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Some Combinatorial Properties of the
k-Fibonacci and the k-Lucas Quaternions

José L. Ramı́rez

Abstract

In this paper, we define the k-Fibonacci and the k-Lucas quaternions.
We investigate the generating functions and Binet formulas for these
quaternions. In addition, we derive some sums formulas and identities
such as Cassini’s identity.

1 Introduction

The Fibonacci numbers and their generalizations have many interesting prop-
erties and applications in many fields of science and art (see, e.g., [20]). The
Fibonacci numbers Fn are defined by the recurrence relation

F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1, n > 1.

The first few terms are 0, 1, 1, 2, 3, 5, 8, 13,. . . (sequence A000045)∗. Another
important sequence is the Lucas sequence. This sequence is defined by the
recurrence relation

L0 = 2, L1 = 1, Ln+1 = Ln + Ln−1, n > 1.

The first few terms are 2, 1, 3, 7, 11, 18, 29, 37. . . (sequence A000032).
Many kinds of generalizations of the Fibonacci sequence have been presented
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∗Many integer sequences and their properties are to be found electronically on the On-
Line Encyclopedia of Sequences [27].
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in the literature (see, e.g., [20, 21]). In particular, there exist a generalization
called the k-Fibonacci and the k-Lucas numbers.
For any positive real number k, the k-Fibonacci sequence, say {Fk,n}n∈N, is
defined by

Fk,0 = 0, Fk,1 = 1, and Fk,n+1 = kFk,n + Fk,n−1, n > 1, (1)

and the k-Lucas sequence, say {Lk,n}n∈N, is defined by

Lk,0 = 2, Lk,1 = k, and Lk,n+1 = kLk,n + Lk,n−1, n > 1.

These sequences were studied by Horadam in [12]. Recently, Falcón and Plaza
[6] found the k-Fibonacci numbers by studying the recursive application of two
geometrical transformations used in the four-triangle longest-edge (4TLE) par-
tition. The interested reader is also referred to [2, 3, 4, 5, 6, 7, 22, 23, 24, 25],
for further information about these sequences.

On the other hand, Horadam [13] introduced the n-th Fibonacci and the
n-th Lucas quaternion as follow:

Qn = Fn + iFn+1 + jFn+2 + κFn+3, (2)

Kn = Ln + iLn+1 + jLn+2 + κLn+3, (3)

respectively. Here the basis i, j, κ satisface the following rules:

i2 = j2 = κ2 = ijκ = −1. (4)

Note that the rules (4) imply

ij = κ = −ji, jκ = i = −κj, κi = j = −iκ.

In general, a quaternion is a hyper-complex number and is defined by the
following equation:

q = q0 + iq1 + jq2 + κq3,

where i, j, κ are as in (4). Note that we can write q = q0 + u where u =
iq1 + jq2 + κq3. The conjugate of the quaternion q is denoted by q∗ and
q∗ = q0 − u.

The Fibonacci and Lucas quaternions have been studied in several pa-
pers. For example, Swamy [26] gave some relations for the n-th Fibonacci
quaternion. Horadam [14] studied some recurrence relations associated with
the Fibonacci quaternions. Iyer [18, 19] derived relations connecting the Fi-
bonacci and Lucas quaternions. Iakin [15, 16, 17] introduced the higher order
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quaternions and Binet formulas. Halici [11] investigated some combinatorial
properties of Fibonacci quaternions and in [10] she studied the complex Fi-
bonacci quaternions. Flaut and Shpakivskyi [8] studied some properties of
generalized and Fibonacci quaternions and Fibonacci-Narayana quaternions,
and in [9] they studied the left and right real matrix representations for the
complex quaternions and Fibonacci quaternions. Akyiğit et.al. [1] introduced
the split Fibonacci quaternions.

In analogy with (2) and (3), we introduce the k-Fibonacci and k-Lucas
quaternions. We give some properties, the generating functions and Binet
formulas for k-Fibonacci and k-Lucas quaternions. Moreover, we obtain some
sums formulas for these quaternions and some identities such as Cassini’s
identity to k-Fibonacci quaternions.

2 Some properties of the k-Fibonacci
and k-Lucas Numbers

The characteristic equation associated with the recurrence relation (1) is z2−
kz − 1 = 0. The roots of this equation are

α =
k +
√
k2 + 4

2
, β =

k −
√
k2 + 4

2
.

Then we have the following basic identities:

α+ β = k, α− β =
√
k2 + 4, αβ = −1.

