

An inequality for the Selberg zeta-function, associated to the compact Riemann surface

Igoris Belovas

Abstract

We consider the absolute values of the Selberg zeta-function, associated to the compact Riemann surface, at places symmetric with respect to the line $\Re(s)=1/2$. We prove an inequality for the Selberg zeta-function, extending the result of R. Garunkštis and A. Grigutis.

1 Introduction

Let $s = \sigma + it$ be a complex variable and $\zeta(s)$ be the Riemann zeta-function. T. S. Trudgian [6] obtained, that

$$|\zeta(1-s)| > |\zeta(s)| \tag{1}$$

except at the zeros of $\zeta(s)$, with $|t| \ge 6.29073$ and $\sigma > 1/2$. By well-known functional equation for the Riemann zeta-function,

$$\zeta(s) = 2^s \pi^{s-1} \sin \frac{\pi s}{2} \Gamma(1-s) \zeta(1-s),$$
 (2)

 $\zeta(1-s)$ and $\zeta(s)$ have the same zeros when $0 < \sigma < 1$. Inequalities of (1) type are of great interest, since a necessary and sufficient condition for the Riemann hypothesis is $|\zeta(1-s)| > |\zeta(s)|$, where $\sigma > 1/2$ and $|t| \ge 6.29073$.

Key Words: Inequalities, Selberg zeta-function, Clausen function.

2010 Mathematics Subject Classification: Primary 11M36; Secondary 30A10.

Received: 17.12.2018 Revised: 10.03.2019 Accepted: 15.03.2019 Garunkštis and Grigutis examined, whether Selberg zeta-function, associated to the compact Riemann surface and the modified Selberg zeta-function satisfy the inequalities of (1) type (see Theorems 1 and 2 in [2]). Let $\mathbb H$ be the upper half-plane and Γ be a subgroup of $\mathrm{PSL}(2,\mathbb R)$. Let $\Gamma \setminus \mathbb H$ be a compact Riemann surface of genus $g \geqslant 2$. The Selberg zeta-function, associated to the compact Riemann surface of genus $g \geqslant 2$, is defined as follows [2, 5]

$$Z_C(s) = \prod_{\{P\}} \prod_{k=0}^{\infty} (1 - N(P)^{-s-k}),$$

where $\sigma > 1$ and $\{P\}$ runs trough all the primitive hyperbolic conjugacy classes of Γ and $N(P) = \alpha^2$ if the eigenvalues of P are α and α^{-1} ($|\alpha| > 1$). The Selberg zeta-function has a meromorphic continuation to \mathbb{C} [5].

The Selberg zeta-function, associated to the compact Riemann surface, satisfies (cf. (2)) [2, 4] the functional equation

$$Z_C(s) = Z_C(1-s) \exp\left(4\pi(g-1) \int_0^{s-1/2} \theta \tan \pi \theta d\theta\right). \tag{3}$$

Garunkštis and Grigutis have proved [2], that for $\sigma > 1/2$ and $t \ge 0.361$,

$$|Z_C(1-s)| > |Z_C(s)|.$$

In this research we extend the result of R. Garunkštis and A. Grigutis. We apply the technics of estimation used in [1].

2 An inequality for the Selberg zeta-function, associated to the compact Riemann surface

Theorem 1. Let $Z_C(s)$ be the Selberg zeta-function associated to the compact Riemann surface of genus $g \ge 2$. Then, for $\sigma > 1/2$ and $t \ge t_0$ we have

$$|Z_C(1-s)| > |Z_C(s)|.$$
 (4)

Here $t_0 = 0.165...$.

