of the solution y(·).

Since fy(t) ∈ F (t, x(t) + εB), then dist(fy(t), F (t, y(t))) ≤ L(t)ε. Due to (h2)
and (h3), for δ0 > 0 there exists f0(t) ∈ F (t, y(t)) such that |fy(t)− f0(t)| ≤

L(t)ε+
δ0

T − t0
. Let y0(·) be the solution of

{
ẋ(t) ∈ Ax(t) + f0(t),

x(t0) = y0.

Then |y0(t)− y(t)| ≤
∫ t

t0

|f0(s)− fy(s)|ds ≤ εl(t) + δ0.

There exists a strongly measurable selection f1(t) ∈ F (t, y0(t)) such that

|f1(t)− f0(t)| ≤ L(t)|y0(t)− y(t)|+ δ1
T − t0

.

Let y1(·) be the solution of{
ẏ1(t) ∈ Ay1(t) + f1(t)

y1(t0) = y0.

Then

|y1(t)− y0(t)| ≤
∫ t

t0

|f1(s)− f0(s)|ds ≤
∫ t

t0

L(s)(l(s)ε+ δ0)ds+ δ1.

Then |y1(t)− y0(t)| ≤ l2(t)

2!
ε+ δ0l(t) + δ1. We have used the fact that, for any

natural k, ∫ t

t0

L(s)lk(s)ds =
lk+1(t)

k + 1
.

There exists a strongly measurable function f2(t) ∈ F (t, y1(t)) such that

|f2(t)− f1(t)| ≤ L(t)|y1(t)− y0(t)|+ δ2
T − t0

.

Let y2(·) be the solution of{
ẏ2(t) ∈ Ay2(t) + f2(t)

y2(t0) = y0.
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After trivial calculations one derives

|y2(t)− y1(t)| ≤ l3(t)

3!
ε+

l2(t)

2!
δ0 + l(t)δ1 + δ2.

One can continue by induction and get a sequence (yn(·))n satisfying

|yn(t)− yn−1(t)| ≤ ln+1(t)

(n+ 1)!
ε+

n∑
j=0

lj(t)

j!
δn−j ≤

ln+1(T )

(n+ 1)!
ε+

n∑
j=0

lj(T )

j!
δn−j

for any t ∈ I and a sequence (fn(·))n satisfying fn(t) ∈ F (t, yn−1(t)) a.e. on
I and

|fn(t)− fn−1(t)| ≤ L(t)|yn−1(t)− yn−2(t)|+ δn
T − t0

for all t ∈ I.

Since the series

∞∑
k=0

lk(T )

k!
and

∞∑
k=0

δk are convergent, then also is the se-

ries

∞∑
k=1

k∑
j=0

lj(T )

j!
δk−j . Therefore, the sequence (yn(·))n is Cauchy, hence it

is uniformly convergent so some continuous function z(·). In a similar way
one can prove that (fn(·))n converges strongly in L1(I,X) to some function
fz(·). It is standard to prove that z(·) is a solution of (3.3), fz(·) being its
pseudoderivative.

Furthermore,

|z(t)− y(t)| ≤ ε
∞∑
k=1

lk(t)

k!
+

∞∑
k=0

k∑
j=0

lj(t)

j!
δk−j = exp(l(t))

(
ε+

∞∑
k=0

δk

)
.

The proof is completed.

Theorem 3.4. Assume (H). Then, for any ε > 0, any x0 ∈ D(A) and any
solution x(·) of (2.3) there exists a solution z(·) of{

ż(t) ∈ Az(t) + F (t, z(t))

z(t0) = g(z(·))
(3.4)

such that ‖z(·)− x(·)‖∞ ≤
|x0 − g(x(·))|
K(1− β(0))

+ ε.

Proof. Let ε > 0, x(·) a solution of (2.3) and fx(·) the corresponding pseudo-

derivative of x(·). Let δ ∈
(

0,
1− β(0)

K

)
so that β(δ) < 1.
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Due to Lemma 3.2, there exists a solution y1(·) of (3.2) with y0 := g(x(·))
such that, for any t ∈ I, |y1(t)− x(t)| ≤ (exp(l(t)) + δ) |x0 − y0| and |fx(t)−
f1(t)| ≤ L(t) (exp(l(t)) + δ) |x0 − y0| + δ. Here, f1(·) is the pseudoderivative
of y1(·).