Some of the properties that the k-Fibonacci numbers verify are summarized
bellow (see [6, 7] for the proofs).

Binet formula: Fk,n =
αn − βn

α− β
, n ≥ 0. (5)

F 2
k,n + F 2

k,n+1 = Fk,2n+1, n ≥ 0. (6)

Generating function: fk(z) =
z

1− kz − z2
. (7)

αn = αFk,n + Fk,n−1. (8)

Some properties that the k-Lucas numbers verify are summarized bellow
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(see [3] for the proofs).

Binet formula: Lk,n = αn + βn, n ≥ 0.

Lk,n = Fk,n−1 + Fk,n+1, n > 1.

L2
k,n + L2

k,n+1 = (k2 + 4)Fk,2n+1.

Generating function: lk(z) =
2− kz

1− kz − z2
.

3 Some properties of the k-Fibonacci
and k-Lucas Quaternions

Definition 1. The k-Fibonacci quaternion Dk,n is defined by

Dk,n = Fk,n + iFk,n+1 + jFk,n+2 + κFk,n+3, n ≥ 0,

where Fk,n is the n-th k-Fibonacci number.
The k-Lucas quaternion Pk,n is defined by

Pk,n = Lk,n + iLk,n+1 + jLk,n+2 + κLk,n+3, n ≥ 0,

where Lk,n is the n-th k-Lucas number.

Proposition 2. The following identities hold:

(i) Dk,nD
∗
k,n = (k2 + 2)Fk,2n+3.

(ii) Pk,nP
∗
k,n = (k2 + 2)(k2 + 4)Fk,2n+3.

(iii) D2
k,n = 2Fk,nDk,n −Dk,nD

∗
k,n.

(iv) P 2
k,n = 2Lk,nPk,n − Pk,nP ∗k,n.

(v) Dk,n +D∗k,n = 2Fk,n.

(vi) Pk,n + P ∗k,n = 2Lk,n.

(vii) Dk,n+2 = kDk,n+1 +Dk,n.

(viii) Pk,n+2 = kPk,n+1 + Pk,n.
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Proof. (i) From Equations (6) and (1)

Dk,nD
∗
k,n = F 2

k,n + F 2
k,n+1 + F 2

k,n+2 + F 2
k,n+3

= Fk,2n+1 + Fk,2n+5

= Fk,2n+1 + k(kFk,2n+3 + Fk,2n+2) + Fk,2n+3

= (k2 + 1)Fk,2n+3 + kFk,2n+2 + Fk,2n+1

= (k2 + 1)Fk,2n+3 + Fk,2n+3

= (k2 + 2)Fk,2n+3.

(ii) The proof is similar to (i).

(iii) From Proposition 2(i)

D2
k,n = (Fk,n + iFk,n+1 + jFk,n+2 + κFk,n+3)2

= F 2
k,n − F 2

k,n+1 − F 2
k,n+2 − F 2

k,n+3 + i(2Fk,nFk,n+1)

+ j(2Fk,nFk,n+2) + κ(2Fk,nFk,n+3)

= 2Fk,n(Fk,n + iFk,n+1 + jFk,n+2 + κFk,n+3)

− F 2
k,n − F 2

k,n+1 − F 2
k,n+2 − F 2

k,n+3

= 2Fk,nDk,n −Dk,nD
∗
k,n.

(iv) The proof is similar to (iii).
The other identities are clear from definition.

4 Main Results

Theorem 3 (Binet’s Formula). For n ≥ 0, the Binet formulas for the k-
Fibonacci and k-Lucas quaternions are as follow:

Dk,n =
1√

k2 + 4
(α̂αn − β̂βn) =

α̂αn − β̂βn

α− β
, (9)

and

Pk,n = α̂αn − β̂βn, (10)

respectively, where α̂ = 1 + iα+ jα2 + κα3 and β̂ = 1 + iβ + jβ2 + κβ3.



SOME COMBINATORIAL PROPERTIES OF THE k-FIBONACCI AND THE
k-LUCAS QUATERNIONS 206

Proof. The characteristic equation of recurrence relation in Proposition 2(vii)
is z2 − kz − 1 = 0. Moreover, the initial values are Dk,0 = (0, 1, k, k2 + 1) and
Dk,1 = (1, k, k2 + 1, k3 + 2k). Hence,

Dk,n = Aαn +Bβn.

Then, Dk,0 = A+B and Dk,1 = Aα+Bβ, and from Equation (8) we obtain
that

A =
1

α− β
(Dk,1 − βDk,0) =

1√
k2 − 4

(1 + iα+ jα2 + κα3).