By the functional equation for the Selberg zeta-function (3) we have

$$\log \left| \frac{Z_C(s)}{Z_C(1-s)} \right| = \underbrace{(g-1)}_{>0} \Re(Q(s)), \tag{5}$$

here

$$Q(s) = 4\pi \int_0^{s-1/2} v \tan \pi v dv.$$
 (6)

Integral (6) can be evaluated using triangular contour with vertices at A(0,0), $B(\sigma - 1/2, t)$ and $C(\sigma - 1/2, 0)$: $\int_{AC} + \int_{CB} + \int_{BA} = 0$. Hence,

$$\underbrace{\Re(Q(s))}_{\Re \int_{AB}} = \underbrace{I_1(\sigma)}_{\int_{AC}} + \underbrace{\Re(\sigma, t)}_{\Re \int_{CB}}.$$
(7)

Here

$$I_1(\sigma) = 4\pi \int_0^{\sigma - 1/2} \theta \tan \pi \theta d\theta \tag{8}$$

and

$$R(\sigma,t) = \Re \left\{ \int_0^t i(\sigma - 1/2 + i\theta) \tan \left(\pi \left(\sigma - 1/2 + i\theta\right)\right) d\theta \right\}. \tag{9}$$

Calculating function $I_1(\sigma)$ (8), we obtain

$$I_1(\sigma) = -\frac{2}{\pi} \text{Cl}_2(2\pi\sigma) - 2(2\sigma - 1) \log|2\sin\pi\sigma|.$$
 (10)

Here $Cl_2(x)$ is the Clausen function of order 2.

$$\operatorname{Cl}_2(x) = -\int_0^x \log \left| 2\sin\frac{t}{2} \right| dt. \tag{11}$$

Calculate function $R(\sigma, t)$ (9), we obtain

$$R(\sigma,t) = \underbrace{\int_{0}^{t} \frac{4\pi\theta \sin 2\pi\sigma}{\cosh 2\pi\theta - \cos 2\pi\sigma} d\theta}_{=I_{2}(\sigma,t)} + \underbrace{\int_{0}^{t} \frac{4\pi (1/2 - \sigma) \sinh 2\pi\theta}{\cosh 2\pi\theta - \cos 2\pi\sigma} d\theta}_{=I_{3}(\sigma,t)}$$
(12)

Note that $R(\sigma,t)$ is even function by t, thus, it suffices to consider positive t values

Calculating $I_2(\sigma, t)$, we obtain (cf. 3.531.8 in [3]), that

$$I_{2}(\sigma,t) = 4\pi \sin 2\pi\sigma \int_{0}^{t} \frac{\theta}{\cosh 2\pi\theta - \cos 2\pi\sigma} d\theta,$$

$$= \frac{2}{\pi} (\Lambda(u(\sigma,t) + \pi\sigma) - \Lambda(u(\sigma,t) - \pi\sigma) - 2\Lambda(\pi\sigma)) =$$

$$= \frac{1}{\pi} \text{Cl}_{2}(2u(\sigma,t) + 2\pi\sigma + \pi) - \frac{1}{\pi} \text{Cl}_{2}(2u(\sigma,t) - 2\pi\sigma + \pi) -$$

$$-\frac{2}{\pi} \text{Cl}_{2}(2\pi\sigma + \pi)).$$
(13)

Here $\Lambda(x)$ is the Lobachevsky function,

$$\Lambda(x) = -\int_0^x \log|\cos t| \, dt = \text{Cl}_2(2x + \pi)/2 + x \log 2,$$

and

$$u(\sigma, t) = \arctan(\tanh \pi t \cot \pi \sigma).$$
 (14)

Calculating $I_3(\sigma, t)$, we obtain

$$I_3(\sigma, t) = -(2\sigma - 1)\log(\cosh 2\pi t - \cos 2\pi \sigma) + + 2(2\sigma - 1)\log|\sin \pi \sigma| + (2\sigma - 1)\log 2,$$
(15)