Applying again Lemma 3.2 we get a solution y2(·) of (3.2) with y(t0) =
y1 := g(y1(·)) such that |y2(t) − y1(t)| ≤ (exp(l(t)) + δ)|y1 − y0| and |f2(t) −
f1(t)| ≤ L(t)(exp(l(t)) + δ)|y1 − y0| + δ/2 for t ∈ I. We denoted by f2(·) the
pseudoderivative of y2(·). Using (h4) and the previous estimates, we have
that

|y2(t)− y1(t)| ≤ K(exp(l(t)) + δ)‖y1(·)−x(·)‖∞ ≤ K(exp(l(T )) + δ)2|x0− y0|

and

|f2(t)− f1(t)| ≤ L(t)K(exp(l(T )) + δ)2|x0 − y0|+
δ

2
for t ∈ I. We continue by induction and define a sequence (yn(·))n in C(I,X)
in the following way. If yn(·) is given for n ≥ 1, then we define yn+1(·) as
the solution of (3.2), with y1 replaced by yn := g(yn(·)), given by Lemma 3.2.
Then

|yn+1(t)− yn(t)| ≤ Kn(exp(l(T )) + δ)n+1|x0 − y0| =
1

K
β(δ)n+1|x0 − y0|

and

|fn+1(t)− fn(t)| ≤ L(t)Kn(exp(l(T ) + δ)n+1|x0 − y0|+
δ

2n

=
1

K
L(t)β(δ)n+1|x0 − y0|+

δ

2n

for t ∈ I. Since β(δ) < 1, the sequence (yn(·))n is Cauchy, hence it con-
verges uniformly to a continuous function z(·). Moreover, the corresponding
sequences of pseudoderivatives (fn(·))n converges strongly w.r.t. L1(I,X) to
some function fz(·). One can prove that fz(·) is the pseudoderivative of z(·),
fz(t) ∈ F (t, z(t)) a.e. on I and z(t0) = g(z(·)), i.e., z(·) is a solution of (3.4).
Furthermore, taking y0(t) := x(t), we have that

|z(t)− x(t)| ≤
∞∑
n=0

||yn+1(·)− yn(·)||∞ ≤
∞∑
n=0

1

K
β(δ)n+1|x0 − g(x(·))|

=
|x0 − g(x(·))|
K(1− β(δ))

.

Then, for δ small enough,

|z(t)− x(t)| ≤ |x0 − g(x(·))|
K(1− β(0))

+ ε

for any t ∈ I.
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Now we will study the closure of the solution set of the problem (1.1). To
this end we introduce the notion of limit solution of (1.1).

Definition 3.5. A continuous function x(·) is said to be a limit solution of
(1.1) if there exist two sequences of positive numbers (εn)n and (δn)n decreas-
ing to zero and a sequence (yn(·))n in C(I,X) such that, for any n ≥ 1, yn(·)
is a solution of {

ẏ(t) ∈ Ay(t) + F (t, y(t) + εnB)

y(t0) = yn,

where (yn)n ⊂ D(A) satisfies |yn − g(yn(·))| < δn and lim
n→∞

yn(t) = x(t)

uniformly on I.

Notice that, in general, the limit solutions have no pseudoderivatives.

Theorem 3.6. Under the hypotheses (H), the solution set of (1.1) is dense
in the set of limit solutions of (1.1). Moreover, the set of limit solutions of
(1.1) is closed.

Proof. Let x(·) be a limit solution of (1.1) and let (εn)n, (δn)n and (yn(·))n
be the corresponding sequences given by Definition 3.5.