Analogously, B = 1√
k2−4 (1 + iβ + jβ2 + κβ3). Therefore,

Dk,n =
1√

k2 + 4
(α̂αn − β̂βn) =

α̂αn − β̂βn

α− β
.

Similarly, we can get Equation (10).

Note that if k = 1 (see Equations (3.1) and (3.2) in [11]), then

D1,n =
1√
5

(α̂αn − β̂βn),

and

P1,n = α̂αn − β̂βn.

Theorem 4 (Cassini’s identity). For n ≥ 1, we have the following formula:

Dk,n−1Dk,n+1 −D2
k,n = (−1)n(2Dk,1 − (k2 + 2k)κ).

Proof. We proceed by induction on n. If n = 1,

Dk,0Dk,2 −D2
k,1 =(Fk,0 + Fk,1i+ Fk,2j + Fk,3κ)(Fk,2 + Fk,3i+ Fk,4j + Fk,5κ)

− (Fk,1 + Fk,2i+ Fk,3j + Fk,4κ)(Fk,1 + Fk,2i+ Fk,3j + Fk,4κ)

= −(2 + 2(k + 1)i+ (k2 + 1)j + (k3 + 2k)κ)

= (−1)1(2Dk,1 − (k2 + 2k)κ).

It is not difficult to show that the proposition is true for n+ 1.

Note that if k = 1 (see Equation (3.9) in [11]), then

D1,n−1D1,n+1 −D2
1,n = (−1)n(2D1,1 − 3κ).

From a numerical test in Mathematica we obtained the following conjec-
ture:
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Conjecture 5. For n ≥ r ≥ 1, we conjecture the following formula:

Dk,n−rDk,n+r −D2
k,n = (−1)n−r(2Fk,rDk,r −Gk,rκ), (11)

where Gk,r is a sequence defined by

Gk,0 = 0, Gk,1 = k2 + 2k, and Gk,n = (k2 + 2)Gk,n−1 −Gk,n−2, n ≥ 2.

Example 6. If n = 10 and r = 3 in (11), then

Dk,n−rDk,n+r −D2
k,n

= (2 + 4k2 + 2k4) + (4k+ 6k3 + 2k5)i+ (2 + 8k2 + 8k4 + 2k6)j+ (3k3 + 4k5 +k7)κ

2Fk,rDk,r

= (2+4k2+2k4)+(4k+6k3+2k5)i+(2+8k2+8k4+2k6)j+(6k+14k3+10k5+2k7)κ,

and Gk,r = 6k + 11k3 + 6k5 + k7. Then,

Dk,7Dk,13 −D2
k,10 = 2Fk,3Dk,3 −Gk,3κ.

Note that, if this conjecture is true, then Cassini’s identity is a particular
case, r = 1.

Theorem 7. For the k-Fibonacci quaternions Dk,n, we have

n∑
i=0

Dk,mi+j =

{
(−1)mDk,nm+j−Dk,nm+m+j+(−1)jDk,m−j+Dk,j

(−1)m−Lk,m+1 , ifj < m;
(−1)mDk,nm+j−Dk,nm+m+j−(−1)mDk,j−m+Dk,j

(−1)m−Lk,m+1 , otherwise.

(12)

Proof.

n∑
i=0

Dk,mi+j =

n∑
i=0

α̂αmi+j − β̂βmi+j√
k2 + 4

=
1√

k2 + 4

(
α̂αj

n∑
i=0

αmi − β̂βj
n∑
i=0

βmi

)

=
1√

k2 + 4

(
α̂
αnm+m+j − αj

αm − 1
− β̂ β

nm+m+j − βj

βm − 1

)
=

1√
k2 + 4

1

(αβ)m − (αm + βm) + 1

(
α̂αnm+m+jβm − α̂αnm+m+j

−α̂αjβm + α̂αj − β̂βnm+m+jαm + β̂βnm+m+j + β̂βjαm − β̂βj
)

=
1√

k2 + 4

1

(−1)m − Lk,m + 1

(
(α̂αnm+m+jβm − β̂βnm+m+jαm)

− (α̂αnm+m+j − β̂βnm+m+j)− (α̂αjβm − β̂βjαm) + (α̂αj − β̂βj)
)

=
(−1)mDk,nm+j −Dk,nm+m+j − α̂αjβm−β̂βjαm

√
k2+4

+Dk,j

(−1)m − Lk,m + 1
.
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But

α̂αjβm − β̂βjαm =

{
(−1)j+1

√
k2 + 4Dk,m−j , if j < m;

(−1)m
√
k2 + 4Dk,j−m, otherwise.