Let us denote

$$L(\sigma, t) = \Re(Q(s)). \tag{16}$$

In view of (5), to prove the statement of the theorem, it is enough to show that, for $\sigma > 1/2$ and $t \ge t_0$ the function $L(\sigma, t)$ is negative. By (7) and (10)-(15), we have

$$L(\sigma, t) = -\frac{2}{\pi} \operatorname{Cl}_{2}(2\pi\sigma) + 4\pi \sin 2\pi\sigma \int_{0}^{t} \frac{\theta}{\cosh 2\pi\theta - \cos 2\pi\sigma} d\theta - (2\sigma - 1) \log(\cosh 2\pi t - \cos 2\pi\sigma) - (2\sigma - 1) \log 2.$$

$$(17)$$

Taking into account the duplication formula for the Clausen function,

$$Cl_2(2\theta) = 2Cl_2(\theta) - 2Cl_2(\pi - \theta),$$

and the properties of the Clausen function,

$$\operatorname{Cl}_2(\theta) = \operatorname{Cl}_2(\theta + 2\pi m), \quad m \in \mathbb{Z},$$

 $\operatorname{Cl}_2(\theta) = -\operatorname{Cl}_2(-\theta).$

we obtain

$$L(\sigma, t) = \frac{1}{\pi} \text{Cl}_2(2u(\sigma, t) + 2\pi\sigma + \pi) - \frac{1}{\pi} \text{Cl}_2(2u(\sigma, t) - 2\pi\sigma + \pi) - \frac{1}{\pi} \text{Cl}_2(4\pi\sigma) - \frac{1}{\pi} \text{Cl}_2(2\sigma - 1) \log(\cosh 2\pi t - \cos 2\pi\sigma) - (2\sigma - 1) \log 2.$$
(18)

Next we establish a lemma concerning the behaviour of the derivative of the function $L(\sigma, t)$.

Lemma 1. For $\sigma > 1/2$ and t > 0, the derivative $L'_t(\sigma, t)$ is negative.

Proof. Let us calculate the first partial derivative. By (7) and (12) we have

$$L'_{t}(\sigma,t) = \frac{4\pi}{\cosh 2\pi t - \cos 2\pi \sigma} + \frac{4\pi(1/2 - \sigma)\sinh 2\pi t}{\cosh 2\pi t - \cos 2\pi \sigma}$$

$$= \underbrace{\frac{4\pi}{\cosh 2\pi t - \cos 2\pi \sigma}}_{>0} \underbrace{(t\sin 2\pi \sigma + (1/2 - \sigma)\sinh 2\pi t)}_{=N(\sigma,t)}.$$
(19)

For $\sigma \in (n-1/2, n)$, $n \in \mathbb{N}$, we have $N(\sigma, t) < 0$ (since $\sin 2\pi \sigma$ is negative) For $\sigma \in (n, n+1/2)$, $n \in \mathbb{N}$,

$$N(\sigma, t) < t - \frac{1}{2} \sinh 2\pi t < 0.$$

For $\sigma = n$, $n \in \mathbb{N}$, we have $N(\sigma, t) = (1/2 - n) \sinh 2\pi t < 0$.

Thus, for $\sigma > 1/2$ and t > 0, the function $N(\sigma, t)$ is negative, yielding us (cf. (19)) $L_t'(\sigma, t) < 0$.

Let us denote

$$B_{0}(\sigma) = \frac{1}{\pi} \text{Cl}_{2}(2u(\sigma, t_{0}) + 2\pi\sigma + \pi) - \frac{1}{\pi} \text{Cl}_{2}(2u(\sigma, t_{0}) - 2\pi\sigma + \pi) - \frac{1}{\pi} \text{Cl}_{2}(4\pi\sigma).$$
(20)

Lemma 2. The function $B_0(\sigma)$ is

- (i) periodic with period P=1, thus $B_0(\sigma)=B_0(\sigma+m), m\in\mathbb{Z}$,
- (ii) odd, $B_0(\sigma) = -B_0(-\sigma)$,
- (iii) bounded, $|B_0(\sigma)| \leq C_0$.

Here $C_0 = 0.46342...$.

Proof. The function $u(\sigma, t_0)$ (14) is periodic by σ with period P=1 and the Clausen function $\operatorname{Cl}_2(\theta)$ is periodic with period $P=2\pi$, hence the first statement of the lemma. Note that $\lim_{\sigma\to 1} B_0(\sigma)=0$. Next, the Clausen function (of order 2) and the function $u(\sigma, t_0)$ are odd, yielding us the second statement of the lemma.