For every n ≥ 1, due to Lemma 3.3, there exists a solution zn(·) of{
ż(t) ∈ Az(t) + F (t, z(t)),

z(t0) = yn(t0)

satisfying
||zn(·)− yn(·)||∞ ≤ εnexp(l(T )) + εn. (3.5)

Now, due to Theorem 3.4, for every n ≥ 1, there exists a solution un(·) of{
u̇(t) ∈ Au(t) + F (t, u(t)),

u(t0) = g(u(·))

such that

||un(·)− zn(·)||∞ ≤
|g(zn(·))− zn(t0)|
K(1− β(0))

+ εn.

Further, since |g(zn(·)) − zn(t0)| ≤ K‖zn(·) − yn(·)‖∞ + δn, by (3.5), we get
that

||un(·)− zn(·)||∞ ≤ [Kεn(exp(l(T )) + 1) + δn]
1

K(1− β(0))
+ εn.

Finally, the above estimates lead to the fact that x(t) = lim
n→∞

un(t) uniformly

on I.
The fact that the set of limit solutions is closed is trivial.
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Notice that Theorem 3.6 has been proved in general Banach spaces.
Let us now state the main result of this paper.

Theorem 3.7. Let X be such that its duality map J(·) is single valued and
assume (H). Then the solution set of (1.1) is dense in the solution set of
(1.2).

Before proving the result, we recall that under the hypotheses of Theorem
3.7 the problem (1.1) has at least one solution, as it was proved in [2].

Proof. Let x(·) be a solution of (1.2). Then, x(t0) = g(x(·)) and there exists
fx(·) ∈ L1(I,X) with fx(t) ∈ co F (t, x(t)) a.e. on I such that x(·) is an
integral solution of {

ẏ(t) ∈ Ay(t) + fx(t), t ∈ I
y(t0) = x(t0).

Fix µ > 0. We will give the proof in several steps.
I) First, we define a submultifunction of F , almost LSC with nonempty

closed bounded values, that will be used in the second step of the proof to
construct an approximate solution of (1.1) which starts from x(t0) and remains
close to x(·) on I.

To this end, let ε ∈ (0, µ) and fix 0 < δ < ε. We define the multifunction
Gδ : I ×D(A) ⇒ X by

Gδ(t, y) =


{v ∈ F (t, y); 〈J(x(t)− y), fx(t)− v〉 <
(L(t)|x(t)− y|+ δ) |x(t)− y|}, if |x(t)− y| ≥ δ

F (t, y), if |x(t)− y| < δ.

We claim that Gδ(·, ·) is almost LSC with nonempty closed bounded values.
Let (t, y) ∈ I ×D(A). If |x(t)− y| < δ then, clearly Gδ(t, y) 6= ∅. Consider

the case when |x(t) − y| ≥ δ. Since fx(t) ∈ co F (t, x(t)) and σ(l, co A) =
σ(l, A) for any bounded set A ⊂ X and any l ∈ X∗, we have that

〈J(x(t)− y), fx(t)〉 ≤ σ(J(x(t)− y), co F (t, x(t))) = σ(J(x(t)− y), F (t, x(t)))

= sup
w∈F (t,x(t))

〈J(x(t)− y), w〉.

Therefore, for every ξ > 0 there exists g ∈ F (t, x(t)) such that

〈J(x(t)− y), fx(t)− g〉 < ξ|x(t)− y|. (3.6)
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It is well known that σ(J(x(t) − y), F (t, x(t))) − σ(J(x(t) − y), F (t, y)) ≤
|x(t) − y|DH(F (t, x(t)), F (t, y)). Further, using hypothesis (h2), there exists
v ∈ F (t, y) such that

〈J(x(t)− y), g − v〉 ≤ L(t)|x(t)− y|2 + ξ|x(t)− y|. (3.7)

Due to (3.6) and (3.7) we get that

〈J(x(t)− y), fx(t)− v〉 ≤ 〈J(x(t)− y), g − v〉+ ξ|x(t)− y|
≤ L(t)|x(t)− y|2 + ξ|x(t)− y| = |x(t)− y|(L(t)|x(t)− y|+ ξ).

Here ξ > 0 is arbitrary, hence Gδ(t, y) is nonempty.
Now we will prove that Gδ(·, ·) is almost LSC. Consequently, Gδ(·, ·) is also

almost LSC. Clearly, Gδ(·, ·) is almost LSC on {(t, y) ∈ I ×D(A); |x(t)− y| <
δ}.