Therefore, Equation (12) is clear.

From Theorem 7 we obtain the following corollary.

Corollary 8. For the k-Fibonacci quaternions Dk,n, we have

n∑
i=0

Dk,mi =
(−1)mDk,nm −Dk,nm+m +Dk,m +Dk,0

(−1)m − Lk,m + 1
,

n∑
i=0

Dk,i =
1

k
(Dk,n +Dk,n+1 −Dk,1 −Dk,0).

Theorem 9. For n ≥ 0, we have the following summation formulas:

n∑
i=0

(
n

i

)
Dk,ik

i = Dk,2n,

n∑
i=0

(
n

i

)
Pk,ik

i = Pk,2n.

Proof.

n∑
i=0

(
n

i

)
Dk,ik

i =

n∑
i=0

(
n

i

)(
α̂αi − β̂βi

α− β

)
ki

=
α̂

α− β

n∑
i=0

(
n

i

)
(kα)i − β̂

α− β

n∑
i=0

(
n

i

)
(kβ)i

=
α̂

α− β
(1 + kα)n − β̂

α− β
(1 + kβ)n

=
α̂

α− β
(α2)n − β̂

α− β
(β2)n

=
α̂α2 − β̂β2

α− β
= Dk,2n.

The proof of the second sum is analogously.



SOME COMBINATORIAL PROPERTIES OF THE k-FIBONACCI AND THE
k-LUCAS QUATERNIONS 209

Theorem 10. The generating function for the k-Fibonacci and k-Lucas quater-
nions are

Gk(z) =
z + i+ j(k + z) + κ(k2 + 1 + kz)

1− kz − z2
, (13)

and

Jk(z) =
2− kz + i(k + 2z) + j(k2 + 2 + kz) + κ(k3 + 3k + (k2 + 2)z)

1− kz − z2
, (14)

respectively.

Proof. We begin with the formal power series representation of the generating
function for {Dk,n}∞n=0,

Gk(z) = Dk,0 +Dk,1z +Dk,2z
2 + · · ·+Dk,lz

k + · · · .

Then

kzGk(z) = kDk,0z + kDk,1z
2 + kDk,2z

3 + · · ·+ kDk,lz
k+1 + · · ·

z2Gk(z) = Dk,0z
2 +Dk,1z

3 +Dk,2z
4 + · · ·+Dk,lz

k+2 + · · · .

Therefore
(1− kz − z2)Gk(z) = Dk,0 + (Dk,1 − kDk,0)z.

So

Gk(z) =
Dk,0 + (Dk,1 − kDk,0)z

1− kz − z2
.

The proof of Equation (14) runs like this.

Theorem 11. For m,n ∈ Z the generating function of the k-Fibonacci quater-
nion Dk,m+n and k-Lucas quaternion Pk,m+n are

∞∑
n=0

Dk,n+mz
n =

Dk,m +Dk,m−1z

1− kz − z2
,

and

∞∑
n=0

Pk,n+mz
n =

Pk,m + Pk,m−1z

1− kz − z2
.



SOME COMBINATORIAL PROPERTIES OF THE k-FIBONACCI AND THE
k-LUCAS QUATERNIONS 210

Proof.

∞∑
n=0

Dk,n+mz
n =

∞∑
n=0

(
α̂αn+m − β̂βn+m

α− β

)
zn

=
1

α− β

(
α̂αm

∞∑
n=0

αnzn − β̂βm
∞∑
n=0

βnzn

)

=
1√

k2 − 4

(
α̂αm

1

1− αz
− β̂βm 1

1− βz

)
=

1√
k2 − 4

(
(α̂αm − β̂m) + (α̂αm−1 − β̂βm−1)

1− kz − z2

)

=
Dk,m +Dk,m−1z

1− kz − z2
.

5 Conclusion

In this pear, we study a generalization of the Fibonacci and Lucas quaternions.
Particularly, we define the k-Fibonacci and k-Lucas quaternions, and we find
some combinatorial identities.

The k-Fibonacci sequence is a special case of a sequence called s-bonacci
sequence which is defined recursively as a linear combination of the preceding
s terms:

an+s = c0an + c1an+1 + · · ·+ cs−1an+s−1,

where c0, c1, . . . , cs−1 are real constants. It would be interesting to introduce
a s-bonacci quaternions.
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