In view of (i) and (ii) it is enough to consider the function $B_0(\sigma)$ in the interval $\sigma \in (1/2, 1)$. Note that $B_0(1/2) = B_0(1) = 0$. Calculating derivatives of $B_0(\sigma)$, we obtain

$$B_0'(\sigma) = -\frac{4\pi t_0 \sinh 2\pi t_0}{\cosh 2\pi t_0 - \cos 2\pi \sigma} + 2\log(\cosh 2\pi t_0 - \cos 2\pi \sigma) + 2\log 2. \quad (21)$$

and

$$B_0''(\sigma) = 4\pi \underbrace{\sin 2\pi\sigma}_{<0} \underbrace{\left(\frac{2\pi t_0 \sinh 2\pi t_0}{(\cosh 2\pi t_0 - \cos 2\pi\sigma)^2} + \frac{1}{\cosh 2\pi t_0 - \cos 2\pi\sigma}\right)}_{>0}. \quad (22)$$

Let us denote

$$\omega_0(\sigma) = \frac{1}{\cosh 2\pi t_0 - \cos 2\pi \sigma}$$

and

$$a_0 = 4\pi t_0 \sinh 2\pi t_0.$$

Hence, by (21), solving the equation $B_0'(\sigma_0) = 0$, we obtain

$$-a_0\omega_0 - 2\log\omega_0 + \log 4 = 0 \qquad \Longrightarrow \qquad \omega_0 = 2W(a_0)/a_0.$$

Here W(x) is the Lambert W function. Thus,

$$\cos 2\pi \sigma_0 = \cosh 2\pi t_0 - \frac{2\pi t_0 \sinh 2\pi t_0}{W(4\pi t_0 \sinh 2\pi t_0)},$$

and

$$\sigma_0 = 1 - \frac{1}{2\pi} \arccos \left(\cosh 2\pi t_0 - \frac{2\pi t_0 \sinh 2\pi t_0}{W(4\pi t_0 \sinh 2\pi t_0)} \right) = 0.79336... .$$

Note that $B_0''(\sigma)$ (22) is negative for $\sigma \in (1/2, 1)$, hence $B_0(\sigma_0) = 0.46342...$ is the maxima of the function, yielding us the third statement of the lemma. \square

3 Proof of Theorem 1

Proof. By Lemma 1, it is enough to prove the theorem for fixed $t = t_0$. Let us denote $L_0(\sigma) = L(\sigma, t_0)$.

First consider the function $L_0(\sigma)$ for $\sigma \geqslant \sigma_1 > 1/2$. By (18) and Lemma 2, we have

$$L_0(\sigma) < C_0 - (2\sigma - 1)\log(\cosh 2\pi t_0 - \cos 2\pi) - (2\sigma - 1)\log 2 =$$

$$= C_0 - 4(\sigma - 1/2)\log(2\sinh \pi t_0).$$
(23)

Hence, $L_0(\sigma) < 0$ for $\sigma \geqslant \sigma_1$. Here

$$\sigma_1 = \frac{1}{2} + \frac{C_0}{4\log(2\sinh\pi t_0)} = 1.94001....$$

Next, consider the function $L_0(\sigma)$ for $1/2 < \sigma < \sigma_1$. Calculating derivatives of the function, we obtain (cf. (18), (20) and (21)), that

$$L_{0}'(\sigma) = \underbrace{\frac{-4\pi}{\cosh 2\pi t_{0} - \cos 2\pi\sigma}}_{<0} \underbrace{\frac{(d_{0} + (\sigma - 1/2)\sin 2\pi\sigma)}{=f_{0}(\sigma)}}_{=f_{0}(\sigma)},$$

$$L_{0}''(\sigma) = -4\pi \frac{\sin 2\pi\sigma + 2\pi(\sigma - 1/2)\cos 2\pi\sigma}{\cosh 2\pi t_{0} - \cos 2\pi\sigma} + \frac{8\pi^{2}\sin 2\pi\sigma}{(\cosh 2\pi t_{0} - \cos 2\pi\sigma)^{2}} f_{0}(\sigma).$$
(24)

Here $d_0 = t_0 \sinh 2\pi t_0 = 0.203...$.