Since F (·, ·) is almost continuous, fx(·) is strongly measurable and L(·) is
measurable, for any µ > 0 there exists a compact set Iµ ⊂ I with meas(I\Iµ) <
µ such that F |Iµ×X is continuous and fx|Iµ , L|Iµ are continuous functions.

Let (t̄, ȳ) ∈ Iµ × D(A) be such that |x(t̄) − ȳ| ≥ δ. Let v̄ ∈ Gδ(t̄, ȳ) and

((tk, yk))k ⊂ Iµ ×D(A) with tk → t̄ and yk → ȳ.
Since 〈J(x(t̄)−ȳ), fx(t̄)−v̄〉 = |x(t̄)−ȳ|[x(t̄)−ȳ, fx(t̄)−v̄]+ and v̄ ∈ Gδ(t̄, ȳ),

we obtain that [x(t̄)− ȳ, fx(t̄)− v̄]+ ≤ L(t̄)|x(t̄)− ȳ|+ δ − γ, for some γ > 0.
There exists a sequence (vk)k with vk ∈ F (tk, yk) for any natural k such

that vk → v̄. As [·, ·]+ is upper semicontinuous as a real valued function and
L(·) is continuous at t̄, there exists k̄ ∈ N such that [x(t̄) − ȳ, fx(t̄) − v̄]+ ≥
[x(tk)− yk, fx(tk)− vk]+ − γ/2 and |L(t̄)|x(t̄)− ȳ| −L(tk)|x(tk)− yk|| < γ/2,
for any k ≥ k̄. Hence, [x(tk) − yk, fx(tk) − vk]+ < L(tk)|x(tk) − yk| + δ, for
any k ≥ k̄. It follows that

〈J(x(tk)− yk), fx(tk)− vk〉 = |x(tk)− yk|[x(tk)− yk, fx(tk)− vk]+

≤ |x(tk)− yk|(L(tk)|x(tk)− yk|+ δ),

i.e., vk ∈ Gδ(tk, yk) for any k ≥ k̄. Thus, Gδ(·, ·) is LSC at (t̄, ȳ).

II) Now, using the submultifunction Gδ defined in the first step of the
proof, we provide a continuous function y(·), solution of{

ẏ(t) ∈ Ay(t) + F (t, y(t) + εB), t ∈ I
y(t0) = x(t0),

such that ‖x− y‖∞ ≤ ε. More precisely, y(·) is the solution of{
ẏ(t) ∈ Ay(t) + fy(t), t ∈ I
y(t0) = x(t0),
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for some function fy ∈ L1(I,X) with fy(t) ∈ F (t, y(t)+εB) a.e. on I satisfying
dist

(
fy(t), Gδ(t, y(t))

)
≤ µδ(t) for any t ∈ I, µδ(·) being a Lebesgue integrable

function with ∫
I

µδ(t)dt ≤ δ. (3.8)

First, let us remark that, if z(·) is a solution of
ż(t) ∈ Az(t) + fz(t)

fz(t) ∈ co F (t, z(t) + B)

z(t0) = x(t0),

it follows from (3.1) that |fz(t)| ≤ κ(t)+L(t)(|z(t)|+1) a.e. on I. We mention
that co F (t, z+B) =

⋃
b∈B co F (t, z+ b). It is standard to show with the help

of Gronwall’s inequality that there exists a Lebesgue integrable function λ(·)
(not depending on z(·)) such that ‖co F (t, z(t) + B)‖ ≤ λ(t) for any t ∈ I.

Let η <
δ

2(T − t0) + 1
. Since λ(·) is Lebesgue integrable, there exists ν =

ν(δ) such that

∫
J

λ(t)dt ≤ δ/4 for every measurable J ⊂ I with meas(J) < ν.

Since Gδ(·, ·) is almost LSC, there exists an open set Iν ⊂ I with meas(Iν) < ν
such that Gδ|(I\Iν)×D(A)

is LSC. Clearly Iν is an union of a countable system

of pairwise disjoint open intervals, i.e., Iν =

∞⋃
k=1

(ak, bk).