The function $f_0(\sigma)$ has three zeros in the interval $(1/2, \sigma_1)$.

Indeed, for $\sigma \in (1/2, 3/4)$, the derivative $f'_0(\sigma)$ is negative, while $f_0(1/2) > 0$ and $f_0(3/4) < 0$. Hence, the first root $\hat{\sigma}_1 \in (1/2, 3/4)$. Note that $L''_0(\hat{\sigma}_1) > 0$ (cf.(24)).

For $\sigma \in (3/4, 1)$, the second derivative $f_0''(\sigma)$ is positive (hence the function is convex in the interval), while $f_0(3/4) < 0$ and $f_0(1) > 0$. Thus, the second root $\hat{\sigma}_2 \in (3/4, 1)$. Calculating numerically, we obtain $\hat{\sigma}_2 = 0.919...$ and $L_0''(\hat{\sigma}_2) < 0$.

For $\sigma \in (1,3/2)$, the function $f_0(\sigma)$ is positive, hence no zeros in the interval.

For $\sigma \in (3/2, 7/4)$, the derivative $f'_0(\sigma)$ is negative, while $f_0(3/2) > 0$ and $f_0(7/4) < 0$. Hence, the third root $\hat{\sigma}_3 \in (3/2, 7/4)$. Note that $L''_0(\hat{\sigma}_3) > 0$ (cf.(24)).

For $\sigma \in (7/4, \sigma_1)$, the second derivative $f_0''(\sigma)$ is positive (hence the function is convex in the interval), while $f_0(7/4) < 0$ and $f_0(\sigma_1) < 0$, hence no zeros in the interval.

The only maxima of the function $L_0(\sigma)$ for $1/2 < \sigma < \sigma_1$ corresponds $\hat{\sigma}_2$. However, $L_0(\hat{\sigma}_2)$ is negative, yielding us the statement of the theorem.

Remark 1. Let us denote for $\sigma \in (n+1/2, n+1), n \in \mathbb{N}_0$,

$$\varphi_n(\sigma) = \{t | L(\sigma, t) = 0\}.$$

Then

$$t_0 = \max_{1/2 < \sigma < 1} \varphi_0(\sigma).$$

Calculating t_0 numerically, we obtain optimal $t_0 = 0.165...$.

References

- [1] I. Belovas and L. Sakalauskas, An inequality for the modulus of the ratio of two complex gamma functions, Miskolc Math. Notes, **20**, 1 (2019), 115–130.
- [2] R. GARUNKŠTIS AND A. GRIGUTIS, The size of the Selberg zeta-function at places symmetric with respect to the line Re(s) = 1/2, Results. Math., **70**, 1 (2016), 271–281.
- [3] I. S. Gradshteyn and I. M. Ryzhik, *Table of Integrals, Series, and Products*, 8th edition ed. Academic Press, 2014.
- [4] D. A. Hejhal, The Selberg trace formula for $PSL(2, \mathbb{R})$ vol. 1. Lecture Notes in Mathematics, vol. 548. Springer, Berlin (1976).

- [5] D. A. Hejhal, The Selberg trace formula for $PSL(2,\mathbb{R})$, vol. 2. Lecture Notes in Mathematics, vol. 1001. Springer, Berlin (1983)
- [6] T. S. Trudgian, A short extension of two of Spiras results, J. Math. Inequal., 80, 3-4 (2015), 795–798.

Igoris BELOVAS, Institute of Data Science and Digital Technologies, Vilnius University, Akademijos str. 4, LT-04812 Vilnius, Lithuania.

Email: Igoris.Belovas@mii.vu.lt