Let f0(·) ∈ L1(I,X) be such that f0(t) ∈ Gδ(t, x0) a.e. on I, where
x0 := x(t0), and let y0(·) be the solution of the problem{

ẏ(t) ∈ Ay(t) + f0(t)

y(t0) = x0.

Two cases are possible:
(i) t0 = a0; in this case we take t1 := b̄0 > t0 to be such that |y0(t)−x0| ≤ ε

for t ∈ [t0, t1] and b̄0 ≤ b0.
(ii) t0 ∈ I \ Iν ; in this case, since Gδ(·, ·) is LSC on (I \ Iν) × D(A),

there exists t̃ > t0 such that dist(f0(t), Gδ(t, y
0(t))) ≤ η on [t0, t̃]

⋂
(I \ Iν).

We take t1 to be the supremum of t̃ with the above property and such that
|y0(t)− x0| ≤ ε for t ∈ [t0, t̃].

Now we define y1 := y0(t1) ∈ D(A) and take f1(·) ∈ L1(I,X) such that
f1(t) ∈ Gδ(t, y1) a.e. on I. Let y1(·) be the solution of{

ẏ(t) ∈ Ay(t) + f1(t)

y(t1) = y1.
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We define t2 to be the supremum of t̃ > t1 such that dist(f1(t), Gδ(t, y
1(t))) ≤

η on [t1, t̃]
⋂

(I \ Iν) and |y1(t)− y1(t1)| ≤ ε for t ∈ [t1, t̃].
We set fy(t) = f0(t) on [t0, t1] and fy(t) = f1(t) on [t1, t2] and define y(·)

by y(t) = y0(t) on [t0, t1] and y(t) = y1(t) on [t1, t2]. Clearly, |fy(t)| ≤ λ(t)
for t ∈ [t0, t2] and y(·) is the solution of{

ẏ(t) ∈ Ay(t) + fy(t)

y(t0) = x0

(3.9)

on [t0, t2] and satisfies

dist(fy(t), Gδ(t, y(t))) ≤ η (3.10)

for t ∈ [t0, t2]
⋂

(I \ Iν).
Suppose that the solution y(·) of (3.9) is defined on [t0, τ), τ < T , and

satisfies (3.10) on [t0, τ)
⋂

(I \ Iν) and |fy(t)| ≤ λ(t) for t ∈ [t0, τ). We require,
moreover, fy(t) ∈ F (t, y(t) + εB) up to the end of the proof.

If τ ∈ [ak, bk) then y(·) can be extended on [t0, bk], since [τ, bk] ⊂ Iν . We
denote ~ = bk > τ .

Suppose that τ is right dense. Since |fy(t)| ≤ λ(t) for any t ∈ [t0, τ), there
exists lim

t↑τ
y(t) = yτ . We consider the problem{

ẏ(t) ∈ Ay(t) + fτ (t)

y(τ) = yτ

with the solution yτ (·). Here fτ (t) ∈ Gδ(t, yτ ) a.e. on I. Since τ is right dense,
there exists ~ > τ such that dist

(
fτ (t), Gδ(t, y

τ (t))
)
≤ η on [τ, ~]

⋂
(I\Iν). We

define fy(t) = fτ (t) on [τ, ~] and extend y(·) on [τ, ~] by taking y(t) = yτ (t).
Since y(·) can be extended on [t0, τ + δ] for some δ > 0, when τ < T , one has
that it can be defined on [t0, T ].

Now we pick

µδ(t) =

{
η t ∈ I \ Iν
2λ(t) t ∈ Iν .

It is easy to see that µδ(·) satisfies (3.8). Moreover, dist(fy(t), Gδ(t, y(t))) ≤
µδ(t) for any t ∈ I. Then there exists a strongly measurable function f̄y(·)
such that f̄y(t) ∈ Gδ(t, y(t)) and |fy(t)− f̄y(t)| < dist(fy(t), Gδ(t, y(t))) + δ <
µδ(t) + δ for any t ∈ I. We have either |x(t)− y(t)| < δ or [x(t)− y(t), fx(t)−
f̄y(t)]+ ≤ L(t)|x(t)− y(t)|+ δ. In the last case, from the properties of [·, ·]+ it
follows that

[x(t)− y(t), fx(t)− fy(t)]+ ≤ L(t)|x(t)− y(t)|+ δ + |f̄y(t)− fy(t)|
≤ L(t)|x(t)− y(t)|+ 2δ + µδ(t).
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Due to (2.2), we have that |x(t)− y(t)| ≤ m(t) for any t ∈ I, where m(t) < δ
or m(·) is the solution of{

ṁ(t) = L(t)m(t) + 2δ + µδ(t)

m(t0) = 0.

Clearly m(t) ≤ r(t) for any t ∈ I, where r(·) is the solution of{
ṙ(t) = L(t)r(t) + 2δ + µδ(t)

r(t0) = δ.

Thus, |x(t)− y(t)| ≤ r(t) for any t ∈ I. Furthermore, for any t ∈ I,

r(t) ≤ exp

(∫ t

t0

L(s)ds

)(
3δ(t− t0) +

∫ t

t0

µδ(s)ds

)
.

Therefore, |x(t)−y(t)| ≤ (3T +1)δ exp

(∫ T

t0

L(t)dt

)
for any t ∈ I. Evidently,

‖x− y‖∞ ≤ ε for sufficiently small δ. Due to (h4), we obtain that |x0− y0| ≤
Kε, where y0 := g(y(·)).

Finally, applying Lemma 3.3 and Theorem 3.4 we get the conclusion.

4 Example

In this section we give an example inspired from [15, Section 5] to illustrate
the applicability of our results.

Let Ω ⊂ Rn be a domain with smooth boundary ∂Ω and Lebesgue measure
µ(Ω). Let T, S > 0 and t1 ∈ (0, T ). Let ∆x be the usual Laplace operator.

We consider the following system(
ut(t, x)
vt(t, y)

)
∈
(

∆xu(t, x)− ∂ϕ(u(t, x))
vy(t, y)

)
+G(t, u, v), (4.1)

for t ∈ (0, T ), x ∈ Ω, y ∈ (0, S), with

∂u
∂n (t, x) ∈ ∂ψ(u(t, x)), t ∈ (0, T ), x ∈ ∂Ω

u(0, x) =

∫
Ω

∫ T

0

h(s, x, λ, u(s, λ))dsdλ, x ∈ Ω

v(t, 0) = v(t, S) = 0, t ∈ (0, T )

v(0, y) = α1v(t1, y) + α2v(T, y), y ∈ (0, S).

(4.2)
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Here ϕ : R → R is a proper, lower semicontinuous, convex function, with
ϕ(0) = 0, ψ : R → R is a convex, continuous function, with 0 ≤ ψ(t) ≤
C(1 + t2), t ∈ R, for some constant C > 0. Furthermore, α1 and α2 are real
numbers.

We assume that G : [0, T ] × R × R ⇒ R2 is a multifunction with closed
bounded values and h : [0, T ]× Ω× Ω× R→ R is a given function.

Let X = L2(Ω)× L2(0, S) endowed with the norm

|(u, v)|X =
√
|u|2L2(Ω) + |v|2L2([0,S]). Following [15], we define

Φ(v) =

∫
Ω

ϕ(v(x))dx

Ψ(v) =

{
1
2

∫
Ω
|∇(v(x)|2dx+

∫
∂Ω
ψ(v(x))ds, v ∈ H1(Ω)

+∞ otherwise.

Then Φ and Ψ are proper, lower semicontinuous, convex functions, with the
domains D(Φ) = {v ∈ L2(Ω); ϕ ◦ v ∈ L1(Ω)} and D(Ψ) = H1(Ω). Moreover,
f ∈ ∂Φ(v) if and only if v, f ∈ L2(Ω), f(x) ∈ ∂ϕ(v(x)) for a.e. x ∈ Ω and

g ∈ ∂Ψ(v) if and only if −∆v = g in L2(Ω) and
∂v

∂n
+ ∂ψ(v) 3 0 in L2(∂Ω)

(see [19, Examples 2.B and 2.E, pages 163-164]). We suppose that ϕ is such
that ϕ ◦ v ∈ L1(Ω) for any v ∈ L2(Ω). By [19, Example 2.F, page 167] we
have that ∂Φ+∂Ψ is m-dissipative and equal to ∂(Φ+Ψ). Let B = ∂(Φ+Ψ).
Then D(B) = H1(Ω).

We define also C : D(C) ⊂ L2(0, S)→ L2(0, S) by Cz = ż with the domain

D(C) = {z ∈ L2(0, S); ż ∈ L2(0, S), z(0) = z(S) = 0}.

Clearly, C defines a C0-semigroup {T (t); t ≥ 0} as T (t)z(s) = z(t + s) (see,
e.g., [1]). It remains to show that C is m-dissipative, which due to zero bound-
ary conditions trivially follows from integrating by part. Consequently, the
operator A := (B,C) is also m-dissipative. Furthermore, D(A) = X.

Then, the system (4.1)–(4.2) can be rewritten in the abstract form (1.1)
with A as above,

g(u(·), v(·))(x, y) =

(∫
Ω

∫ T

0

h(s, x, λ, u(s)(λ))dsdλ, α1v(t1, y) + α2v(T, y)

)

for (u, v) ∈ C([0, T ], X), x ∈ Ω, y ∈ (0, S) and F (t, u, v) = {(z1(·), z2(·)) ∈
X; (z1(x), z2(y)) ∈ G(t, u(x), v(y)) for a.e. x ∈ Ω, y ∈ (0, S)} for t ∈ [0, T ],
u ∈ L2(Ω) and v ∈ L2(0, S).

We assume the following hypotheses.
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(G) The multifunction G satisfies the following conditions:
(i) it has nonempty closed values;
(ii) G(·, u, v) is measurable;
(iii) ‖G(·, u, v)‖ is Lebesgue integrable;
(iv) there exists a Lebesgue integrable function L(·) such that

DH(G(t, z1), G(t, z2)) ≤ L(t)|z1 − z2|,

for any t ∈ [0, T ] and any zi = (ui, vi) ∈ R2, i = 1, 2.
(h) The function h satisfies:

(i) h(t, x, λ, r) is measurable in (t, x, λ) for all r ∈ R;
(ii) there exist a function H(·) ∈ C(Ω,R+) and a positive Lebesgue integrable
function ν(·) such that |h(t, x, λ, r)| ≤ ν(t)H(λ) for any (t, x, λ, r) ∈ [0, T ] ×
Ω× Ω× R;
(iii) for any (t, x, λ, u), (t, x, λ, v) ∈ [0, T ]× Ω× Ω× R we have that

|h(t, x, λ, u)− h(t, x, λ, v)| ≤ K

Tµ(Ω)
|u− v|.

In view of hypothesis (G), the multifunction F satisfies (h1)–(h3). Recall
that in any separable space any multifunction G(t, x, y) with compact values,
measurable in t and continuous in (x, y) is almost continuous (see [21]). From
(h) it follows that g(·, ·) is well defined and

|g(u1, v1)− g(u2, v2)|L2(Ω)×L2(0,S) ≤ K‖u1 − u2‖∞ + (|α1|+ |α2|)|v1 − v2|,

for any u1, u2 ∈ C([0, T ], L2(Ω)), v1, v2 ∈ C([0, T ], L2(0, S)).
Consider the convexification of (4.1), i.e.,(

ut(t, x)
vt(t, y)

)
∈
(

∆xu(t, x)− ∂ϕ(u(t, x))
vy(t, y)

)
+ co G(t, u, v), (4.3)

for t ∈ (0, T ), x ∈ Ω, y ∈ (0, S). Then, due to Theorem 3.7 and taking into
account that (4.3)–(4.2) corresponds to the system (1.2), we have the following
result.

Theorem 4.1. Under the assumptions (G) and (h), the nonlocal problem
(4.1)–(4.2) has a solution, and moreover its solution set is dense in the solution
set of (4.3)–(4.2) when

(K + |α1|+ |α2|) exp

(∫ T

0

L(s)ds

)
< 1.
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